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ABSTRACT

This study focuses on the analysis of the higher harmonic wave moments
(around the seabed) on a vertical cylinder under the action of focused
wave groups. The moment is known to be more nonlinear than the hori-
zontal wave force; however, it is not very much investigated in the liter-
ature due to the difficulty of measuring accurately the mudline moment.
We analysed the carefully measured wave loads from the tests in the
Kelvin tank in the University of Strathclyde where a four-phase method
is employed to extract the harmonic wave loads. The mudline moment
shows a ‘Stokes-like’ underlying harmonic structure similar to the hor-
izontal force. An approximation model is established to estimate the
harmonic moment from the linear moment component. The model re-
quires the nonlinear horizontal force coefficients and the moment arm of
each harmonic. The moment arm for each higher harmonic is found from
the measured forces and moments. The approximation model is demon-
strated successful from both the measured data and numerical simulation.

KEY WORDS: Offshore wind; Monopile; Nonlinear loads; Higher
harmonics; Focused waves.

INTRODUCTION

Large waves are usually expected during the operation of offshore wind
turbines which are typically supported by bottom-mounted monopiles in
relatively shallow waters. The typical Keulegan-Carpenter (KC) number
for offshore wind turbine monopiles implies that inertia loading will
dominate and viscous drag forces can be neglected. For non-breaking
waves the dominant load will be at the same frequency as the incoming
waves and can be well captured by a standard linear calculation.
However, there will be higher harmonics to the loading by large waves
and these can make up a significant part of the magnitude of the total
loads. The higher harmonic loads will tend to act near the free surface
and therefore have a higher moment arm than the linear loads – and
hence increase moment loading on the foundations. However, not
very much work has been seen in the literature that focuses on the
investigation of the nonlinear moment on a vertical circular cylinder.

In a large amount of the work on the higher harmonic loads, re-
searchers mostly focus on the horizontal wave force. This is partial
because, importantly the higher harmonic force will potentially act at
around the natural frequency for which an offshore wind turbine is
designed for (see Kallehave et al. 2015). This is of obvious concern
for structural and geotechnical design. This resonance is coupled
with the well known problem associated with column-supported
offshore structures which is the ’ringing’ occurring at a substantially
higher frequency than the dominant wave frequency. The ringing is
known to be caused by nonlinear extreme waves exciting transient
response at the structural resonant modes. The higher-harmonic
ringing loads on a vertical surface-piecing cylinder have been observed
in the offshore field and measured in laboratory experiments. The
observations have been reported in a number of experimental studies
(Davies et al., 1994; Krokstad and Stansberg, 1995; Chaplin et al., 1997).

Models for analyzing higher harmonic loads have been extended from
linear theory to second and third orders. For example, Faltinsen,
Newman and Vinje in Faltinsen et al. (1995), developed a third-order
diffraction model (referred as FNV) for approximating the third-order
wave force on a slender cylinder, based on the assumptions of deep
water and that the incident wave amplitude is in the same order with
the cylinder radius. The FNV model was shown to produce good
prediction of the third-order force in its assumed regime in some recent
experiments (Huseby and Grue, 2000; Chen et al., 2018; Kristiansen and
Faltinsen, 2017). Malenica and Molin (1995) (referred as M&M) made
a complete third-order diffraction analysis following the perturbation
method and a semi-analytical solution for the third-order potential was
presented. In a separate approach Rainey (1989) and Rainey (1995)
derived a simplified expression for wave loads up to third order on a
slender body in the perspective of fluid kinetic energy, without solving
for the velocity potential. It also assumed an undisturbed incident wave
field. The ‘point load’ component, Equation (4) in Rainey (1995), at the
body-surface intersection was highlighted. It was explained by pressures
inherently different from those elsewhere on the cylinder as a result of an
‘end effect’. In the diffraction theory in Malenica and Molin (1995), this
point load is a waterline integral on the still water surface-intersection.



This point load component could become dramatically important at
higher harmonics. The point load at the third order also suggests that the
higher (than second) order load might act close to the free surface.

