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ABSTRACT 

The future knowledge of the waves and force is indispensable for the 
model identification and the real-time control of ocean engineering 
devices. In order to effectively control the motion of the offshore 
structures in a real-time manner, it is required to have an accurate and 
efficient prediction of the waves. Machine learning has been widely 
applied in ocean engineering field as it offers compromise between 
prediction accuracy and computational cost. The present study focuses on 
wave-force prediction of offshore structures based on deep machine 
learning algorithms. A novel wave-force prediction model is proposed, 
which makes full use of the efficient processing characteristics of Long 
Short-Term Memory Recurrent Neural Network (LSTM RNN) and 
Nonlinear Autoregressive Exogenous Feedback Neural Network (NARX 
FNN) for time series data processing. The relationship between the wave 
height and the wave height is non-causal and nonlinear which need future 
wave height knowledge for current wave excitation force. Therefore, The 
LSTM RNN is firstly utilized for multi-step prediction of the time series 
of wave elevation. The NARX FNN is used to address the model system 
identification between the wave heights and the wave force. Then, the 
LSTM RNN is further applied to predict the future force of offshore 
structures for the real-time control of the structure motions. After that, the 
proposed deep machine learning algorithm is utilized for wave-force 
prediction based on the experimental data obtained in Kelvin 
Hydrodynamic Laboratory and the optimal horizon can be specified for 
the test model by comparing the performance of different prediction 
horizons. The results indicate that LSTM-NARX model can successfully 
predict the time series of the waves and force. 

KEY WORDS: wave-force prediction, deep machine learning, 
LSTM RNN, NARX FNN. 

1 INTRODUCTION 

Wave energy as a dense and stable renewable energy resource is forecast 
to have the potential to supply 10% of European electricity needs or to 
generate the equivalent of up to 20% of UK electricity; about half today’s 
total renewable generation. WECs convert the oscillation of kinetic and 
potential energy carried by ocean gravity waves to electrical energy that 
can be delivered to the electrical grid through a mechanism known as 
power take-off system (PTO) (Anderlini,2019) . Wave energy drives two 
or more parts move relatively then energy is captured by hydraulic 

mechanic or direct drive. However, there is no wave energy converter 
reaching commercial stage due to its high levelised cost of energy (LCOE). 
There is one of the ways to move a step forward by improving the power 
absorption efficiency under real-time control. By controlling the force 
exerted from PTO system, such as latching control, it is possible to tune 
the velocity of WEC with the excitation force of incoming wave for 
achieving the maximum energy absorption. The wave excitation force is 
regarded as the combination of incident component and diffraction 
component from the view of linear potential theory (LPT). 

There are myriad reasons to explain why predicting wave is important, 
from surfer and swimmers to shipping route planning, from offshore 
structure protection in extreme condition to stabilising renewable energy 
electrical grid. There are also reasons for wave prediction in WECs 
operation: as illustrated in (Garcia-Abril, 2017), for implementation of 
many energy maximising control strategies, there are two processes 
requiring future knowledge of the incoming wave experienced by WEC. 
Falnes(Falnes, 1995) described the non-causal characteristic of wave 
excitation force deduced by wave elevation, and future wave elevation is 
necessary information as well. It is a open problem to predict wave 
excitation force for decades. Fusco and Ringwood (Fusco, 2012) assumed 
that in-coming wave elevation is known fully or in the near future, as well 
as Son and Yeung (Son, 2017). Also there are researchers realise wave 
force predcition in alternative methods, for example linear superposition 
(Li, 2012), Kalman Filter (Ling, 2015) and Artificial Neural Network (Li, 
2018) and these mentioned prediction methods have been used in control 
implement of WEC. These methods are based on physical foundamation 
or processing statastics. Because of the complicate nonliear relation 
between wave height and wave excitation force, data extroplation 
performance of existed prediction tools is not accurate enough for a long 
short-term prediction of Model Predictive Control (MPC). The accuracy 
of the model of the body dynamics strongly affected the performance of 
real-time control methods (Anderlini, 2017). Only if an accurate wave 
prediction is obtained, the real-time control makes sense. The predicted 
wave force with unsatisfactory performance may cause negative effects 
with control commands. As wave force predction plays an important role 
in real-time MPC control of WEC, a prediction algorithm with high 
accuracy and low computuation cost is necessary to be developed, 
calibrated, and validated with the rapid development of wave energy 
engineering.  
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As the explosive development of Artificial Intelligence and Machine 
Learning appliacation in last decade, more and more research field (image 
processing, speech regnition, medicine, power grid and automatic control) 
introduce some ‘pop-stars’ of machine learning to solve tradtional 
problems in an untraditional way. ANN is one of the most widely used 
machine learning tools for interdisciplinary research. As a tool for time 
series prediction and modelling, artificial neural networks (ANNs) have 
been successfully used in a variety of application domains, including 
financial time series prediction (Zhang, 2014), significant wave 
forecasting (Deo, 1998), and traffic prediction (Duan, 2016). There are 
some attempts using ANN to optimize power asorption with control 
strategy. In (Valério, 2008), ANN models for the Archimedes Wave 
Swing (AWS) prototype are developed. ANNs are then used together with 
proven control strategies (phase and amplitude control, internal model 
control and switching control) to maximise energy production. Li (Li, 
2018) has applied ANN to predict MPC wave force to improve power 
efficiency of a heaving point absorber WEC. With the complexity of 
application problems increases, the vanilla feedforward neural network 
cannot meet the demand of so many types of specific applications. Aiming 
at different technical challenges, types of ANN, including LSTM RNN 
and NARX FNN, have been developed for these applications. Using these 
advanced machine learning tools is a novel approach to solve wave force 
prediction problem in WECs real-time control. 

