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Abstract
Dafny and Idris are two verification-aware programming

languages that support two different styles of fine-grained

reasoning about programs. Dafny is an imperative design-by-
contract language that provides a clear separation between

specifications and code, while Idris is a dependently-typed

functional language in which specifications are code. Each
of these approaches support different styles of verification

— Hoare Logic in Dafny versus Dependent Type Theory in

Idris. In this paper, we will examine how Dafny and Idris

express The Problem of the Dutch National Flag from Dijk-

stra’s Discipline of Programming, and note the differences

and similarities between both approaches.
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1 Introduction
Verification-aware programming languages support direct
reasoning about programs within the structure of the lan-

guage itself. Such languages distinguish themselves from

interactive theorem provers in two ways: 1) the languages are

geared towards practical programming just as much as they

are towards verification, efficiency is just as important as

correctness; and 2) not everything has to be mechanically

verified — the ‘verification dial’ can be turned down and up

as required.

Dafny and Idris are two verification-aware programming

languages that support not only developing programs, but

also mathematically verifying that those programs are cor-

rect. In spite of having essentially the same goals, the two

languages are very different.

Dafny [26] is primarily imperative and object-oriented,

based on languages like C♯, Eiffel, and Algol, and software

engineering techniques such as Vienna Development Meth-
odology (VDM) [9]. Dafny embodies design-by-contract [16,
17] — a Hoare logic modularised via function pre- and post-

conditions, and relying on demesnes [31, 32] (aka dynamic
frames [10, 11]) to manage aliasing in a mutable, garbage-

collected heap. Dafny enforces a clear distinction between

(mathematical) specifications and (imperative) programs.

Idris [5], in contrast, is a dependently-typed pure func-

tional language in the lineage of Haskell and mathemat-

ical proof tools such as Coq [25], Agda [24], PVS [28], and

NuPRL [27]. In Idris, specifications are code, and side effects

such as mutation must be mediated by techniques like mon-

ads and effect handlers — very much unlike Dafny. Idris2 (the

version discussed in this paper) incorporates Quantitative
Type Theory (QTT) [3] to support type erasure and linear

resources.

In this paper, we will examine howDafny and Idris address

a classical sorting problem, The Problem of the Dutch National
Flag, attributed by E.W. Dijkstra to W.H.J. Feijen [8] and note

the differences and similarities between both approaches.

The next section presents the problem of the Dutch national

flag, and Dijkstra’s solution; the following section translates

this solution into Dafny. We then present a more general

Idris2 solution — a merge sort — as purely functional Idris

is not well suited to Dijkstra’s rather imperative framing

of both problem and solution. We then compare the two

languages and conclude by considering possible future work.

2 The Problem of the Dutch National Flag
The problem of the Dutch National Flag requires the design

of an algorithm to sort a randomly allocated array of colours

taken from the Dutch flag (Red, White, and Blue) in order

according to the Flag itself (top-to-bottom; Red, White, then

Blue). Dijkstra presents the problem as:

14 THE PROBLEM OF THE DUTCH 
NATIONAL FLAG 

There is a row of buckets numbered from 1 through N. It is given that 
P 1: each bucket contains one pebble 
P2: each pebble is either red, white, or blue. 

A mini-computer is placed in front of this row of buckets and has to 
be programmed in such a way that it will rearrange (if necessary) the pebbles 
in the order of the Dutch national flag, i.e. in order from low to high bucket 
number first the red, then the white, and finally the blue pebbles. In order to 
be able to do so, the mini-computer has been equipped with one output 
command that enables it to interfere with pebble positions, viz. 