In a recent experimental work in Riise et al. (2018a), high-frequency
resonant response of a monopile in deep water irregular waves was
studied, where the monopile is weakly damped such that the resonant
motion can be captured. They measured the higher harmonic moments
on the monopile by assuming the moment arm is the water depth, that
is, the higher harmonic force acts exactly on the still water surface.
They extracted the third, fourth and fifth harmonic force components
from the irregular wave results and compared to the FNV model and
other available experiments. They concluded that the irregular wave
measurements can generalize results obtained in deep water regular
waves.

In the present study, we use a focused wave group as the incident wave for
representing a transient excitation. The experiments were carried out in
the Kelvin Hydrodynamic Lab in the University of Strathclyde, UK. Both
the horizontal wave loads and tank bottom moments were measured. The
method for extracting higher harmonic responses from a focused wave
group in our tests is the phase-manipulation based decomposition, re-
cently used by Chen et al. (2018) for experiments and Fitzgerald et al.
(2014) for numerical simulation. The approach assumes a ‘Stokes-type’
harmonic structure of both wave elevations and hydrodynamic forces for
a narrow-banded wave group. We present here a similar ‘Stokes-type’
harmonic moment model with appropriate non-dimensionalization. With
both the harmonic horizontal forces and and moment extracted from the
measurement, we can find the acting location of each harmonic force and
the moment arm. With the non-dimensionalized harmonic coefficients,
following the ‘Stokes-type’ structure, we reconstruct the wave moment
from the linear wave force, which can be easily obtained from linear
diffraction theory.

METHODOLOGY

Decomposition model
We first present the decomposition model for the wave force. In the
framework of potential flow, the fluid is assumed inviscid and incom-
pressible and the flow irrotational. With the assumption of narrow-
banded spectrum, the focused wave group has a slowly-varying ampli-
tude A(t) near focusing and the wave force is expanded with respect to
wave steepness as

F(t) = AF11 cosϕ + A2(F20 + F22 cos 2ϕ) + A3(F31 cosϕ + F33 cos 3ϕ)

+ A4(F40 + F42 cos 2ϕ + F44 cos 4ϕ) + O(A5)
(1)

up to fourth order of the steepness kA. The coefficients Fmn represent
kernel functions corresponding to sum (m = n) and difference (m−n = 2)
harmonics and ϕ = ωt + ϕ0 is the phase of the linear component of the
incident wave with ϕ0 a prescribed phase. The basic assumption of the
harmonic decomposition technique from a nonlinear wave force is that
the response follows the structure of the class Stokes expansion.

The methodology we utilise for extracting the different harmonics
cos nωt is a phase manipulation technique presented in Fitzgerald et al.
(2014) for a numerical model. The idea is to make the incident wave with
a prescribed phase ϕ0 = 0◦, 90◦, 180◦ and 270◦. By linearly combining
the four corresponding responses F0, F90, F180 and F270, the separated

harmonics are(
AF11 + A3F31

)
cosωt = (F0 − FH

90 − F180 + FH
270)/4, (2a)(

A2F22 + A4F42

)
cos 2ωt = (F0 − F90 + F180 − F270)/4, (2b)

A3F33 cos 3ωt = (F0 + FH
90 − F180 − FH

270)/4, (2c)

A2F20 + A4F40 + A4F44 cos 4ωt = (F0 + F90 + F180 + F270)/4. (2d)

where the accuracy is truncated to fourth order and the superscript H
denotes the Hilbert transform of the time signal. Clearly, to extract the
harmonics up to fourth order using this approach, one has to repeat
each simulation four times with careful control of the phase of the
wavemaker. Note that the harmonic terms might not be exactly the same
order, for instance, Eq. (2a) is the first harmonic term but it contains a
3rd-order components A3F31. This difference term is two orders smaller
than the sum term AF11 thus it is not necessary to further separate them
except the term A2F20 in (2d) which is the second order difference
component. The same model applies to the wave moment.