 
2 PROBLEM STATEMENT 
 
Model Predictive Control is one of the most commonly used control 
strategies in which prediction of excitation force is necessary. No matter 
which method, either linear or non-linear one, is used to approximate the 
actual behaviour of wave force, the nonlinearity and non-causality are not 
eliminated. The computational cost is also crucial factor in the prediction 
model which has potential in real-time control. These three factors are 
discussed below. 
 
Non-linearity 
 
Models based on linear wave theory have many desirable advantages in 
hydrodynamic calculation, like linear component superposition or transfer 
function in frequency domain. However, they are based on the assumption 
of ideal fluid, small amplitude of wave and body motion. Normally as we 
know, none of the systems is completely linearity in reality. All systems 
have some kind of nonlinear behaviour more or less. If this behaviour is 
significant enough, white box mathematical models are hard to obtain 
(Valério, 2008). That is why other techniques, like grey or black box 
models, should be given attention and used as alternatives.  
Most WECs consider non-linear effects in operation mode. As WECs is 
designed to achieve a maximum motion, the linear relationship is not 
totally suitable for the devices. The larger amplitude of motions become 
exaggerated to gain wave energy, the more predominant nonlinear 
components will be. Fortunately, nonlinear effects are only an issue under 
the operation conditions. Beyond the operation limitation, the main target 
is normally to keep WECs safe and integrated. WECs will change into a 
survival mode, which limits the motion and allows wave force exerted on 
the device to be tolerated. In (Giorgi, 2015), it is shown that two kinds of 
nonlinear relation between incident wave and excitation force as 
indication to introduce nonlinearity into the hydrodynamic models. 
Nonlinear effects in operation state, which is between linear region and 
highly non-linear region, is considered when analysing WECs motions 
and forces caused by wave elevations. 
 
Non-causality 
 
Non-causality is a relationship for input-output variable. Causality is that 
current value of output is related to current and history value of input, as 

well as history output. Non-causality means that current output is not only 
related to the values mentioned in causality, but also the value of future 
input. The non-causality between wave elevation and structure motion 
and its reason is explained, although the wave propagation is a causal 
process (Falnes, 1995). To explain the concept of non-causality concretely, 
for example, a wave maker in the wave tank laboratory is the cause of the 
wave height of a certain position, but an upstream wave elevation is not 
the real cause of a downstream wave elevation. However, the two 
elevations of different locations are relevant. From the view of non-linear 
system identification (Nelles, 2002), the relationship between wave height 
and wave excitation force is a non-linear dynamic system with external 
input. Besides, it also has nature of non-causality. 
 
