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Abstract
This paper presents a critical review of literature on the emerging technology known as digital twin and its application in
structural integrity management for marine structures. The review defines digital twin in relation to structural integrity
management as a virtual representation of a physical structure that mirrors the same structural conditions in real time.
Twinning is a dynamic process that involves reducing the discrepancy between the virtual representation and physical
structure, which is achieved with the aid of monitored data. Regarding the state-of-the-art concerning marine structure
applications, all require the creation of a finite element model to represent the physical structure. Several practical
schemes for physical to virtual interconnection have been proposed, but few researchers have concentrated on virtual
to physical feedback. In addition, most works have focused only on assessing the current states of structures. To address
this, a digital twin-based monitoring framework is proposed and three key enabling technologies, namely model updating,
real-time simulation, and data-driven forecasting are demonstrated using a numerical case study. Such technologies
enable structural diagnostics, as well as prognostics, to support decision making such as inspection/maintenance planning.
Based on the case study, the opportunities and associated challenges of digital twin are discussed. For instance, to fully
exploit the potential of digital twin, challenges related to monitoring systems such as standardisation, enhanced redun-
dancy for long-term application, and monitored data quality assurance need to be addressed. Further, because digital
twin can avail a vast amount of data, a dedicated data mining capability should also be incorporated.
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Introduction

Background and research context

Operating in a harsh ocean environment, marine struc-
tures such as ships, ocean energy structures and so on
can experience different undesired damages, for exam-
ple, fatigue crack and corrosion.1 These degrade struc-
tural integrity and affect the serviceability of structures
if the damage accumulates to a critical threshold. To
manage this, structural integrity management, an on-
going life-cycle process that ensures the continued
fitness-for-purpose of marine structures, is essential.2

This process usually consists of four phases: data – eva-
luation –strategy – programme. Traditionally, the struc-
tural integrity data of marine structures is obtained
through offshore inspection. Most offshore inspection
are conducted periodically by a trained surveyor, rely-
ing on principally visual inspection, supported by local
thickness measurement and non-destructive evaluation

(NDE) techniques in the areas of interest. This tradi-
tional approach can, however, be limited by the low
accessibility of certain critical structural details and
unexpected bad weather which causes delay in inspec-
tion. In addition, the periodic inspection does not pro-
vide information on the real-time condition of target
structures and potentially overlooks some forms of
structural damages. Moreover, the offshore survey may
pose health and safety risks to the surveyors and lead to
a considerable increase in the life-cycle cost.
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Consequently, a wide spectrum of efforts has been
aimed at installing various sensing units on board to
remotely and continuously monitor the structural con-
dition. The monitored data are input to dedicated con-
dition assessment modules to assess the health of the
structures. This can assist the management of lifetime
structural integrity and possibly to demonstrate the case
for life extension.3 This is known as structural health
monitoring. In the recent years, there is an emerging
technology known as digital twin. In the same way as
conventional structural health monitoring, this technol-
ogy is reliant on a dedicated monitoring system and
condition assessment module. However, it differs from
the conventional structural health monitoring in that a
computer-based model (digital model) of the target
structure is also required. This model is usually created
and utilised during the initial design phase but is revita-
lised by the digital twin concept.4

Historical developments

The concept of twinning an in-service asset may origi-
nate from the NASA’s Apollo programme where an
identical space vehicle, that is, physical twin rather than
a digital twin, was built to allow mirroring the condi-
tions of the in-service space vehicle.5 This offered engi-
neers opportunities to test and assess the recovery
strategy on earth, prior to providing instruction to the
crew. Regarding digital twin, it is generally recognised
that the initial concept was introduced by Michael
Grieves during the executive product life-cycle manage-
ment (PLM) courses at University of Michigan.6 At
that time, the concept was known as ‘mirrored spaces
model’7 and later referred to as ‘information mirroring
model’.8 The concept was expanded by Grieves,9 where-
upon the term ‘digital twin’ was introduced. However,
the basic concept that has largely remained since its
inception in 2002 is that a digital informational con-
struct about a physical system could be created as an
entity in its own right. This digital information would
be a ‘twin’ of the information that was embedded
within the physical system itself and is linked with that
system throughout its entire life-cycle. At its optimum,
any information that can be obtained from inspecting a
physical manufactured product can be acquired from
its Digital Twin.10 Parrott and Warshaw further elabo-
rates the five enabling components of a Digital Twin
system: sensor, data, integration, analytics, digital twin
and actuators.11 A physical-digital-physical loop is
formed by these components and comprises the corner-
stone of a digital twin system.

Aims and objectives

Different initiatives have been undertaken to apply
digital twin in different sectors, such as manufactur-
ing,12 health care,13 green life science,14 fashion design15

and so on. This paper focuses on the structural integrity
management in particular for marine structures and

presents a critical review that answers the following
questions: How is digital twin defined in relation to
structural integrity management? What are the recent
developments of digital twin concerning its application
in marine structures and structural integrity manage-
ment? What are the opportunities and challenges? The
first question aims to clarify the expected functionality
of digital twin in the context of structural integrity
management. Exploring the second question will unveil
the current progress and answering the third question
provides guidance in terms of future development.
Additionally, a digital twin-enabled structural integrity
management framework is proposed and key technolo-
gies within the framework are illustrated using a
numerical example. This will assist the discussion of
opportunities and challenges associated with digital
twin and its future development.

Paper layout

The remaining part of this paper is structured as fol-
lows: Section 2 will deal with the definition of digital
twin by consolidating the different concepts given in
the literature. Thereafter, the recent developments and
applications of digital twin for marine structure integ-
rity management are reviewed and discussed in Section
3. As part the proposals for future development, an
integrated digital twin-based framework for structural
integrity management is introduced in Section 4, in
which the key enabling technologies are demonstrated
using illustrative numerical examples. With reference to
these examples, Section 5 further discusses the opportu-
nities of digital twin approach and the existing chal-
lenges in order to fully realise its potential. Finally,
concluding remarks are provided in Section 6.

Definition of digital twin

Digital twin has been an active research area in the
recent years. Various definitions are proposed to clarify
the underlying concept of digital twin. A comprehensive
review on the definition of digital twin in several aca-
demic publications was given by Liu et al.16 They con-
cluded that digital twin is a digital entity that reflects
physical entity’s behavioural rule and updates continu-
ally throughout the entire life-cycle. However, the
authors recognised that this conclusion is rather general
and ambiguous. This is largely because digital twin is
not a specific technology, but a concept that can be
implemented with a number of different advanced tech-
nologies (e.g. data-related technology, high-fidelity mod-
elling technology, model-based simulation technology)
and differs in different life-cycle phases (design phase,
manufacturing phase, service phase, retire phase).

Wagg et al.17 introduced the capability hierarchy of
digital twin, which includes five different levels: supervi-
sion (Level 1), operation (Level 2), simulation (Level 3),
learning (Level 4) and management (Level 5).
Supervision is the most basic level and refers to the
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continuous monitoring of an asset or process. Building
upon this, an interactive capability to inform and to
support the operational decision making is required,
that is, Level 2 – operation. The next level of sophistica-
tion is the simulation using digital twin. This enhances
the previous two capabilities by adding a function to
simulate the physical twin using numerical models and
data. A graphical representation for visualising the
physical twin is desired to support design and opera-
tional decisions. Extending the simulation by digital
twin are two more levels within the capability hierar-
chy, namely learning and management. These are the
current aspirations of digital twin. The former refers to
an intelligent ability to learn from data so that support-
ing the decision making and scenario planning (i.e.
prognostics, forecasting). Additionally, the learning
capability minimises the discrepancy between simula-
tion model and physical structure based on monitored
data (i.e. model updating). Management refers to the
automation of the digital twin. With all the aforemen-
tioned capabilities included, the digital twin system also
needs to be able to perform all forms of decision mak-
ing and asset management with minimal human inter-
vention. This aspect of the capability is perhaps more
relevant to artificial intelligence.