"buck :swap(i,j)" for 1 < i < N and J < j < N: 
for i = j: the pebbles are left as they are 
for i ::;t:. j: two computer-controlled hands pick up the pebbles 

from buckets nrs. i and j respectively and then drop 
them in each other's bucket respectively. (This opera-
tion leaves relations Pl and P2 invariantly true.) 

and one input command that can inspect the colour of a pebble, viz. 
"buck(i)" for 1 < i < N: 

when the computer program prescribes the evalua-
tion of this function of type "colour", a movable 
"eye" is directed upon bucket nr. i, and delivers to the 
mini-computer as the value of the function the colour 
(i.e. red, white, or blue) of the pebble currently lying in 
the bucket, the contents of which is inspected by the 
"eye". 
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where 𝑁 is a “global constant from the context”. He goes on

to add three systemic requirements:

1. degenerate inputs — fewer than three colours, perhaps

none if 𝑁 = 0.

2. storage — only scalar variables, no arrays.
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3. efficiency — “the program may direct the ’eye’ at most

once upon each pebble”.

Dijkstra also offers the following solution to the problem,

along with a rigorous informal English argument that the

program correctly solves the problem:

114 THE PROBLEM OF THE DUTCH NATIONAL FLAG 

has been created. No experienced programmer will suggest an arbitrary 
one, the ones at the low and the high end respectively are the most likely 
candidates. With equal probabilities for the three colours, an inspection of 
the pebble in the rth bucket will give rise to (0 + 1 + 2)/3 = 1 swap; inspec-
tion of the pebble in the wth bucket, however, will give rise only to 
(1 + 0 + 1)/3 = 2/3 swap, and this settles the choice. Thus we arrive at 
the following program: 

begin glovar buck; glocon N; privar r, w, b; 
r vir int, w vir int, b vir int := I, N, N; 
do w > r--+ 
begin glovar buck, r, w, b; pricon col; 

col vir colour := buck(w); 
if col= red--+ buck:swap(r, w); r:= r + 1 
0 col= white--+ w:= w - 1 
0 col= blue-> buck:swap(w, b); w, b := w - 1, b - 1 

fi 
end 
od 

end 

Note. The program is robust in the sense that it will lead to abortion 
when fed with erroneous data such as one of the pebbles being green. 
(End of note.) 

In the case that all pebbles are red and no swaps are necessary, our pro-
gram will prescribe N swaps and as conscious programmers we should 
investigate how complicated a possibly more refined solution becomes: 
perhaps we have acted too cowardly in rejecting it. (As a general strategy 
I would recommend not to try the more refined solution before having con-
structed the more straightforward one; that strategy gives us, besides a 
working program, an inexpensive indication of what the considered refine-
ment as such has to compete with.) I have always thought the above solution 
perfectly satisfactory, and up till now I have never considered a more com-
plicated one. So, here we go! 

Inspecting just one can be extended to "inspecting one or two" or "inspect-
ing as many as we can conveniently place". In view of the case "all pebbles 
red" something along the latter line seems indicated. Before inspecting the 
uninspected pebble at the high end we could try to move the boundary 
indicated by r to the high end as much as we possibly can without swapping, 
because it seems a pity to replace a red pebble in a perfectly OK-position by 
another red pebble. The outer repetition could then begin with 

The key to Dijkstra’s solution is to divide the array into

four regions: one for red pebbles; one for white; one region

for pebbles we’ve yet to inspect; and finally one for blue

pebbles — delineated by index variables 𝑟 , 𝑤 , and 𝑏. The

whole array starts in the uninspected region (between the

𝑤 and 𝑏 indices), then each trip around the loop inspects

the contents of the lowest uninspected bucket (at 𝑤 ), and

then adjusts the index variables and swaps that pebble if

necessary to place that pebble into the correct region. A key

point of Dijkstra’s algorithm is that not only does it examine

each pebble only once, it also performs at most one swap for

each element of the array. Program Proofs [12] includes the
following diagram of these regions:

3 Dafny Colours the Flag
Leino’s Program Proofs [12, § 15.0] includes a good descrip-

tion of a Dafny implementation of the algorithm, shown here

in Figure 1, and the rationale for its proof.

The Dafny code is very similar to Dijkstra’s post-Algol /

guarded commands code, with three main differences: the

more traditional while and match statements rather than

do and multi-way if statements; the ensures clauses giving

the postconditions and modifies clause giving the frame;

and the invariant clauses giving loop invariants.