Compromise between accuracy and computation cost 
 
As an engineering issue, especially real-time manner control, computation 
cost is one of the most important factors which should be taken into 
account as accuracy of the algorithm. There are two traditional 
methodologies, linear potential theory (LPT) and Computational Fluid 
Dynamics (CFD) to simulate the structure response induced by wave. As 
linear potential assumption with non-viscosity and non-rotation 
assumption, LPT based on Boundary Element Method (BEM) has have 
high computation speed, but non-linear items is not totally included with 
added dynamic storing force, dynamic pressure, and viscous damping. 
Linear assumption which never exists in the actual world makes the 
simulation accuracy stay at a low level. On the other hand, if fully non-
linear CFD is applied to solve hydrodynamic problem, for example 
OpenFOAM software package, accuracy is better than former one. 
However, the accuracy brings such extremely high computation cost. 
Typical computation time can be up to 1000 times the simulation time 
(Giorgi, 2017). However, sometimes the accuracy and the computation 
cost are almost contradictory in the simulation process. The computation 
cost will rise when we are chasing high quality of prediction performance, 
vice versa. Thus, it is desirable to develop hydrodynamic models with 
characteristics that overcome computational-accuracy contradiction lain 
between the LPT and CFD; ideally, a good compromise able to describe 
the most important nonlinear components of the real system, without 
requiring excessive computational time cost. Deep machine learning is 
one of the suitable tools to balance the trade-off between these two major 
factors. Deep learning architecture of ANN guarantees that the system 
model envelops enough nonlinear components with its nonlinear 
information transformation among perceptual neurons. The testing or 
predicting process is a straightforward multiplication of an input vector 
mapping by well-trained machine learning model. As the multiplication 
is an extreme rapid numerical operation and the characteristics of the 
system is contained in the weight and bias matrices which is well-trained 
by history data in advance, therefore the simulation lead no much 
computational time with comparable accuracy to a first-principle model 
while there is a relative long time for the network training process to learn 
the system.  
 
Except the selected method of prediction model, the prediction horizon 
(PH) is a factor to control the balance between computational cost and 
accuracy. In nonlinear time series prediction, ANN models are commonly 
used as one-step-ahead predictors, estimating only the next value of a time 
series without feeding the predicted value back to the input of model. If 
the user is interested in a wider prediction horizon, a procedure known as 
multi-step-ahead prediction, the model’s output should be fed back to the 
input set for a fixed but finite number of time steps. In this case, the input 
set components, previously composed of real sample points of the time 
series, are gradually replaced by predicted values as feedback. One of the 
advantages of multi-step prediction is the faster speed than one-step 
prediction. However, it was found that the longer the forecasting time 
horizon, the less accurate was the prediction. We can explain this in two 
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aspects. If prediction outputs do not feedback the model, the previous 
input characteristics have little influence on the output. On the other hand, 
as the output feedback the prediction system, the error of prediction output 
will be accumulated with this process. In a more actual view, the 
computation cost includeincludes not only the simulation of wave 
prediction, but also the digital signal transmission and control command 
implement process and it should be shorter than the prediction horizon 
which proves the effectiveness on the real-time manner.  
 
Form both the view of existing simulation methods and the requirement 
of control strategies, we proposed machine learning techniques to predict 
wave height and wave force with the goal of replacing these 
computationally intensive or low-level accurate physics-based model for 
improving power efficiency of WEC in real-time manner. As the non-
causality between the wave height and the wave excitation force shown 
above, the wave height will be predicted by LSTM RNN. The length of 
prediction time duration in an iterative loop is called prediction horizon. 
At current time step kt , with the information of history and future of wave 
height ( , , , , )k n k k h  − +

as external input signal, as well as history 
structure motion information ( , ,)k nx − , the current structure motion kx is 
calculated by NARX FNN with theory of nonlinear system identification. 
 
3 MACHINE LEARNING MODEL FOR WAVE-FORCE 
PREDICTION 
 
Long Short-Term Memory Recurrent Neural Network 
 
Although conventional RNN can solve time-series problems better than 
the vanilla ANN due to recurrent weight parameter sharing, however, with 
the limited ability of memory in hidden layers, it is difficult to transmit 
information over long distances in conventional RNN, namely gradient 
explosive and gradient vanishing. As a branch of RNN architecture used 
in the field of deep learning (Hochreiter, 1997), LSTM RNN is first 
proposed in 1997 which outperforms against the conventional one. 
Because of introducing memory block into the network architecture, 
gradient explosive and gradient vanishing problems can be solved 
successfully (Greff, 2017), just like the model can learn how to forget 
useless information and keep long-term memory from the recorded data. 
As wonderful performances of LSTM RNN in time series issues, it have 
been applied to tasks such as unsegmented, connected handwriting 
recognition, speech recognition, and so on. There are fresh progress for 
LSTM in recent years, like Gated recurrent unit (GRU) (Cho, 2014) and 
now it has been used in the design of intelligent assistants and translate 
software by major technology companies, such as Google (Wu, 2016). 
 