A consolidated and generalised definition of digital
twin was proposed by VanDerHorn and Mahadevan.18

This conceptualises it as a virtual representation of a
physical system (and its associated environment and
processes) that is updated through the exchange of
information between the physical and virtual systems.
The physical system, physical environment and the
physical process constitutes the physical reality. These
components all have their counterparts in the virtual
world. Information is interconnected in a physical to
virtual and virtual to physical manner. The former pri-
marily refers to the means by which collected and/or
interpreted information is used in physical reality to
update the virtual representation. The latter indicates
the means by which an action is informed by findings in
the virtual representation and undertaken to influence
the physical reality. The implementation of digital twin
includes specifying the intended outcomes, scoping the
digital twin, creating the virtual representation and
establishing the interconnection scheme. A measurable
and quantifiable outcome should be defined for the
digital twin to be developed, which enables realistic
bounding of the digital twin and allows for the value
proposition to be explicitly defined; in other words,
how much improvement can be achieved with respect
to the expected outcome. In terms of scoping of the
digital twin, it is important to define the modelling por-
tion of the physical reality and set the boundary
between the physical system and physical environment.
The other requirement is to specify the level of abstrac-
tion, which means collecting the physical system states
that are to be modelled and maintained. This will also
determine the fidelity of the computational model used
for creating the virtual representation. With regard to

the latter, the two principal aspects are the development
of data model for both current and historical system
states and the implementation of relevant computa-
tional models. Visualisation is another important con-
sideration as this demonstrates the value of digital twin
to the organisational leadership and non-domain
experts. Regarding the physical to virtual data connec-
tion, this is largely focused on sensor technology; how-
ever, offline data such as maintenance record, logbook,
subject matter expert opinion should be considered dur-
ing the implementation of digital twin. The virtual to
physical data connection can be achieved through pro-
viding feedback from the virtual representation to a
control actuator in the physical reality. This may corre-
spond to the level 5 digital twin concept introduced by
Wagg et al.17– autonomous management. Alternatively,
a human-in-the-loop approach can be used, in which
the information or insights from digital twin are
adopted to support the decision-making of relevant
actions. A digital twin can also be distinguished from
digital model or simulation approach by two qualifiers:
the virtual representation that represents a single
instance of a physical system, and the data/information
which is used to update the states of the virtual repre-
sentation over time.

In the context of structural integrity management, a
hypothetical scenario was described by Tuegel et al.19

to introduce the digital twin as a structural model that
was ultra-realistic in geometric and material details.
This structural model was tightly coupled to an as-built
computational fluid dynamics model providing envi-
ronmental load conditions. Simulation could be per-
formed on the coupled model to forecast the structural
response. This design-point-based simulation, however,
may deviate from reality due to the unplanned usage or
payloads and structural degradation etc. In view of
this, an accompany digital twin was required, which
was linked to the dedicated sensing system deployed on
the physical asset. The sensing system provided condi-
tion data of the physical asset such as deflection, strain,
acceleration and so on. These become the basis on
which to periodically update the structural model so
that reflecting the physical asset.

Erikstad20 defined digital twin as a digital model
capable of rendering state and behaviour of a unique
real asset in (close to) real time. The core characteristics
include: (1) identity; (2) representation; (3) state; (4)
behaviour; (5) context. Identify refers to the uniqueness
of physical asset to which digital twin connects.
Representation refers to the computer model that cap-
tures the essential physical manifestation. This may
also correspond to the virtual system concept intro-
duced in VanDerHorn and Mahadevan.18 State and
behaviour reflect the condition and response of the
physical asset, and information on both will be pro-
vided in real time. These are the characteristics that
demarcates digital twin from a conventional computer
model as it can inform the physical asset as to what is
happening but a simulation model can only infer what
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could happen to the prototype product.21 Additionally,
context describes the external environment in which the
asset operates.

Kim et al.22 indicated that any definition of digital
twin should reflect three key characteristics and also
the technical qualifiers of digital twin: trinity form,
real-time and state representation. Digital twin is of a
trinity form, consisting of physical object, virtual object
and a data connection. The three components within
this basic configuration interacts in real-time (However,
offline information exchange is possible). Additionally,
the geometrical, structural and behavioural states of
the digital twin must be represented.

Examination of the above research makes it clear
that digital twin is the counterpart of physical struc-
tures in a digital world. It mirrors the same responses
and conditions of the physical structures in real time
(i.e. structural configuration, detailed scantling, mate-
rial property, macro and micro degradation) and is able
to predict the same structural response and damage
under a given future scenario. Twinning is a process of
reducing the uncertainty between the physical struc-
tures and its digital counterpart. This is achieved by
updating the digital counterpart using real-time moni-
toring data which effectively removes the modelling
assumptions. The insights obtained from digital twin
will then provide feedback to optimise the physical
world operation. Figure 1 summarises the key features
of digital twin for the five-level capability hierarchy
defined by Wagg et al.,17 including the modelling of vir-
tual representation and the two-way interconnection
between the physical and virtual domains.

However, as discussed in Erikstad,23 there is no uni-
versal acceptance for these features being required, or
even sufficient. Digital twin is multifaceted and may
vary substantially between each case in which it is used.
It constitutes an ‘opportunity maker’ rather than an
end product by acting as a live, rich data source,
beyond what can be offered by point-based sensor con-
figurations and what is directly observable. The oppor-
tunities could be numerous and may be diverse
depending on specific application. The remainder of
this paper will discuss the opportunities it presents with
respect to structural integrity management through
demonstrating the key enabling analysis methods.

During the literature survey, a highly relevant
research topic, model-based structural health monitor-
ing, has drawn the attention of the present authors.
Although a computer-based analytical/numerical
model is required in both cases, there are fundamental
differences between the two methods, attributing to the
way by which the measurements are utilised and struc-
tural conditions are predicted. Concerning model-based
structural health monitoring, the goal is to infer an ana-
lytical model directly from the observed response data,
which is usually posed as an inverse problem: given
some observed response from a potentially damaged
structural system, due to some external action, deter-
mine an analytical model of the structural system which

accurately captures this observed response.24 The suc-
cessful discovery of this analytical model then provides
direct insight into the physical condition of the system
such as damage identification and localisation.25 This
can be achieved using a structural model updating
approach as illustrated by Refs.26–29 On the contrary,
the key objective of digital twin is to develop a virtual
replicate with an emphasis on obtaining the responses
of the entire structures including unmonitored loca-
tions. This enables the integrity engineers to evaluate
the health condition of unmonitored yet structurally
critical components directly using the virtually moni-
tored response. Solving an inverse problem using the
modal decomposition and expansion technique, which
translates the monitored responses to the responses at
um-monitored locations, is one of the solutions to
achieve aforementioned objective. Alternatively, mea-
surements of real-time external actions (i.e. wave condi-
tions) can be taken and input to the analytical/
numerical model to enable all-over response simulation,
as presented by Refs.30–32 In general, the techniques
developed within the field of model-based structural
health monitoring are highly beneficial for the realisa-
tion of digital twin; however, the latter arguably repre-
sents a difference paradigm for structural integrity
monitoring and assessment.