The Dafny DutchFlag method has two postconditions.

The first postcondition requires that the elements of the ar-

ray must be ordered — the underlying ordering of the Color

type ensures the red-white-blue order of the Dutch flag. The

second condition requires that the output array is a permuta-

tion of the input array. Earlier versions of Dafny would also

have required a precondition to state that the input array a

method DutchFlag(a: array<Color>)
modifies a
ensures forall i,j :: 0 <= i < j < a.Length

==> Ordered(a[i], a[j])
ensures multiset(a[..]) == old(multiset(a[..]))

{
var r, w, b := 0, 0, a.Length;
while w != b

invariant 0 <= r <= w <= b <= a.Length
invariant forall i :: 0 <= i < r ==> a[i] == Red
invariant forall i :: r <= i < w ==> a[i] == White
invariant forall i :: b <= i < a.Length ==> a[i] == Blue
invariant multiset(a[..]) == old(multiset(a[..]))

{ match a[w]
case Red =>

a[r], a[w] := a[w], a[r];
r, w := r + 1, w + 1;

case White =>
w := w + 1;

case Blue =>
b := b - 1;
a[w], a[b] := a[b], a[w];

}
}

Figure 1.Dafny version of Dijkstra’s solution to the Problem
of the Dutch National Flag.

was actually an array, rather than a null pointer — recent

versions of Dafny express that precondition implicitly in the

types, because Dafny’s types are now non-null by default.

The heavy lifting — as is often the case — is done by

the loop invariants. The first invariant describes the regions

making up the core of the algorithm: the next three invariants

characterise the colours of each of the output regions. The

last invariant echoes the last postcondition, saying that the

array processed so far is a permutation of the corresponding

entries of the input array.

While Dijkstra discusses both postconditions and invari-

ants in his presentation of the problem, he does not make

either explicit as integral parts of the program code. Dafny
obviously must make postconditions and invariants explicit

— and also preconditions, although they are not required in

this example. Dafny specifications are syntactically distin-

guished as special clauses on method definitions and loop

statements respectively.

4 Idris’ Turn to Colour the Flag
Idris2 is a general purpose functional programming language

with support for full-spectrum dependent types and QTT.

Dependent type theory is an expressive setting in which

types can depend on values, supporting fine-grained type-

level reasoning about our programs. Dependently typed lan-

guages, such as Idris [6], Agda [24], Lean [19], etc., epitomise

the Curry-Howard correspondence of propositions are types;
proofs are programs. Idris and Agda, however, present this
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correspondence as part of a more typical programming set-
ting than seen in more traditional theorem provers that sup-
port dependent types such as Lean and Coq [25]. With this 
approach, our programs can become intrinsically verified 
because the code we can write is the proof that the code is 
correct: Correctness-by-Construction.

QTT provides reasoning not only about how many times 
terms can be used (linearity) but also when terms can be 
used. We can use quantities to distinguish between code that 
we only need at compile time (to reason about sorting) from 
code we need to run (the sorting code itself), but that also 
the compile-time only code will influence the runtime code 
used.

As with many functional languages, in-place update al-
gorithms (such as Quicksort or Dijkstra’s algorithm for the 
Dutch national flag) are not always the most idiomatic ways 
to sort lists. Thus, when Colouring the flag in Idris, we will 
not attempt to adhere strictly to Dijkstra’s requirements 
and we will produce a correct-by-construction MergeSort 
implementation adapted from Type-driven development with 
Idris [6, Chp. 10].

Note. Even though we are reasoning about MergeSort 
we could potentially use Views (Figure 2) to reason about 
in-place sorting [1], but that approach would require more 
consideration and thought.

4.1 Engineering with Proofs
Within the dependently-typed setting, datatypes are the spe-
cifications we want to reason about, and we construct pro-
grams that embody the proofs that these specifications are 
correct.