The memory block in Fig. 1Fig. 1 is the basic unit as the core of LSTM 
RNN, which including input gate, output gate, forget gate and state cell. 
These gates and cells exchange information through Constant Error 
Carousel with equations shown below in order to ‘keep memory’ of 
characteristics in the time series. The gates control information flow and 
transmit information between short-term memory and long-term memory 
and state cell stores the long-term time-series memory. LSTM RNN is 
regarded as a deep learning architecture because of existing of memory 
block.  

 
( ) ( )t f f ff y x b  = =  +   (1) 

 
( ) ( )t i i ii y x b  = =  +  

 (2) 

 
( ) ( )t o o oo y x b  = =  +   (3) 

 

tanh( ) tanh( )t c c cc y x b= =  +   (4) 

 
1t t t t tc f c i c−=  +    (5) 

 
tanh( )t t th o c=    (6) 

 
in equation (1)(1)-(6)(6), the subtitles, , ,f i o  represent the forget gate, 
input gate and output gate separately.   is the sigmoid function as the 
most used activation function in different types of neural network and
tanh is the mathematical operator of hyperbolic tangent. The operator  
is defined as a multiple operation of matrices (Zhao, 2019).  
 
 

 
Fig. 1 The architecture of LSTM memory block 

 
Nonlinear Autoregressive Exogenous Feedback Neural Network  
 
The Nonlinear Autoregressive model with eXogenous input (NARX 
model) is an important class if discrete-time nonlinear dynamic system 
that can be represented as a mathematic reflection, 

 
1 1 1( , , ; , , , , )k k k p k q k k r qy f y y u u u+ − + + − + +=   (7) 

 
in which y  and u  denote input and output of the model. p and r  are 
the quantity of input and output. q is the forward step duo to the non-
causal relation. f  shows the nonlinear reflection relation between input 
and output. The reflection f can be expressed as a function or a black-
box ANN. If the latter way is chosen, it is regards as NARX FNN, so 
NARX network is a special type ANN based on NARX model. From the 
view of non-linear system identification, NARX FNN is one of powerful 
class which is suitable for nonlinear dynamic system, especially for time 
series nonlinear system control as a principle application, like our wave-
motion model. As a tool of nonlinear system identification, the NARX 
network has been successfully applied to a number of real world input-
output modelling problems, such as heat exchangers (Yassin, 2010), 
waste water treatment plants (Zounemat-Kermani, 2019). 
 
Fig. 2Fig. 2 and Fig. 3Fig. 3 are the two types of architecture of NARX 
FNN network. Series-parallel model is used in training process in which 
there is no feedback of output. And in a multi-step prediction, predicted 
output of thk step, ky , will be used as input of network to predict output 
of ( 1)thk + step, 1ky + .this model for multi-step prediction is so called 
parallel model of NARX FNN. Series-parallel mode is expressed in 
Equation (8)(8), 
 

1 1 1ˆ ( , , ; , , , , )k k k p k q k k r qy f y y u u u+ − + + − + +=   (8) 

It
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in which p  and q represent history steps of input and output. r
represents the amount of non-causal information needed in the system. 
And parallel mode is shown in Equation (9)(9), 
 

1 1 1

1

垐 垐( , , , , , ;
, , , , )

k k k m k m k p

k q k k r q

y f y y y y
u u u

+ − − − − +

+ − + +

=
  (9) 

 
in which 1ˆky +  means predicted value, so as other variable with the same 
supertitle. The subtitle m  is feedback output simulated by the NARX 
network. Considering the non-causal effect, external input, namely wave 
height data series, need to be offset with the same distance as the 
considered future horizon. 
 

 
Fig. 2 The architecture of LSTM memory block Series-parallel mode 

of NARX FNN 
 
 

 
Fig. 3 The architecture of LSTM memory block Parallel mode of 

NARX FNN 
 
Architecture of LSTM-NARX network 
 
Combining the function of LSTM RNN and NARX FNN, a wave-force 
prediction model can be established. LTSM RNN is first used to predict 
the future wave height information. It is straightforward that the PH of 
LSTM RNN is the maximum time limitation which is considered for non-
causal wave-force relationship. And PH for wave force LSTM model 
restricts the future wave force knowledge we can applied in MPC 
optimization of WEC motion control.  There are three prediction 
processes in total, two by LSTM RNN, one by NARX FNN. The 
flowchart in Fig. 4Fig. 4 illustrates to describe how the wave information 
and machine learning algorithms are used in the prediction process. 
 