Recent developments regarding marine
structures

Overview

This section reviews the state-of-the-art practical imple-
mentation of digital twin-based structural integrity
management regarding marine structures. Due to the
rapid development of computational power, the use of
high-fidelity digital models (e.g. finite element model)
has become increasingly prevalent for marine structural
design and assessment. These models are usually
employed in combination with code-based assumptions
regarding the environmental conditions required to
evaluate the structural performance during the entire
life cycle. This provides a quantitative basis on which
to approve the structural design. Glaessgen and
Stargel33 argued that this approach may fail to support
the development of next generation of structures, which
are likely to encounter unforeseen scenarios. Thus,
there is a need to integrate the on-board sensor mea-
surement with high-fidelity physical models so that a
real-time and continuous health management system
can be developed, namely digital twin. A recent project
call from the Ship Structures Committee (SSC) may
provide an exemplar expectation of digital twin system
in association with structural integrity management.34

According to the proposed scope of the project, a digi-
tal twin system should be able to utilise monitoring
data in combination with finite element analysis to sup-
port fatigue damage accumulation estimates and evalu-
ate the likelihood of exceeding damage threshold. The
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developed system shall be performed in near-real time
and account for the uncertainty inherent in the process.
The above scope of work suggests that, in terms of
functionality, a digital twin system should possess the
capability of diagnostics and prognostics for the perfor-
mance of any structural component of interest; for
example, cumulative fatigue damage and remaining life
forecast. These assessments must be performed in near-
real time, providing up-to-date information about the
health condition of structures. Although this project
call was only concluded recently, and technical devel-
opments from this project have not been published yet,
several relevant research are identified from a literature
survey as summarised in Table 1. In generally, the main
research activity within this theme is to develop a prac-
tical scheme for integrating monitoring data with the
numerical model of physical structures. Broadly speak-
ing, two kinds of digital twin are reported, which are
based on different fatigue damage assessment meth-
odologies namely spectral-based and time-domain
approaches. The following sections will present the dif-
ferent digital twin developments making using of these

two fatigue assessment methods respectively.
Additionally, a number of research are conducted aim-
ing to develop a more accurate numerical model
through finite element updating techniques. Research
on this subject will also be introduced in the following.

Physical to virtual domains connection approach

Spectral-based approach. Within this spectral-based
approach, in essence, the developed digital twin systems
attempt to evaluate the short-term wave spectrum by
processing the monitoring data. This short-term sea
state can be combined with the stress Response
Amplitude Operator (RAO) obtained from a 3D finite
element model to obtain the stress spectrum of struc-
tural details of interest. Fatigue damage accumulation
can then be completed using relevant damage models
such as the S-N curve.

Thompson30 proposed a framework to assess the
fatigue of marine structural component using digital
twin approach to increase awareness of structural
condition and limit maintenance costs. In the

Table 1. Summary of the recent developments of digital twin for marine structures.

References Physical to virtual Virtual to physical Virtual system Virtual environment Virtual process Digital

twin level

Thompson30 Operational profile

update

Human-in-the-loop

intervention

Finite element

model

Potential flow-based

frequency domain

hydrodynamics

Hydro-structural

simulation; SN-based

fatigue

Level 3

Thompson31 Operational profile

update

by wave hindcast

Not report Finite element

model

Potential flow-based

frequency domain

hydrodynamics

Hydro-structural

simulation; SN-based

fatigue

Level 3

Hageman and

Thompson32
Operational profile

update

by wave hindcast

or motion

Not reported Finite element

model

Potential flow-based

frequency domain

hydrodynamics

Hydro-structural

simulation; SN-based

fatigue

Level 3

Aarsnes et al.35 Operational profile

update

by AIS and wave

hindcast

Not reported Finite element

model

Potential flow-based

frequency domain

hydrodynamics

Hydro-structural

simulation; SN-based

fatigue

Level 3

Hulkkonen et al.36 Operational profile

update

by AIS and wave

hindcast

Not reported Finite element

model

Potential flow-based

frequency domain

hydrodynamics

Hydro-structural

simulation; SN-based

fatigue

Level 3

Sugimura et al.37 Operational profile

update

by wave radar

Human-in-the-loop

intervention

Finite element

model

Potential flow-based

frequency domain

hydrodynamics

Hydro-structural

simulation; SN-based

fatigue

Level 4

Sireta and Storhaug38 Direct structural

monitoring

by strain gauge

Not reported Finite element

model

Not required Modal decomposition

and expansion; SN-based

fatigue

Level 3

Henkel et al.39 Direct structural

monitoring

by accelerometer

Not reported Finite element

model

Not required Modal decomposition

and expansion; SN-based

fatigue

Level 3

Augustyn et al.40 Direct structural

monitoring

by accelerometer

Not reported Updated finite

element model

Not required Modal decomposition

and expansion; SN-based

fatigue

Level 4

Augustyn et al.41 Direct structural

monitoring

by accelerometer

Not reported Updated finite

element model

Not required Modal decomposition

and expansion; SN-based

fatigue

Level 4

Boutrot et al.42 Periodic thickness

measurement

Not reported Finite element

model

Potential flow-based

frequency domain

hydrodynamics

Hydro-structural

simulation; SN-based

fatigue

Level 3
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proposed framework, virtual monitoring is enabled
by a finite element numerical twin which is driven by
the real-time update of the operational profile (e.g.
wave spectrum). Aarsnes et al.35 described a digital
product prototype which combines the structural and
hydrodynamic design models with specific encoun-
tered wave information that matches the Automatic
Identification System (AIS) and global wave hindcast
data. This allows a real-time evaluation of structural
integrity concerning fatigue, and therefore provides a
useful basis for inspection and maintenance planning.
To examine the validity of using wave hindcast data
for virtual monitoring, Thompson31 compared the
calculated stress spectra based on wave hindcast data
with those derived from the full-scale strain gauge
measurement. This comparison was made with refer-
ence to the root-mean-square stress and mean stress
zero-crossing frequency. Positive results were
obtained, which suggests virtual hull monitoring
using wave hindcasts can be used for calculation of
stress spectra with an acceptable degree of accuracy.
However, it was also acknowledged that the sea trial
was performed in a relatively short duration. Thus, it
was unknown whether the encouraging results were
representative of a wide range of operational condi-
tions. Hageman and Thompson32 continued to
explore the use of hindcast wave data for virtual mon-
itoring of structural integrity. Spectral fatigue assess-
ments were conducted using publicly available wave
hindcast data. A comparison was made with the fati-
gue accumulation estimation by direct onboard strain
measurement. The authors concluded that the calcu-
lated fatigue damage based on hindcast data was gen-
erally acceptable in a mild sea state and exhibited
reasonable agreement with that evaluated based on
direct strain measurement. However, the hindcast
wave data-based prediction was underestimated,
causing unacceptable deviation with respect to that
based on strain measurement. Further developments
of hindcast models may overcome this, but based
upon the available models, the effect of random
errors, spectral wave distribution, and directional
spreading on fatigue damage were assessed. Monte-
Carlo simulation revealed that the random error in
hindcast data had only a negligible effect on the fati-
gue damage estimation. Although the spectral wave
distribution and direction are not provided by the
hindcast model, the choice of spectral shape and wave
spreading information significantly influenced the
estimation of fatigue accumulation. The case study
showed that using a Brettschneider spectrum led to a
70% higher fatigue accumulation than when using a
Gaussian spectrum. Introducing wave spreading to
calculations reduced the fatigue accumulation esti-
mates by 25% compared with a long-crested wave
condition. In addition to the use of wave hindcast
data, Hageman and Thompson32 attempted to utilise
the motion data of a floater to retrieve the wave con-
dition, following the method introduced in.43 An

artificial neutral network (ANN) was developed to
predict the wave characteristics (significant wave
height, peak period and main direction) using input
from a time series of six degree of freedom motions.
The training data included both full-scale measure-
ment and 10,000 sea-keeping numerical simulations.
In comparison with the adoption of hindcast wave
data in a spectral fatigue analysis, the use of motion
data-derived wave statistics exhibited varying agree-
ment with respect to the fatigue damage estimated by
direct strain measurement. In higher sea states, the
motion data set yielded marginally improved agree-
ment with the strain measurements than the hindcast-
based calculation. Nevertheless, in mild conditions,
stress was significantly overestimated. The aforemen-
tioned methods are reliant on the ‘wave buoy ana-
logy’, and serve as an alternative to the sea state
estimation using wave radar etc. A concise account of
techniques for the sea state estimation using the ‘wave
buoy analogy’ concept can be found in.44 Hulkkonen
et al.36 introduced a digital twin approach for moni-
toring the structural integrity. The proposed method
was built upon the existing computing capability of
NAPA software which was combined with the
Automatic Identification System (AIS) messages and
wave nowcast data from WAVEWATCH III (WW3)
model of National Centre for Environmental
Prediction (NCEP). NAPA is an integrated hydro-
structural analysis platform. In the proposed digital
twin approach, it provides the stress RAO of struc-
tural details of interest. This was combined with the
wave spectrum evaluated by the AIS message and the
corresponding wave nowcast data to obtain the stress
spectrum and perform the fatigue damage estimation
using appropriate S-N curve and Miner rule.