An (un)fortunate side effect of the dependently typed ap-
proach, however, is that our specification, code, and proofs 
are all one and the same. Such mixing means that, if we are 
not careful, code that is easier to reason about is not necessar-
ily performant. We thus use two idiomatic approaches, that 
when combined with quantities, enables efficient reasoning 
about our programs: Views—for detailing how to traverse 
over our input lists more elegantly and aid in reasoning about 
our functions’ totality (Section 4.1.1); and Thinnings—for de-
tailing how we rearrange our input lists so that we know the 
output is a permutation of the input (Section 4.1.2).

4.1.1 Views. Views are a programming idiom first observed 
by Philip Wadler for Haskell in 1987 [29], in which datatypes 
(the views) are used to observe data and their relations to 
support more informed reasoning about the observed data. 
When combined with dependent-types, specifically depend-
ent pattern matching [13], we have a more expressive pro-
gramming idiom for reasoning about data in more interesting 
ways. For instance, views can not only better describe how 
our functions should operate, but they can also give sufficient 
evidence over the computational structure of our programs 
to reason about their totality.

Consider the example ‘view & covering function’ in Fig-

ure 2. Here we have defined a ‘View’ that compares the shape

of two lists and if they are balanced (are equal in length) or

not. Balance is an inductive datatype, and each constructor

determines the valid comparisons. First are the base cases:

both lists are empty; the left list has more elements; and the

right list has more elements. Second, and final, case is the

inductive step: examine the head of both lists, and then ex-

amine the tail. The ‘covering function’, balance, computes

the view given two lists.

data Balance : (xs, ys : List a) -> Type where
BalEmpty : Balance Nil Nil
LeftLean : Balance (x::xs) Nil
RyetLean : Balance Nil (y::ys)
Balanced : Lazy (Balance xs ys)

-> Balance (x::xs) (y::ys)

(a) View
balance : (xs, ys : List a) -> Balance xs ys
balance [] [] = BalEmpty
balance [] (x :: xs) = RyetLean
balance (x :: xs) [] = LeftLean
balance (x :: xs) (y :: ys) = Balanced (balance xs ys)

(b) Cover

Figure 2. Example of ‘View & Covering’.

4.1.2 Thinnings. Thinnings, derived fromOrder Preserving
Embeddings, is another programming idiom to reason about

data. Specifically, how data moves between lists such that

we retain the relation between inputs and outputs [14, 7].

Moreover, thinnings establish relations between lists of dif-

ferent sizes, such as filtering lists and subset relations.

Consider, for example, Figure 3 that shows a standard

thinning specifying how a given input list (xs) is distributed
between two output lists that capture if a given predicate (f)
holds. Much like our Balance datatype, Thinning is induct-

ive, and the base case captures the empty list. The remaining

cases capture how, as we traverse over the list, the elements

of xs are kept and which are dropped depending on if the

given predicate holds i.e. can be instantiated or not. We

construct the thinning, as described in its specification, by

traversing over the input, and using the provided decision

procedure (the predicate must be decidable) to move copies

of the element to the correct output lists. Further, a depend-

ent pair promotes values (our evidence of which elements

were kept and dropped) to the type level.

4.2 Type-Driven Merging of Lists
Using our idioms, we can now start to specify, and thus

reason about, our merge sort algorithm by construction.

We begin with how to merge two lists. Figure 4 details

a thinning and its implementation to specify how two lists

are merged by comparison, an implementation of mergeBy.
We make our specifications parametric by parameterising
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data Thinning : (0 f : a -> Type)
-> ( xs, ys, zs : List a)

-> Type
where

TEmpty : Thinning f Nil Nil Nil
TKeep : {0 f : a -> Type}

-> (prf : f x)
-> (ltr : Thinning f xs ys zs)

-> Thinning f (x::xs) ys (x::zs)
TSkip : {0 f : a -> Type}

-> (prf : f y -> Void)
-> (ltr : Thinning f xs ys zs)