 
Fig. 4 The architecture of LSTM memory block The LSTM-NARX 

network architecture 

These two ML algorithms are more computationally expensive in 
training process than BPNN actually because there are more 
weights and biases to optimize in the training loop. But the time 
consumption of testing/prediction of BPNN and LSTM RNN are 
almost the same, because whichever network, there is only a 
matrix operation in every prediction step. The proposed model 
trains the prediction model offline and predicts online, so the 
training time is not an explicit disadvantage of the proposed 
approach comparing with conventional densely connected ANN. 
 
4 EXPERIMENTAL MODEL AND DATA PROCESSING 
 
Experimental model  
 
There are mainly two ways to obtain the data - experimental test and 
numerical simulation. These methods have their own pros and cons. 
Numerical simulation is flexible to change the scale of model to get results 
in different cases. Numerical simulation cannot conclude all interaction 
effect accurately, such as high nonlinear interaction and viscous effect in 
the realistic world. The experimental test reflects the real relation between 
wave and motion. But model scale effect sometimes is a big trouble. Wave 
heights and wave excitation force of an offshore structure model tested in 
Kelvin Hydrodynamics Laboratory (KHL), University of Strathclyde is 
used to prove the proposed wave-force prediction algorithm. The KHL 
towing tank has a dimensional of 76 m × 4.6m × 2.5 m, in the length, 
width and depth direction. 
 
For the purpose of validation and verification of the proposed 
methodology, fixed type wave structure interaction is first investigated in 
the present study. Floating wave structure interaction will normally 
introduce a spatial synchronization between the wave and the 
corresponding response due to the structure drift motion, e.g. the wave 
measured by wave probes may not necessarily be the wave that exert onto 
the model. For the above reason, a classic wave and surface piercing 
vertical cylinder interaction problem is chosen, where the bottom extend 
cylinder was rigidly connected to two load cells at both ends. The total 
horizontal wave force acting on the cylinder was calculated by summation 
of the horizontal force measured by the two load cells. The cylinder tested 
has a diameter of 0.3 m and draft of 1.8 m, and was physically deployed 
in the middle of the towing tank.  
 
Taking the advantage of the excellent precession of the wave 
maker. The wave time history was first collected without the 
presence of the device, at the exact position where the device was 
later installed. Same wave was then tested on the device to acquire 
the force response. In this way, the effect of reflection and 
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diffraction due to the presence of the cylinder will not affect the 
incident wave measurement. The tested Johnswap spectrum with 
gamma 3.3 has a Hs of 25 mm and Tp of 0.8 s, both at model scale. 
 
For the sake of simplicity, the wave generated in wave tank is single 
directional instead of multi-directional wave. As the wave heights are 
recorded as system input, wave excitation represents system output. It is 
a single-input/single-output (SISO) system, but the proposed algorithm is 
also suitable to analyse multi-input/multi-output (MIMO) system for 
solving multi-body motions or coupled MDOF motion problems. 
 
Data processing 
 
Data pre-process is necessary before training the network. Normalization 
as shown in Equation (10)(10) is not only beneficial to network training 
as the weight gradient is in the same magnitude to eliminate the errors 
caused by different dimensions and ranges, but also it is available to 
compare results from different methods or resources. Each sequence after 
normalized is in the range of [0, 1]. High-frequency filtering is also used 
to reduce non-sense noise signal if necessary.  
 

min

max min

Y Yy
Y Y

−
=

−
  (10) 

 
Although prediction results which are shown in the same magnitude with 
original data will be obtained by an inverse normalization, here the 
normalized data is used for results and discussion in a straightforward way. 
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are 
selected to evaluate the accuracy of the prediction results. The former 
reflects the absolute deviation between actual data and predicted one, and 
the latter is the variance, 
 

1

1 ˆMAE
N

y y
N

= −   (11) 

 
( )

2

1

ˆ
RMSE=

N

y y

N

−
  (12) 

 
in which y is the predicted value, ŷ is the actual data value, and N is the 
quantity of the prediction data.  
 
In all, after the normalization process, results of different cases can be 
compared together, as the variable is only distributed between a certain 
region, between 0 and 1. Then the errors of mathematical analysis can be 
discussed in the same magnitude. 
 
5 RESULT AND DISCUSSION 
 
Analysis of LSTM RNN prediction result of wave height 
 
For LSTM RNN the most important parameter is the quantity of hidden 
units, namely the number of memory blocks in hidden layers. There is no 
intension to discuss the sensitivities of learning rate and different gradient 
descent methods in this paper. Therefore, the fixed initial learning rate, 
learning rate drop and gradient descent methods are all fixed. The 
parameters of the fixed network are listed below in Table 1Table 1. The 
unmentioned details, for example cost function, are set as defaulted value 
in the MATLAB Deep Learning Toolbox. The principle of using 
defaulted values is suitable for next section when discuss NARX FNN. 
 