Although the virtual monitoring for all structural
details of interest can be realised by a numerical twin
(i.e. finite element model) with real-time environmental
load input, as reviewed above, a discrepancy between
the predicted and monitored stress response could exist.
Specifically, the predicted stress spectrum and that eval-
uated by spectral analysis of monitored stress series as
examined by Hageman and Thompson.32 To this end, a
Bayesian approach was introduced by Sugimura et al.37

In the developed approach, the short-term wave spec-
trum is generated every 20min by processing the wave
radar measurement. The short-term wave spectrum is
adopted in combination with the stress Response
Amplitude Operator (RAO) at the structural details of
interest to obtain the stress spectrum. The correlation
factor is derived by comparing the available measured
stress spectrum and the corresponding predicted stress
spectrum, accounting for the uncertainty caused by the
inadequacy of the finite element model and the wave
data.

Time-domain approach. In addition to the above
approach are studies focusing on a time-domain
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solution. However, time-domain simulation is usually
computationally demanding.45 Hence, the use of
reduced-order model was suggested by Leng et al.46

Alternatively, interpretation and extrapolation of real-
time structural strain from a network of on-board sen-
sors has been extensively applied. For instance, Sireta
and Storhaug38 formulated a modal approach to recon-
struct the structural response based on measurements
from a few strain gauges. In addition to the use of the
modal principle,47 this method is able to select the
required structural modes and to optimise the strain
gauge layout. Through numerical validation, the pro-
posed method demonstrates sufficiently high practical-
ity to be incorporated into a time-domain digital twin
framework for estimating the cumulative fatigue dam-
age of offshore structures. Henkel et al.39 adopted the
modal decomposition and expansion method to extra-
polate the measured response to locations of interests.
As a proof of concept, the modal decomposition and
expansion (MDE) method was applied on an offshore
wind turbine with jacket substructure. The estimated
time history was checked in both time domain and fre-
quency domain and subsequently fatigue damage.
Outcomes revealed that the MED method was suitable
for reproducing the stress history at leg K-joint,
whereas the prediction of stress history at brace X-joint
was unsatisfactory. The latter was attributed to the
neglect of local mode shapes. In addition, this method
was shown to be less accurate in severe sea states. The
MDE method can be regarded as a physics-based
approach for the reconstruction of strain/displacement
field. For the same purpose, a data-driven approach
was introduced by Refs.48,49 based on the radial basis
function which was shown to be both accurate and
efficient.

To verify the direct use of structural strain mea-
surement for fatigue damage evaluation, Magoga
et al.50 performed a comparison between the fatigue
life predicted based on direct strain measurement and
measured fatigue life. The estimation of the former
was based on the stress spectrum derived by on-board
strain measurement proximal to the structural detail
of interest. The latter was evaluated using mainte-
nance data of vessels of a similar class, in which fati-
gue life was defined as the time from commissioning
to the detection of the first crack. The rationale for
measuring the fatigue life from fleet maintenance data
is that the presence or absence of cracks in a struc-
tural detail of a particular vessel is viewed as a indica-
tor of the corresponding fatigue life. This rationale is
reflected in the International Association of
Classification Societies description of ‘damage experi-
ence’, or the number, extent, location, and frequency
of cracks related to the fleet, as the main source of
information for maintenance planning. The case
study of an aluminium high-speed craft demonstrated
good agreement between the predicted fatigue life and
the measured fatigue life. This is partly attributable
to the rationality underpinning the linear summation

rule for damage accumulation and the adopted S-N
curve, but mostly the direct use of strain gauge mea-
surement in fatigue analysis.

Finite element model updating

As inferred from the SSC project scope and the fore-
going reviewed literature, the numerical twin of a
structure, usually in the form of a 3D finite element
model, plays a crucial role in the overall digital twin
framework in terms of virtual domain modelling. The
use of finite element method for representing the
physical structural system was reported in all the liter-
ature reviewed in this paper, such as Refs.30–32,35,37

The accuracy of this numerical model in terms of rep-
resenting the physical assets will dictate the credibility
of any diagnostics and prognostics made with respect
to structural integrity. Whilst finite element modelling
has been widely applied in marine structures, there is
inevitably a discrepancy between the design specifica-
tion and actual configuration, such as wall thickness
of tubular structures. In view of finite element model
updating, Augustyn et al.40 developed an updating
scheme by finding the best match between the eigen-
frequencies predicted by finite element model and the
as-installed modal properties measured by acceler-
ometers. The application of the proposed scheme to
the jacket substructure of an offshore wind turbine
showed an error reduction from 30% to 1%. To fur-
ther reduce the uncertainty in modelling, a calibration
of the wave loads was implemented by the same
author using wave radar so that the static response to
wave load could be accurately estimated.41 These
techniques were incorporated into the digital twin
framework for offshore wind structures, as discussed
in Refs.51,52

In addition to the improvement of numerical mod-
elling, it is equally important to account for the time-
variant degradation of physical assets, such as corro-
sion wastage. Therefore, the finite element model
developed during the initial design of the structure
must be updated periodically. In this respect, Boutrot
et al.42 discussed a methodology based on 3D digital
twin for the engineering reassessment of ageing off-
shore units from the viewpoint of life extension. The
digital twin, in the form of a 3D finite element model,
was periodically and automatically updated with criti-
cal inspection data on corrosion wastage. Engineering
reassessment concerning corrosion and fatigue was
performed on the updated model using a rule-based
environment load calculation.

Remarks on recent developments

Overall, with respect to digital twin-based structural
integrity monitoring and management for marine struc-
tures, most recent developments require the creation of
a finite element model for the considered structure.
This digital model is used in combination with data
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and information collected from the sensing units of
short-term wave characteristics and structural strain.
Specifically, the short-term wave spectrum is combined
with the pre-calculated stress RAO using a series of
finite element analyses to determine the stress spectrum
of the structural details of interest and subsequently
evaluate fatigue using spectral-based approach.
Consideration may also be given to assessing the uncer-
tainty of the predicted stress spectrum, in which a com-
parison between the predicted and monitored stress
spectrum can be made and the incorporation of predic-
tion uncertainty facilitated. In addition to direct mea-
surement of wave characteristics, an alternative
solution is to use wave hindcast data. Aside from a
spectral-based fatigue evaluation principle, the time-
domain philosophy is feasible when the structural
strain measurement is used directly for fatigue damage
prediction. In this alternative approach, the key step is
to convert the measurement to unmonitored yet critical
structural locations of interest. In this regard, modal
decomposition and expansion theory appears to be a
commonly used method.

In either case, the stress life approach (S-N curve)
combined with linear summation rule is still the most
common strategy for fatigue damage evaluation in the
foregoing reviewed works. Explicitly predicting the
crack growth has also been investigated, such as
Refs.53,54; however it seems that relatively few attempts
have been made to apply this to full-scale structures.
Additionally, most of the papers focused on current
structural state evaluation (diagnostics), but very little
attention has been given to structural performance
prognostics. In addition, in terms of data interconnec-
tion between the physical and virtual space, a practical
scheme of physical to virtual data transfer has been
established. However, virtual to physical feedback, the
digital twin informed decision-making process, is absent
in the literature. Furthermore, although a number of
studies related to digital twin have been proposed in the
literature, most are limited to a conceptual level, while
some are only concerned with sub-system development.
An integrated framework to enable the creation and
application of digital twin appears to be lacking.