-> Thinning f (x::xs) (x::ys) zs

(a) Thinning
thin : (f : (x : a) -> Dec (p x))

-> (xs : List a)
-> (dropped ** kept ** Thinning p xs dropped kept)

thin f []
= ([] ** ([] ** TEmpty))

thin f (x :: xs)
= case f x of

(Yes pH)
=> case thin f xs of

(ds ** ks ** pT)
=> (ds ** (x::ks) ** (TKeep pH pT))

(No contra)
=> case thin f xs of

(ds ** ks ** pT)
=> (x::ds ** ks ** TSkip contra pT)

(b) Code

Figure 3. Thinnings to Reason about Lists.

our type with the predicate (another datatype) we will use

to represent the comparison; the two lists we wish to merge;

and the resulting merged list. Our specification recurses on

the left operand, much as we do with list append, and the

base cases capture when either input list is empty. In the

recursive cases, we examine the heads of each input and

append the left element if the comparison is true, and the

right element if the comparison is false. Note that we erase

the type representing the comparison by giving it the zero

quantity.

Realising our merge program is not as straightforward

as one could hope, we must battle the totality checker, and

think about what our program is returning. Regardless, our

program’s interface is actually straightforward, we provide

a comparison function, the two input lists, and the result

is an instance of the specification. Our program requires

the need for a dependent pair such that we can produce the

witness (i.e. the result of merging) required for our Merge
type to become inhabited. If a standard dependent pair was

used, however, it would mean that the evidence (the instance

of Merge) remains available at run time. Sometimes this is

what you want to do, and other times you do not require

the evidence once the program has been verified. For this

example we shall use Subset which quantifies the evidence

as being compile time only (runtime irrelevant). Furthermore,

data Merge : (0 f : a -> a -> Type)
-> ( xs,ys,zs : List a)
-> Type

where
EmptyR : Merge f Nil ys ys
EmptyL : Merge f xs Nil xs

GoLT : {0 f : a -> a -> Type}
-> (prf : f x y)
-> (rest : Merge f xs (y::ys) zs)

-> Merge f (x::xs) (y::ys) (x::zs)

GoGTE : {0 f : a -> a -> Type}
-> (prf : f x y -> Void)
-> (rest : Merge f (x::xs) ys zs)

-> Merge f (x::xs) (y::ys) (y::zs)

(a) Specification
merge : (cmp : (x,y : a) -> Dec (f x y))

-> (xs : List a)
-> (ys : List a)

-> Subset (List a)
(Merge f xs ys)

merge cmp xs ys with (balance xs ys)
merge cmp [] [] | BalEmpty = (Element [] EmptyR)
merge cmp (x :: xs) [] | LeftLean

= (Element (x :: xs) EmptyL)
merge cmp [] (y :: ys) | RyetLean

= (Element (y :: ys) EmptyR)

merge cmp (x :: xs) (y :: ys) | (Balanced b)
= case cmp x y of

(Yes pH)
=> case merge cmp xs (y::ys) of

(Element zs pT) => (Element (x::zs)
(GoLT pH pT))

(No contra)
=> case merge cmp (x::xs) ys of

(Element zs pT) => (Element (y::zs)
(GoGTE contra pT))

(b) Code

Figure 4. Type-Driven Merging of Lists

Idris’ totality checker becomes confused in both recursive

cases, as the size of an input list in each recursive call appears

to grow. We can reuse our Balance view (Section 4.1.1 to

capture the dually recursive structure of the merge so that

Idris does see it as being total.

4.3 Type-Driven MergeSort
Merge sort operates by recursively splitting the input list

in two, and merging the results in order. Section 4.2 tells us

how to merge, we now need to split n’ merge. Fortunately,

we can adapt and take inspiration from an existing view

(SplitRec) to describe our merge sort specification. Within

Idris2’s standard library, the SplitRec view demonstrates

how to efficiently, and recursively, split a list in two. We can

adapt the definition of this view to detail how we can then
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merge the result of the split. Figure 5 illustrates the resulting 
specification: MergeSort
The base cases capture the empty and singleton list, and 

the recursive case splits the list in two and uses our Merge 
specification to perform the merge. Note that we must para-
meterise the type of MergeSort with a description of the 
comparison predicate, and that we have a single input and 
output list.