Table 1 Training parameters of LSTM network 

 
Fixed network parameter value 
Initial learning rate 0.9 
Learning rate drop period 100 
Learning rate drop factor 0.5 
Hidden units 100 

 
When the parameters of network training is specific after the optimization 
process, it means that nothing can change the performance of the network 
except for random initialization of weight matrices. Therefore, the next 
step is to decide the PH which also has impact on the accuracy and 
computational cost of the prediction process. As shown in Table 2Table 
2, the MAE of one-step prediction (PH=0.01) is 0.0013 and RMSE is 
0.0019 which are very small. Since the one-step prediction horizon 
guarantees no error is accumulated in the feedback cycles, the real weight 
and the predicted one are almost overlapped. As the predicted information 
of wave height will be regarded as the input of force prediction, so the 
one-step prediction is not long enough to meet the requirement of future 
wave in the NARX network model, and one-step prediction is very time-
consuming as well. The quantity of the predicted time steps needs to be 
determined in order to get the best machine learning model, considering 
the part of NARX prediction model. As the performances of these three 
cases are quite small, one cannot see significant differences among three 
time-series curves comparing with the real wave height in Fig. 5Fig. 5.   
 
Analysis of NARX FNN prediction result of wave force 
 
In the NARX FNN prediction model there are two types of variables 
required in the training model. The first type is the wave height which 
consists two parts. The history height the real data of experiment cases 
and the future information. Different from the LSTM RNN, the NARX 
FNN network has more parameters to optimize, e.g. the value of layers, 
input delay, output delay, and future horizon. The input delay is the time 
length of input history data (history wave height) used in the NARX FNN. 
For example, the input delay is 0.1s in the case 1 of Table 3. As the 
sampling frequency is 100Hz, the history input data is 10 steps backwards. 
The output delay is time length of output history data (history wave force). 
The future horizon is the time length of future input information (future 
wave height) which is predicted by LSTM RNN. These 3 types of data 
are all the inputs and the future wave force is the predicted output for the 
NARX FNN. But the optimization process is not discussed in details in 
this paper. We compare several cases to give out a straightforward way to 
choose the optimized parameter, although the chosen parameters may not 
be the optimal ones. The input delay and future horizon are equal in length 
as the symmetrical effect of the history height and future height.  
 
Table 2 Prediction performance of LSTM network with different 
prediction horizons 
 

Case No. PH/s MAE RMSE 
1 0.01 0.0013 0.0019 
2 0.25 0.0131 0.0225 
3 1 0.0526 0.0731 

 

设置了格式: 字体: 小五

设置了格式: 英语(美国)

5

Development of a novel wave-force prediction model based on deep machine learning algorithms



1950 1960 1970 1980 1990 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

is
ed

 h
ei

gh
t

Time(s)

 real
 PH=0.01s
 PH=0.25s
 PH=1s

 
Fig. 5 LSTM one-step prediction of wave height 

(PH =0.01s, 0.25s, 1s) 
 

Table 3 Prediction performances of NARX network with different 
prediction inputs 
 

 Layer Input 
delay/s 

Output 
delay/s 

Future 
horizon/s 

PH 
/s 

MAE RMSE 

1 1 0.1 0.1 0.1 50 0.0415 0.0543 
2 2 0.1 0.1 0.1 50 0.0448 0.0580 
3 1 0.9 1 0.1 50 0.0393 0.0499 
4 1 1 2 1 50 0.0205 0.0254 
5 1 0.5 1 0.5 50 0.0233 0.0297 
6 5 0.5 1 0.5 50 0.0213 0.0280 
7 1 0.25 0.1 0.25 50 0.0300 0.0405 
8 1 0.1 0.5 0.1 50 0.0320 0.0412 
9 5 1 2 1 50 0.0195 0.0238 
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Fig. 6 Wave force prediction of NARX FNN in Case 1 and 5 

 
When other parameters are not initialised well, increase of the layer 
number has negative effect for network training in case 1 and 2, as shown 
in Table 3Table 3.  Keeping the layer number invariable, as the input delay 
(as the same as future horizon) and output delay increase, the 
performances are decreased simultaneously. When the delays are risen, 
the influence of the layer number is reversely positive towards the 
network performance. If the values of network parameters are set too large, 
the computational cost of training process increases dramatically with 
insignificant performance improvement. As shown in Fig. 6, when these 
parameters of NARX network increases, the time series prediction 
becomes more accurate.  
 