Digital twin enabled SIM framework

Overview

Based upon the works reviewed, this section proposes
an integrated digital twin-based framework for struc-
tural integrity management (SIM). The basis is an
interconnection between the physical domain (i.e. phys-
ical structure in real world) and the digital/virtual
domain (computer-based model), in which the link is
the monitoring data. The three key enabling technolo-
gies are model updating, real-time simulation and data-
driven forecasting. These allow physical-to-virtual con-
nection to be performed in an effective and accurate
manner, from which a replicate of the physical asset/
structure is developed. This framework is based on a
time-domain fatigue evaluation approach as outlined in
previous section. An overview is shown in Figure 2. A
digital model (analytical or numerical) of the physical
structure is developed based on best practice. However,
it is considered a nominal model as the modelling is
based on nominal specification. Therefore, a model
updating technique is required to update the modelling
specification in order to derive a realistic model, in
which case the digital model can be regarded as a ‘digi-
tal twin’. This corresponds to the building phase of
digital twin, including its maintenance, where the moni-
tored data coming from the physical environment facil-
itates the creation of a virtual base with equivalent
characteristics in terms of behaviour.55 The real-time
simulation is aimed at virtually monitoring the struc-
tural response all over the structure, which overcomes
the limitation of physical monitoring. Data-driven fore-
casting is relevant as a vast amount of data can be
obtained through digital twin. Utilisation of these data
to assist long-term performance prediction also needs
to be considered. Subsequently, the information related
to structural integrity such as cumulative damage offers
decision-making support regarding the planning of
inspection/maintenance or other remedial actions to be
implemented in a timely fashion. This will then close
the loop of the interconnection between physical
domain and digital domain. The following section pre-
sents the underlying theory of relevant model updating,

Figure 2. Digital twin-enabled structural integrity management framework.
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real-time simulation and data-driven forecasting
approaches. Thereafter, this framework will be demon-
strated using a numerical example, which facilitates
subsequent discussion of the opportunities and associ-
ated challenges of digital twin.

Model updating

The objective of model updating is to minimise the dis-
crepancy in the modal property (e.g. natural frequency)
measured from physical structures and those predicted
by digital twin based on nominal design specification at
the first instance:

dzn31

v1 � vDT(1)

v2 � vDT(2)

..

.

vn � vDT(n)

8>>><
>>>:

9>>>=
>>>;

ð1Þ

where vn is the natural frequency measured from the
physical structures and vDT(n) is the natural frequency
predicted by digital twin. A sensitive-based model
updating technique, which iteratively updates the nom-
inal parameters through the following relationship, can
be employed:

dzin31 =Si
n3mui

m31 ð2Þ

where d uim31 = fdui
1, dui

2, � � � , duimg
T is the perturba-

tion in the parameters after i iteration,
dzin31 = fdzi1, dzi2, � � � , dzing

T is the error in the natural
frequency, and Si

n3m is the sensitivity matrix with each
entry being the first derivative of the modal property
with respect to the parameters, evaluated at the current
estimate of the parameter (equation (3)).
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For instance, Si
nm refers to the first derivative of the nat-

ural frequency vDT(n) with respect to the parameter um

when um = ui
m. Note that vDT(n) =vi

DT(n) in this case
and is predicted by the digital model with parameters
uim31:

vi
DT(n) = fDT(u

i
1, ui

2, � � � , ui
m) ð4Þ

A central difference method may be adopted to numeri-
cally approximate the first derivative as follows:

Si
nm =

v
i(+ )
DT(n) � v

i(�)
DT(n)

2e
ð5Þ

Assuming that the number of measurements exceeds
the number of parameters to be updated, a least square
solution can be obtained for the unknown parameter
perturbation:

dum31 = ½ST
n3m � Sn3m��1ST

n3mdzin31 ð6Þ

The parameters can then be updated using the pertur-
bation estimate until convergence is achieved.

Real-time simulation

Real-time simulation is aimed to virtually monitor the
structural response all over the asset, which overcomes
the limitation of physical monitoring. To achieve this,
the physically monitored can be combined with the digi-
tal model via a modal decomposition and expansion
theory. It is assumed that the dynamics of a structure
can be decomposed into an infinite number of mode
shapes with different modal amplitudes:

u(x, t)=F(x)Q(t) ð7Þ

where u(x, t) is the dynamic structural response vector
as a function of the spatial and temporal coordinates,
F(x) 2 R

‘ is the mode shape matrix and Q(t) 2 R
‘ is

the time-varying modal amplitude vector. Let us con-
sider the structural response of a finite number of dis-
crete locations within the structure and partition the
response into physically monitored responses and
responses to be converted (i.e. virtually monitored):

u(t)=
um(t)
uc(t)

� �
=

fm

fc

� �
q(t) ð8Þ

Using a least-square approach, the modal amplitude,
that is, q(t), can be estimated as follow:

~q(t)= (fT
mfm)

�1fT
mum(t) ð9Þ

The converted response (virtually monitored response)
is then estimated using:

~uc(t)=fc~q(t) ð10Þ

There is an inevitable discrepancy between the virtually
monitored response and the actual response of the
physical structure. To quantify the discrepancy, four
uncertainty indicators may be relevant, namely the time
response assurance criterion (TRAC), coefficient of
determination (CoD), bias bð Þ and coefficient of varia-
tion (CoV). The TRAC is defined by the following
expression:

TRAC=
(uT~u)

2

(uTu)(~uT~u)
2 ½0, 1� ð11Þ
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where u denotes the actual response and ~u denotes the
virtually monitored response. TRAC is a measure of
the temporal correlation between the monitored and
converted data with TRAC=1 indicating a perfect
correlation and TRAC=0 implying no correlation.
Further, because TRAC does not account for the
amplitudes of the signals, the CoD is introduced to
capture the potential amplitude errors:

CoD=1� E½(u� ~u)2�
Var½u� 2 ½�‘, 1� ð12Þ

where E½�� denotes the expectation operator and Var½��
denotes the variance operator. Two matrices (b and
CoV) are introduced to evaluate the amplitude range
uncertainty. The bias is defined as the expected value
of the cumulative amplitude range ratios of the time
series:

b=E
Du

D~u

� �
ð13Þ

where Du 2 N
m is the cumulative rainflow count over

actual response time series, D~u 2 N
m is the cumulative

rainflow count over actual response time series. m is
the number of rainflow count bins. The coefficient of
variation (CoV) is defined as the standard deviation of
the cumulative amplitude range ratios for all rainflow
count bins normalised to the bias:

CoV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Du

D~u

� �q
b

ð14Þ

Data-driven forecasting

Forecasting the structural response (e.g. stress) and pos-
sible damage (e.g. fatigue) to support the verification of
structural design adequacy and long-term planning of
inspections have long been an integral component of
the design of engineering structures. However, forecast-
ing at an initial design stage can only be performed
based on certain assumptions, such as long-term stress
range distribution. These design assumptions are usu-
ally derived from the historical data of structures with a
similar configuration and operational profile. Digital
twin offers an opportunity to utilise the actual response
of the structure to improve the applicability of analyti-
cal assumptions for specific case. With respect to digital
twin-enabled integrity management, a key objective is
to evaluate the fatigue damage accumulation of critical
structural details. To achieve this, Bayesian inference is
arguably one of the most suitable methods.

In Bayesian approach, the parameter to be estimated
uð Þ is treated as a random variable and is described by a
prior distribution based on prior knowledge, denoted as
f0(u). New information obtained from the digital twin-

based monitoring can be used to formulate the likeli-
hood function:

L(u)=
Yn
i=1

fX(xiju) ð15Þ

According to the Bayesian theorem, the posterior distri-
bution is proportional to the product of the likelihood
function and the prior distribution:

f00(u)}L(u)f0(u) ð16Þ

A Markov Chain Monte Carlo can be employed to
approximate the posterior distribution in case analysis
solution is difficult to obtain.

Illustrative example

An illustrative example is presented to demonstrate the
key features of the proposed digital twin framework,
namely model updating, real-time simulation, and data-
driven forecasting. A cantilever plate with a central cut-
out subjected to a wave force at its free edge is consid-
ered (Figure 3). The central cut-out leads to a stress
concentration in an area closed to the cut-out corner,
which is therefore regarded as a fatigue-prone area with
high criticality in relation to structural integrity.