The interface for the MergeSort implementation follows 
that of Merge, we provide the comparison function as in-
put together with the input list and that the output is the 
sorted list but with an erasable proof. When implementing 
MergeSort we can reuse the covering function for splitRec 
to perform the recursive split and use our merge function to 
merge the outputs.
Our implementation can then be used to sort any list, 

provided that we provide a suitable decidable decision pro-
cedure to compare elements.

5 Dafny & Idris
We know that our language’s can colour flags, but how do 
they compare?

5.1 Verbosity of Verification
An immediate difference is the verbosity of the verification. 
With Dafny, the two languages (verification and program-

ming) are not subsets of each other. Dafny provides extrinsic 
verification of our programs, and as a  result the verifica-
tion language has purposefully limited expressiveness when 
compared to the programming language. The limited ex-
pressiveness results in more succinct reasoning about our 
program’s invariants, and there is a strict separation between 
the specification and code. The complete solution results in 
a single figure. That being said, the proof of correctness is 
not self-evident from the result. Dafny will tell us the code 
is correct (against the specification) but neither the code nor 
the IDE directly explains why.
Idris, on the other hand, does not distinguish between 

code and specification, and when reasoning about programs 
it is important to decide upon whether the approach will 
be extrinsic, intrinsic, or a mixture of the two. With our 
implementation of MergeSort it is natural to have an extrinsic 
proof, albeit one that is correct-by-construction, that our 
MergeSort result is correct.
Regardless of where the proofs are, the correct-by-cons-

truction approach results in a more verbose specification and 
implementation, where the implementation is the proof of 
correctness. More so, many of the specifications invariants, 
such as that the output must be a permutation of the input, 
are implicitly given in the Idris specification. Such implicit 
invariants can lead to incorrect specifications (Section 5.3). It 
is important to note, however, that with Idris we also see the

detailed reasons why our code is correct and not just that it
is.

5.2 Efficiency
The efficiency over QuickSort and MergeSort aside, it is

interesting to note the efficiency of the resulting code against

how it has been verified.

Given Dafny’s strict separation between specification and

code, the specifications are easily erased for runtime, and

the specifications have no impact on the code’s performance.

When using Idris, however, the lack of separation means that

our specificationswill affect our code’s runtime performance.

That is, unless explicitly erased (i.e. given quantity 0) or is an
unbound implicit variable (which by default have quantity 0)
the code will be runtime relevant. For mergesort, we erased
the evidence, but when using views such as balance there is
nothing to erase. We must, thus, be careful when structuring

our code, and specifying the erasure properties.

Although, views seem like an efficiency anti-pattern they

can in fact help with efficient data operations. Brady [6,

Chp. 10], from which we adapted the MergeSort implement-

ation, details that views splitRec and snocList (for revers-
ing a list) can be performant, 𝑂 (𝑛 log𝑛) and linearly. Views

are performant.

5.3 Specification Correctness
Although we can write verified software using Idris or Dafny,

a question remains: Did we verify the correct thing? Valida-

tion is just as important as verification, after all.

An issue with both Idris and Dafny is that we do not

reason about our specifications’ correctness per se only that

they are sound. Which for Dafny means we need to ensure

Boolean satisfaction through the SAT solver, and for Idris

that we can write a program that generates an instance of

the specification. For Idris, however, there are two ways in

which we can reason about the soundness and correctness

of our programs.

If the proposition is decidable, we can reason about the

completeness through generation of a contradiction that the

proposition will fail. This was evidenced by our use of Dec
when comparing elements in a list. Provision of such contra-

dictory evidence can, unfortunately, take some engineering

skill.