The accuracy of prediction improves as the prediction process is 
implemented by iterative sub-loop. Namely neither all the information is 
not predicted in a single loop nor frequent information updating like one-

step prediction. A trade-off PH of NARX network output, namely wave 
force, need to be determined in specific issues.  

 
Analysis of LSTM-NARX prediction result of wave force 
 
The aim of wave-force prediction based on machine learning is to forecast 
the future wave force which can be used in the real-time control of the 
WEC motion. Although the wave force can be calculated by NARX FNN, 
it is not sufficiently long to optimize the WEC motion with MPC. So 
prediction based on LSTM algorithm need to be implement again for 
predict wave force information. As shown in Fig. 7, when the prediction 
horizon is 0.02s, the accuracy of the predicted result is quite high so that 
there is almost no difference between two curves. Although the accuracy 
of predicted wave force decreases when the prediction horizon increases, 
the predicted wave force is also in phase with the real force, which is one 
of the most important featurefeatures of the real-time MPC.  
 

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 fo
rc

e

Time (s)

 real
 PH=0.02s
 PH=0.2s

 
Fig. 7 Wave force prediction of LSTM-NARX network 
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 Fig. 8 Accumulated over-all performances of wave-force 

prediction 
 
In each stage of wave prediction, no matter what wave height or wave 
force is applied, there is an inevitable error since any methods can predict 
the future information perfectly. If there is an error propagating from one 
stage to another one, the error will accumulate with a higher speed. 
Because the input of the following prediction model is not real data, but 
the approximate simulation result of previous stage. The predicted wave 
height will be used as the input in the machine learning algorithm at the 
stage of the wave force prediction based on NARX FNN. Also, the result 
of NARX FNN will be used in the LSTM RNN prediction of wave force. 
As shown Fig. 8, at first the accuracy of the first step stays at a low level. 
As the prediction process is implemented, the performance of the over-all 
process becomes worse, and the increase of error in the third step is much 
more obvious than the former step. It is because that the accuracy is lower 
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so that the predicted result cannot reflect the nature of the real data. In 
order to simulate a satisfied predicted wave force, the accuracy of the 
former step needs to be promised. 
 
6 CONCLUSIONS 
 
In order to effectively control the motion of the offshore structures in a 
real-time manner, it is required to have an accurate and efficient 
prediction method of the waves. In this paper, a LSTM-NARX machine 
leaning prediction model is proposed to realise wave-force prediction 
which is suitable for non-linearity and non-causality. To verify the 
machine learning prediction model, an experimental dataset collected 
from Kelvin Hydrodynamic Laboratory is used in this study. The optimal 
horizon can be specified for the test model by comparing the performance 
of the cases with different network parameters. According to the work 
done above, the following conclusions can be drawn:  
 
1. A novel wave-force prediction model based on machine learning 
algorithms is proposed in this paper which can be used to effectively 
control the motion of the offshore structures in a real-time manner. Owing 
to the novel architecture of LSTM RNN and NARX FNN, non-linearity 
and non-causality of wave height and wave force can be simulated 
successfully in time-series process. 
 
2. The LSTM RNN is used to implement wave height prediction with 
history data of wave height as the input. Then, the NARX FNN is used to 
predict the future wave force when the wave height and wave forces 
predicted by LSTM are treated as the network inputs. The prediction 
results accurately match the experimental data collected from Kelvin 
Hydrodynamic Laboratory with different prediction horizons. 
 
3. The LSTM-NARX prediction algorithm has a good performance when 
predicting the future wave force. The LSTM RNN is used twice and 
NARX FNN is used once in the framework of the complex prediction 
algorithm. The performance of network decreases when the prediction 
horizon increases. The error is accumulated from the former step to the 
latter step in the prediction process. 
 
7 ACKNOWLEDGEMENTS 
 
This study was fully supported by the National Natural Science 
Foundation of China (51979131) and China Scholarship Council 
Foundation (CSC201806680085). 
 