The objective is to monitor this fatigue-prone area
and ultimately assess its remaining life to support

Figure 3. Schematics of the case study cantilever plate.
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decision making with respect to inspection planning or
other interventions. However, monitoring cannot be
conducted proximal to this hotspot and thus measure-
ments taken from other locations are required.
Although this numerical example may appear to be tri-
vial, it is sufficiently representative of a real-world sce-
nario where the accessibility to a damage-prone critical
location is limited. Thus, physical monitoring can only
be performed at locations with better accessibility that
are likely to be less structurally prominent. For now, it
can help demonstrate the key features of the developed
digital twin framework in a tractable manner. The
monitored response will be obtained via a dynamic
finite element analysis performed using a ‘simulated
physical model’. After completing the finite element
simulation, the time histories of the responses at eight
locations will be acquired (see Figure 4). These data
represent the measurements from physical strain
gauges. Strictly speaking they should be denoted as

‘simulated monitored data’. However, to avoid confu-
sion, the term ‘monitored data’ will be used hereafter.

For the present illustrative example, two finite ele-
ment models will be developed, a ‘simulated physical
model’ which provides the monitored data and a digital
model which shall be used in conjunction with the mon-
itored data. Both model is developed using four-node
shell elements with the same mesh density (25mm3 25
mm). The ‘simulated physical model’ is developed
based on the actual geometric dimension, material
property and boundary condition specified in Table 2,
while the digital model is developed based on the nom-
inal specification.

For illustrative purposes, the actual and nominal
specifications only differ in plate thickness, elastic mod-
ulus, and rotational stiffness around the y-axis. A
model updating technique will be applied to update
these specifications in order to minimise the difference
between the first-order natural frequencies predicted by
the ‘simulated physical model’ and the updated digital
model. The natural frequencies of the first eight modes
of the cantilever plate are summarised in Table 3.

To obtain the monitored data, a dynamic finite ele-
ment simulation is conducted in which a varied ampli-
tude concentrated force along the x-axis is applied to
the cantilever plate, approximating an irregular wave
force. Assuming a JONSWAP wave spectrum, an irre-
gular wave with significant wave height of 0.5m and
peak period of 2.5 s is considered. The 20-min time
series of the wave elevation hð Þ is depicted in Figure 5.
The concentrated force is estimated based on a simple
static assumption, which can be given as a function of
the wave elevation:

F=
0:5rgbh2 ifh . 0

0 otherwise

(
ð17Þ

First, model updating is demonstrated. The iteration
history of model updating is plotted in Figure 6.
Following equation (6), model updating is conducted

Figure 4. Strain gauge placement.

Table 2. A summary of geometric dimension, material property and boundary condition of the cantilever plate.

Parameter Symbol Actual Nominal Unit

Length of plate a 1000 1000 mm
Width of plate b 1000 1000 mm
Thickness of plate t 4.5 3 mm
Length of central cutout d1 200 200 mm
Width of central cutout d2 200 200 mm
Elastic modulus E 200,000 200,000 MPa
Poisson’s ratio n 0.3 0.3 -
Translational stiffness along x-axis kx ‘ ‘ N/mm
Translational stiffness along y-axis ky ‘ ‘ N/mm
Translational stiffness along z-axis kz ‘ ‘ N/mm
Rotational stiffness along x-axis krx 0 0 Nmm/rad
Rotational stiffness along y-axis kry 40,500 30,000 Nmm/rad
Rotational stiffness along z-axis krz 0 0 Nmm/rad
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for the nominal digital model. As shown in Figure 6,
convergence of the prediction error (second norm of
equation (1)) is achieved in three iterations and the
error nearly approaches zero.

To obtain the first eight eigen-modes of the cantile-
ver plate, eigenvalue analysis is performed using the
updated digital model (Figure 7).

The time history of the converted stress response of
the hotspot location is compared with the actual
response in Figure 8. The effect of the number of moni-
toring units and the different combinations of moni-
tored data are studied. Different combinations of mode
shapes and the monitored data are available. To
demonstrate its effect, example results are obtained

using all strain gauge data and seven mode shapes
(eight combinations are possible). The comparison is
presented in Figure 9 in terms of the four uncertainty
indicators (e.g. TRAC, CoD, bias, CoV).

This shows that without the inclusion of 1st or 4th
mode shape, a worst correlation can be observed in the
TRAC, CoD and amplitude range bias between the
actual and the converted time series signals. However, a
small variation of the amplitude range is also observed.
A worst correlation in terms of TRAC and CoD can
also be found when excluding the 6th mode shape, but
the performance indicators related to the amplitude
range (i.e. bias and CoV) are almost identical to the ref-
erence case. The above comparisons may demonstrate
the negative effect of excluding structurally significant
mode shapes in the dynamic response conversion, that
is, a converted response with less correlation with the
actual response. Nevertheless, it is not always necessary
to include as many mode shapes as possible. For
instance, the comparison between the reference case
and case 7 in Figure 9 reveals that an improved correla-
tion is achieved by removing the 7th mode shape from
the conversion matrix. This is attributable to the fact
that a high-order mode shape could potentially add
noise to the time-series signal. It is clear that a number
of mode shapes are insignificant regarding the struc-
tural responses of this case study model under the pres-
ent load case (2nd, 5th and 8th). Based on these
insights, a reduced set of mode shapes (1st, 3rd, 4th and
6th) is considered to investigate the effect of different
combinations of strain gauges. Similarly, to demon-
strate this effect, example results are obtained via the

Table 3. A summary of the natural frequencies predicted by the ‘simulated physical model’ and the nominal digital model.

Parameter Symbol Actual Nominal Unit

First-order natural frequency w1 0.34 0.31 rad/s
Second-order natural frequency w2 1.47 1.02 rad/s
Third-order natural frequency w3 3.28 2.32 rad/s
Fourth-order natural frequency w4 5.45 3.65 rad/s
Fifth-order natural frequency w5 5.58 3.83 rad/s
Sixth-order natural frequency w6 10.56 7.17 rad/s
Seventh-order natural frequency w7 10.87 7.36 rad/s
Eighth-order natural frequency w8 12.84 8.68 rad/s

Figure 5. Wave elevation.

Figure 6. Model updating results.

Li and Brennan 719



Figure 7. Maximum principal stress distribution at the different eigen-modes: (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th
mode, (e) 5th mode, (f) 6th mode, (g) 7th mode and (h) 8th mode.

(a) (b)

Figure 8. Comparison of the virtual and physical monitoring: (a) overview of time series comparison and (b) highlight of time series
comparison.
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reduced set of mode shapes and seven strain gauge data
(eight combinations are possible). As depicted in Figure
10, all uncertainty indicators (e.g. TRAC, CoD, bias,
CoV) remain almost unchanged in all cases, demon-
strating the insignificance of removing one strain gauge
data from the conversion.

With this preliminary observation, a further analysis
is performed using the reduced set of mode shapes and
only four strain gauge data, which is the minimum data
required by equation (10). As presented in Figure 11, a
near identical performance with respect to the reference
case is achieved when adopting data of SG1, SG2, SG4
and SG6. However, significantly inaccurate conversion
may be obtained in other cases. This demonstrates the
importance of selecting an appropriate combination of

strain gauge data. Overall, the selection of mode shapes
and strain gauge data can be addressed as an optimisa-
tion problem, in which the optimal set of mode shapes
and strain gauge data need to be selected with the aid of
an optimisation algorithm.

As the monitored data accumulates, a data historian
can be developed and used in conjunction with the
Bayesian inference to enhance the long-term prediction
of structural performance. In the context of the struc-
tural integrity management, this typically involves an
update of the long-term stress range distribution.
Conventionally, a Weibull distribution is used to
approximate the long-term stress range distribution of
marine structures, and the distribution parameters are
determined empirically, which may lead to a deviation

(a) (b)

Figure 9. Comparison of uncertainty indicators – Load case 1 (Case 1: w/t 1st mode shape; Case 2: w/t 2nd mode shape; Case 3:
w/t 3rd mode shape; Case 4: w/t 4th mode shape; Case 5: w/t 5th mode shape; Case 6: w/t 6th mode shape; Case 7: w/t 7th mode
shape; Case 8: w/t 8th mode shape. Note: All strain gauges results are adopted: (a) TRAC and CoD and (b) Bias and CoV.