Another approach is to provide a proof of equality that the

result of running a program (in this case mergesort) upon
completion will produce an expected output (in this case a

sorted list). That is, providing evidence (a value, a proof) for

the following type:

test : mergeSort [3,2,1] = [1,2,3]
test = ?hole

Regardless, for both languages, care must be taken that

we have written suitable specifications.
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data MergeSort : (f : a -> a -> Type)
-> (xs,ys : List a)

-> Type where

MergeSortNil : MergeSort f Nil Nil

MergeSortOne : (x : a) -> MergeSort f [x] [x]

MergeSortPair : (xs, ys, as, bs, cs : List a)
-> (lrec : Lazy (MergeSort f xs as))
-> (rrec : Lazy (MergeSort f ys bs))

-> (doM : Merge f as bs cs)
-> MergeSort f (xs ++ ys) cs

(a) Specification

mergeSort : (cmp : (x,y : a) -> Dec (f x y))
-> (xs : List a)

-> Subset (List a)
(MergeSort f xs)

mergeSort cmp xs with (splitRec xs)
mergeSort cmp [] | SplitRecNil

= (Element [] MergeSortNil)
mergeSort cmp [x] | (SplitRecOne x)

= (Element [x] (MergeSortOne x))

mergeSort cmp (lefts ++ rights)
| (SplitRecPair lefts rights lrec rrec)

= case mergeSort cmp lefts | lrec of
(Element ls pL)

=> case mergeSort cmp rights | rrec of
(Element rs pR)

=> case merge cmp ls rs of
(Element lrs pLR)

=> Element lrs
(MergeSortPair lefts rights

ls rs
lrs pL pR pLR)

(b) Code

Figure 5. Type-Driven Merge Sorting of Lists

5.4 How correct is our ‘correctness’?
Just as we must think about the correctness of our specifica-

tions, we must also think about the correctness of the lan-

guages themselves.

Dafny checks the correctness of implementations (against

specifications) using external tooling— principally using SAT

solvers, addressed via the Boogie intermediate language [4].

Dafny and Boogie are written in C♯, and themost-used solver,

Z3, in C++ [18]. We must rely on the correctness of this

toolchain, and results interpretation, as performed by the

Dafny developers and their testing abilities.

Idris is developed on top of a small and verifiable core

language (TT) and high-level programs are elaborated down

to this language. More so, Idris is self-hosting to ensure that a

certain class of bugs (relating to naming and substitution) are

removed. This self-hosting, however, is there to demonstrate

Idris’ suitability as a general purpose programming language;

the semantics of TT, and higher level languages, have yet to

be reasoned about within Idris.

5.5 One more Thing. . . Interactive Verification
Another area that we have not touched upon is the process

through which our verified programs were written. Program-

ming has long been an interactive experience, with many lan-

guages now supporting the LSP protocol; a protocol through

which programmers, compilers, and editors can interact with

each other. Both Dafny and Idris support such interacting

editing. Dafny through the LSP protocol, and Idris using a

bespoke IDE-Protocol — although there is nascent support

for LSP in Idris2. What makes Idris more interesting is the

support for typed holes [2] in which we can specify partial

programs with, and use program synthesis to attempt to fill

the hole. Using typed holes we can use our types to drive the

development of our verified program’s making the verifica-

tion an interactive experience, something that Dafny cannot

(yet) do.

6 Conclusion
Wehave used two verification-aware programming languages

to verify that we can colour the Dutch flag correctly, and

looked at how both languages help us do so. Given Dafny’s

simpler specification language, it is easy to see why it has

gained traction in comparison to Idris’ arguably more verb-

ose presentation. Idris is, however, not just a verification-

aware language, it is a language that supports dependent

types and the power of pi [21, 15] and offers users a rich

environment in which we can reason deeper about our pro-

grams and the languages we use to write those programs [30,

22, 23, 20].

We are just beginning our comparison between the two

languages and the challenge will be: Can Dafny and Idris col-

our the same flags or are there limits to what each language

can do, and how they do it?
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