 
8 REFERENCES 
 
Anderlini, E., (2018). Control of wave energy converters using machine 
learning strategies. 
Garcia-Abril, M., F. Paparella, J. Ringwood, (2017). Excitation force 
estimation and forecasting for wave energy applications, IFAC-
PapersOnLine, 50(1): 14692-14697 
Falnes, J., (1995). On non-causal impulse response functions related to 
propagating water waves, Applied Ocean Research, 17(6): 379-389 
Fusco, F., J. V. Ringwood, (2012). A simple and effective real-time 
controller for wave energy converters, IEEE Transactions on Sustainable 
Energy, 4(1): 21-30 

Son, D., R. W. Yeung, (2017).Real-time implementation and validation 
of optimal damping control for a permanent-magnet linear generator in 
wave energy extraction, Applied energy, 208(571-579) 
Li, G., G. Weiss, M. Mueller, S. Townley, M. R. Belmont, (2012).Wave 
energy converter control by wave prediction and dynamic programming, 
Renewable Energy, 48(392-403) 
Ling, B. A., (2015).Real-time estimation and prediction of wave 
excitation forces for wave energy control applications. 
Li, L., Z. Yuan, Y. Gao, (2018). Maximization of energy absorption for 
a wave energy converter using the deep machine learning, Energy, 
165(-): 340-349 
Anderlini, E., D. Forehand, E. Bannon, M. Abusara, (2017). Reactive 
control of a wave energy converter using artificial neural networks, 
International journal of marine energy, 19(207-220) 
Zhang, W., (2014). Financial Time Series Forecasting Using Neural 
Networks. 
Deo, M. C., C. Sridhar Naidu, (1998).Real time wave forecasting using 
neural networks, Ocean Engineering, 26(3): 191-203. 
Duan, Y., Y. Lv, F.-Y. Wang (2016). Travel time prediction with LSTM 
neural network. 2016 IEEE 19th International Conference on Intelligent 
Transportation Systems (ITSC), IEEE. 
Valério, D., M. J. Mendes, P. Beirão, J. S. da Costa, 
(2008).Identification and control of the AWS using neural network 
models, Applied Ocean Research, 30(3): 178-188 
Giorgi, S., J. Davidson, J. Ringwood (2015). Identification of nonlinear 
excitation force kernels using numerical wave tank experiments. 
Proceedings of the 11th European Wave and Tidal Energy Conference, 
European Wave and Tidal Energy Conference 2015. 
Nelles, O. (2002). Nonlinear system identification, IOP Publishing. 
Giorgi, S., Linear and nonlinear parametric hydrodynamic models for 
wave energy converters identified from recorded data, Phd, Maynooth 
University, 2017,  
Hochreiter, S., J. Schmidhuber, (1997). Long Short-Term Memory, 
Neural Computation, 9(8): 1735-1780 
Greff, K., R. K. Srivastava, J. Koutník, B. R. Steunebrink, J. 
Schmidhuber, (2017). LSTM: A search space odyssey, IEEE 
transactions on neural networks and learning systems, 28(10): 2222-
2232 
Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, 
H. Schwenk, Y. Bengio, (2014). Learning phrase representations using 
RNN encoder-decoder for statistical machine translation, arXiv preprint 
arXiv:1406.1078. 
Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. 
Krikun, Y. Cao, Q. Gao, K. (2016). Macherey, Google's neural machine 
translation system: Bridging the gap between human and machine 
translation, arXiv preprint arXiv:1609.08144. 
Zhao, Q., X. Hu, J. Lin, X. Deng, H. Li (2019). A novel short-term 
blood pressure prediction model based on LSTM. AIP Conference 
Proceedings, AIP Publishing. 
Yassin, I. M., M. N. Taib, H. A. Hassan, A. Zabidi, N. M. Tahir, (2010). 
Heat exchanger modeling using NARX model with binary PSO-based 
structure selection method. 2010 International Conference on Computer 
Applications and Industrial Electronics, IEEE. 
Zounemat-Kermani, M., D. Stephan, R. Hinkelmann, (2019). 
Multivariate NARX neural network in prediction gaseous emissions 
within the influent chamber of wastewater treatment plants, 
Atmospheric Pollution Research, 10(6): 1812-1822 

 

7

Development of a novel wave-force prediction model based on deep machine learning algorithms


	Development of a Novel Wave-force Prediction Model based on Deep Machine Learning Algorithms
	ABSTRACT
	1 INTRODUCTION
	2 PROBLEM STATEMENT
	3 MACHINE LEARNING MODEL FOR WAVE-FORCEPREDICTION
	4 EXPERIMENTAL MODEL AND DATA PROCESSING
	5 RESULT AND DISCUSSION
	6 CONCLUSIONS
	7 ACKNOWLEDGEMENTS
	8 REFERENCES