(a) (b)

Figure 10. Comparison of uncertainty indicators (Case 1: w/t SG1; Case 2: w/t SG2; Case 3: w/t SG3; Case 4: w/t SG4; Case 5: w/
t SG5; Case 6: w/t SG6; Case 7: w/t SG7; Case 8: w/t SG8. Note: 1st, 3rd, 4th and 6th are adopted: (a) TRAC and CoD and (b) Bias
and CoV.

(a) (b)

Figure 11. Comparison of uncertainty indicators (Case 1: SG1 + SG2 + SG3 + SG4; Case 2: SG1 + SG2 + SG4 + SG6; Case 3:
SG1 + SG3 + SG4 + SG6; Case 4: SG4 + SG6 + SG7 + SG8. Note: 1st,3rd,4th and 6th are adopted: (a) TRAC and CoD and (b) Bias
and CoV.
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from reality. Based on the simulation presented in
Figure 8 and applying Marko-Chain Monte Carlo
simulation, the posterior distributions of the scale para-
meter of Weibull distribution with different prior
assumptions are depicted in Figure 12.

Applying a Weibull fit to the obtained simulation
data gives a scale parameter of 66.8, illustrated as
‘actual’ in the plots for comparison. In both cases, the
scale parameter is assumed to be normally distributed
with different mean values and a 10% coefficient of
variation (i.e. prior distribution). Figure 12(a) depicts
the scenario with significant deviation between the
prior assumption and the observation, and Figure 12(b)
displays the scenario in which the prior assumption is
closely correlated with the observation. In the former
case (Figure 12(a)), it is clear that a more accurate
(closer to observation) evaluation of the parameter of
interest is obtained. It should be noted that this is
highly dependent on the sample numbers. If the
updated scale parameter is considered in a fatigue anal-
ysis using deterministic closed-form solution presented
in Ref.56 that incorporates D-curve, a remaining fatigue
life of 1 year is obtained. By contrast, a remaining fati-
gue life of 9 years is estimated. The overestimation of
the fatigue life suggests an inadequacy of the initial
design proposal; hence proper reinforcement may be
required. There is also a possibility that the fatigue life
is underestimated by the designer, in which case a case
of life extension may be demonstrated. In the latter case
(Figure 12(b)), the standard deviation of the posterior
distribution is much smaller than the prior distribution,
which may have an implication in the fatigue reliability
analysis (an improved safety index). However, just
20min monitored data is arguably limited with respect
to the typical fatigue life of marine structures (20–
25 years). More data is required for better prediction,
thus the present analysis only serves as a demonstration
of how monitored data may be utilised within integrity
assessment and management. As no real database is
available for this research, numerical simulation is per-
formed to generate the response data. For this reason,
a 20min simulation is carried out for the sake of

reducing computational efforts. In real-world applica-
tion, as the database develops, a more accurate model
of stress-range distribution can be derived.

Discussions

With reference to the illustrative example presented,
this section discusses opportunities presented in struc-
tural integrity management as a result of digital twin
technology. Additionally, it outlines the associated
challenges that need to be addressed.

Opportunities

Benefits for structural integrity management. Digital twin is
an ideal tool with which to support structural integrity
management. The virtual monitoring capability (e.g.
real-time simulation) combined with condition assess-
ment algorithm provides a useful method for monitor-
ing the current states of structures in operation, an
approach known as structural integrity diagnostics.
Additionally, the availability of vast (virtual) moni-
tored data stimulates data-driven forecasting (i.e. struc-
tural integrity prognostics) which can inform risk-
based inspection/maintenance planning. Modern risk-
based inspection (RBI) techniques are already in use
across the maritime industry, enabling an optimised
inspection programme that focuses resources on the
most critical areas and makes the most efficient use of
the resources available to perform condition assess-
ment. A key aspect of a successful RBI programme is
the accurate and timely recording of the asset condi-
tion, which ensures this information can be used effec-
tively to make decisions as to how to utilise the
available maintenance resources. An accurate digital
condition model, or ‘digital twin’ is the ideal means of
recording and maintaining the asset condition data that
supports a well-executed RBI plan.57 The diagnostics
and prognostics of structural health conditions can also
be performed by a relatively well-established technol-
ogy – structural health monitoring. However, with

Figure 12. Effect of monitored data on the parameters estimations: (a) m = 66:8 and s = 0:1m and (b) m = 33:4 and s = 0:1m.

722 Proc IMechE Part M: J Engineering for the Maritime Environment 238(4)



respect to the latter, the digital twin approach can pro-
vide information on structural conditions at all loca-
tions (all-over monitoring). Conversely, conventional
structural health monitoring only collects structural
condition data at a selection of locations. Although
both global and local condition assessments may be
performed, such monitoring cannot evaluate the condi-
tions at unmonitored locations and thus may overlook
potential damage.20,46 The all-over monitoring of digi-
tal twin makes it possible to perform a comprehensive
health condition diagnostics and prognostics in differ-
ent structural hierarchies, including unmonitored loca-
tions (see Figure 8) and may thereby improve the
prediction of unknown failures. Additionally, the use
of a digital model allows users to verify the sensing
units, which may greatly reduce systematic errors of
measurement. Further, decision makers can make use
of the digital twin to assess the impacts of their deci-
sions through computational experimentation of differ-
ent scenarios.55 All these opportunities may collectively
contribute to the ‘digital class’ and ‘smart certification’
concept where the compliance of marine structure is
demonstrated remotely and continuously.58

Implications on structural design. Whilst the emphasis of
this paper is on digital twin-based structural integrity
management, an improved strategy for integrity man-
agement could also have an impact on structural
design. For instance, reduced structural redundancy
may be achieved. Reliability-based evaluation is the
state-of-the-art approach for marine structural design.
It can either follow a partial safety factor-based design
format (i.e. load resistance factor design) or a failure
probability-based design format.59 The use of reliability
analysis in structural design aims to accommodate the
uncertainty in structural performance assessment
caused by the inherent randomness of geometric
dimensions and material properties (aleatoric uncer-
tainty), and the inability of an engineering model to
characterise physical phenomena (epistemic uncer-
tainty). Accounting for uncertainty will inevitably lead
to a degree of structural redundancy. The availability
of real-time responses and health conditions of the tar-
get structure via the introduction of digital twin tech-
nology can substantially remove such uncertainty.
Within the context of load resistance factor design,
which is the most common approach in ordinary struc-
tural design, it would be reasonable to consider a
relaxation of partial safety factors. As a result, unneces-
sary structural redundancy can be removed to create a
more cost-effective structural design. Furthermore, the
development of a digital twin system provides mitiga-
tion for a substandard design, which exists as a result
of the financial or manufacturing infeasibility of a
design proposal which fully complies with the prevail-
ing codes and standards. An example of this kind
would be the internally ring-stiffened tubular joint.
Internal ring-stiffener is an effective way to increase the

strength and stiffness of a tubular joint, which means
the wall thickness of the tubular can be substantially
reduced. As a result, it is viable in terms of cost and
fabrication. However, various design codes require a
stringer design factor of fatigue life for tubular joints
with internal stiffeners. In the most extreme scenario
where the tubular joint is regarded as structurally criti-
cal yet inaccessible for inspection, the design factor of
fatigue life can as high as 10. The benefit gained from
the internal stiffening is therefore outweighed by this
conservative design requirement. Digital twin-based
continuous monitoring and its diagnostic and prognos-
tic capabilities increases the transparency of the con-
sumed fatigue life. Preventive actions can be taken to
avoid catastrophic failure. This becomes a mitigation
measure for structures with substandard design.

Challenges

Whilst a number of academic and industrial develop-
ments in digital twin-based structural integrity manage-
ment have been proposed, it is still too early to
conclude that this technology is sufficiently mature to
be introduced to the marine and offshore industry.
There are several challenges outstanding and technolo-
gical developments are required for a comprehensive
realisation of digital twin.

Standardisation. One of the most relevant challenges is
the standardisation of digital twin, which is extremely
important for the interoperability and interconnection
of digital twins of different assets.60 It is expected that
digital twins will be applied for different marine struc-
tures and assets, some of which might be heterogeneous
in nature. To enable an efficient collaborative decision
making, standardising the digital twin architecture and
developing a framework for interfacing different digital
twin is essential. Additionally, standardisation of moni-
toring units is also required61 as this is the element
underpinning digital twin technology. Many off-the-
shelf sensors suitable for structural integrity monitoring
are supplied in the market. However, different sensors
would have different specifications such as measure-
ment range, sampling rate, uncertainty tolerance and
size etc. Currently, there is limited guidance on the spe-
cification of monitoring units applied to digital twin-
based structural integrity management.
Recommendations have been made on monitoring sys-
tem specification for marine structures issued by DNV,
ABS,62 GL ClassNK; however these have not been
introduced within the context of digital twin develop-
ment. There is a need to standardise the specification
of monitoring units, or at least recommend minimum
requirement, such that all stakeholders could follow the
norms and potentially accelerates the commercialisa-
tion of digital twin. In addition, standards and/or rec-
ommended practices of the monitoring device testing
should be developed to assess the repeatability of
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measurement, uncertainty of measurement and durabil-
ity of sensors in extreme environment.

Data quality assurance. Secondly, the monitored data
need to be quality assured.63,64 As reviewed in the fore-
going sections, a digital twin-based integrity assessment
and management is critically reliant on the monitored
data. To ensure the quality of all subsequent condition
assessments, an initial examination of data quality is
required. For instance, Ibrion et al.65 discussed lessons
learnt from two recent accidents in the aviation indus-
try (Boeing 737 MAX crashes in Indonesia and
Ethiopia in 2018 and 2019), foremost of which is that
the implementation of digital twin comes with its own
risk. One of the challenges is related to the sensor data
quality, which was cited as the primary cause of the
Boeing 737 MAX accidents. As such, a digital twin sys-
tem should be able to detect any anomaly in the moni-
tored data and provide an alarm for users before
moving to any decisional support. Moreover, consider-
ation of monitoring system redundancy is highly rec-
ommended, especially when it comes to the long-term
application of a digital twin system. Because the moni-
toring module is an underpinning element, any loss in
the sensing unit may lead to the total shutdown of the
system. Thus, it is essential to consider redundancy of
the monitoring system. Finally, it will be beneficial to
optimise the sensor network. This is particularly rele-
vant to structural response monitoring using a strain
gauge or accelerometer, as introduced by Sugimura
et al.37 and Augustyn et al.40,41 To maximise the perfor-
mance of modal decomposition and expansion while
minimising the installation expenditure, techno-
economical optimisation is needed to develop an opti-
mal sensor network. Apart from technical and eco-
nomic considerations, the placement of monitoring
units should factor in the potential inference with other
on-board activities.

Intelligent operation. As reviewed in previous sections, the
state-of-the-art digital twin is generally categorised as a
Level 3 functionality where monitoring data-informed
simulation is performed to assist integrity management.
Some implementations incorporate the model updating
capability, which is also required at Level 4. However,
the most appealing aspect of Level 4 digital twin is the
fact that cognitive tasks such as deciding the workflow
of digital twin can be performed with limited human
intervention. Thus, to accomplish the advancement of
digital twin from Level 3 to Level 4 (intelligent learn-
ing), dedicated data mining capabilities should be incor-
porated. For instance, cognitive tasks can be addressed
with the aid of intelligent feedback to users. This is
highly relevant to promoting a digital twin-based pro-
gramme/software to non-specialist users.

Computational demand. The use of a digital twin
approach in life-cycle management and structural long-
evity was discussed by the Structural Longevity
Committee of ISSC.66 It was argued that whilst the
digital twin enables the monitoring and condition
assessment at structural system level, its direct use still
faces many challenges, mainly with respect to computa-
tion. Whilst one may not need to perform model
update, simulation or forecasting within seconds or less
because structural degradation due to fatigue would
not be significantly different in such a short time frame,
the outputs from digital twin must stay ahead of the
actual operation; for example forecasting a 1 h future
operation should be completed in 1 h or less, otherwise,
the value of digital twin will be diminished. Thus, the
direct use of physics-based algorithm may be chal-
lenged by the limited availability of computational
power. While computation capability continues to
improve, the development of data-driven surrogate
could be a promising alternative.67,68 Although the
development of surrogate model can still be computa-
tionally demanding, it is computationally efficient and
suitable for incorporation into a digital twin system
once developed. Relevant study was conducted in Fang
et al.53 who developed a surrogate for finite element
model based on Gaussian Process to enhance the effi-
ciency for estimating stress intensity factor.

System validation. Last but not least, despite considering
the application of advanced data manipulation
approach such as deep learning models, the uncertainty
of response/performance forecasting may remain high
due to stochastic nature of various parameters of influ-
ence.69 Further research on model validation is needed
to improve the forecasting accuracy. In this respect, it
is important to classify the forecasting objectives. As
introduced in Ref.69 within the context of wind turbine,
the output of forecasting can enable an efficient active
control of the turbine, optimisation for power output,
and maintenance scheduling and transmission stability.
Different forecasting objectives implies differences in
the forecasting time scales such as immediate forecast-
ing lasting up to several minutes, short-term forecasting
over the next 24–72 h, and long-term forecasting up to
a week or more. The present paper demonstrates a
Bayesian updating approach which is a statistical fore-
casting method relying on historical data with an
update based on new observations. A dedicated valida-
tion campaign is necessary to assess the applicability of
this approach, among others, in different forecasting
objectives.

Concluding remarks

This paper presents a review of literature on the emer-
ging technology known as digital twin and its
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application in structural integrity management for
marine structures. The review defines digital twin as the
counterpart of physical structures in a digital world,
mirroring the same structural conditions as physical
structures in real time such as structural configuration,
scantling, material property, macro and micro degrada-
tion, and so on. This is achieved through continuous
data transfer between the physical and digital systems.
In essence, the development of digital twin is a process
of reducing uncertainty and the use of real-time moni-
toring data effectively removes the modelling assump-
tions. Concerning the review of recent development and
application in marine structure, it is found that there
are two main digital twin approaches. Whilst both
requires the creation of a finite element model, they
mainly differ in the way structural fatigue load is
assessed, that is, spectral-based approach versus time-
domain approach. In terms of the damage model, S-N
curve combined with linear summation rule is still the
most common strategy for fatigue damage evaluation,
even though the use of fracture mechanics has also been
explored in some research but none of them have been
applied to a full-scale structure in this context. Most
research are dedicated to the development of physical-
to-virtual connection, whereas the virtual-to-physical
feedback, that is, the digital twin informed decision-
making process, is absent in the literature.
Furthermore, although a number of studies related to
digital twin have been proposed in the literature, most
are limited to a conceptual level, while some are only
concerned with sub-system development. An integrated
framework to enable the creation and application of
digital twin appears to be lacking. Based on the review
insights, a high-level framework is proposed in this
work for digital twin-based structural integrity manage-
ment. A numerical example is presented to illustrate the
key enabling techniques, namely model updating, real-
time simulation and data-driven forecasting. As illu-
strated by the numerical example, the use of digital twin
offers considerable benefits to structural integrity man-
agement. Furthermore, it may also have an impact on
the structural design.

In terms of the recommendation, standards and/or
recommended practice for monitoring system should
be developed such that all stakeholders can follow the
norms and thereby benefits the commercialisation of
digital twin. Meanwhile, it is recommended that data
quality assurance, redundancy of the monitoring sys-
tem and optimisation of the sensor network are taken
into account during the monitoring system develop-
ment. Dedicated data mining capability should be
incorporated in the digital twin to accomplish the
advancement from Level 3 to Level 4. For instance, it
can assist addressing the cognitive tasks with the aid of
intelligent feedback to the user. Moreover, the use of
data-driven and machine learning algorithms to
develop surrogate of physics-based methods will be
particularly beneficial to tackle the challenges due to
computational requirement.
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