Reconstruction model
Once we obtain the harmonic loading coefficients and the corresponding
phases, it is then straightforward to reconstruct the force and moment
according to the ‘Stokes-like’ harmonic structure. The reconstruction of
the nonlinear force and moment relies on the Stokes-like model of the
harmonic components. We first write the linear force component as

F(1) = F (1) f1 (3)

where f1 carries the group structure and phase information for the linear
loading, and F (1) carries the information of the linear force amplitude.
Then the total force can be estimated as

F
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(4)

where

fn = αFFn fαn + βFFn fβn, n = 2, 3, 4, 5 (5)

with

fα2 = f 2
1 − f 2

1H

fβ2 = 2 f1 f1H

fα3 = f1( f 2
1 − 2 f 2

1H)

fβ3 = f1H(3 f 2
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fβ5 = [( f 2
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(6)

At each higher harmonic, S FFn carries the non-dimensional force coef-
ficient, and the phase coefficients αFFn and βFFn are approximated by

αFFn =

∫
fn fαndt∫
f 2
αndt

, βFFn =

∫
fn fβndt∫
f 2
βndt

. (7)

The phase of the harmonic force relative to the linear force component
is then defined as φn = arctan(βFFn/αFFn).
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Fig. 1 The schematic overview of the experimental setup.

The moment reconstruction model is similar to the force as

M
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with S MMn as the nth harmonic moment coefficient and mn carrying the
group structure and phase information. The still water depth is h.

Finally, given the effective moment arm hn at each harmonic, one would
be able to approximate the moment from the force by

M
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EXPERIMENTAL SETUP

The experiments were undertaken at the Kelvin Hydrodynamic Labora-
tory in the University of Strathclyde, United Kingdom. The tests were
carried out in the lab’s 76 m long, 4.6 wide wave tank with a constant
water depth of 1.8 m over a flat bottom. The tank is equipped with a
’flap-type’ wavemaker consisting of four paddles with force-feedback at
one end, and a sloping beach acting as a passive absorber at the other
end. A single surface-piercing vertical cylinder of diameter 0.315 m
was placed at the centreline of the tank, with its centre 35.315 m away
from the wavemaker. Figure 1 shows the sketch of the experimental
setup. The cylinder was rigidly supported at its upper end by a
six-degree-of-freedom load cell mounted on a stiff frame. The bottom
of the cylinder was fixed to a frame attached to the tank floor via a
three-degree-of-freedom load cell attached to a bearing assembly which
released the bending moments. The lower support raised the end of the
cylinder slightly above the tank floor; the resulting cylinder draught was
1.6 m. The upper end of the cylinder is located just under 1.0 m above the
still water surface, to allow for the substantial run-up of the large focused
waves. The arrangement allows the calculation of the total inline force
and the inline moment about the bearing, so that the moment arm may
be found. Figure 2 shows a wide view of the cylinder viewed from the
wavemaker as a wave passes, with the inset image showing the side view.

Before the installation of the cylinder, focused incident waves were
calibrated. Wave probes were placed in the wave field near the centre of
the tank. To find the accurate position of the probe located at the centre
in the absence of the cylinder, a laser position indicator was installed
above the tank. This was used to locate the position of the cylinder as
well. Due to the nonlinear evolution of the incident waves, the focused
position is usually downstream the linear focused point and is delayed in
time (see Adcock et al. 2015). As wave-group evolution has significant
non-linearities in unidirectional waves, iteration was used to produce the

Fig. 2 The experimental setup in the Kelvin Hydrodynamic Lab-
oratory, a wave crest past the cylinder.

Table 1 Test parameters.
Case fp(Hz) kpR kph A(m) kpA KC

1 0.429 0.129 1.476 0.134 0.110 2.671
2 0.429 0.129 1.476 0.147 0.120 2.927
3 0.429 0.129 1.476 0.160 0.131 3.185
4 0.429 0.129 1.476 0.169 0.138 3.366
5 0.429 0.129 1.476 0.179 0.146 3.562
6 0.429 0.129 1.476 0.206 0.169 4.110
7 0.429 0.129 1.476 0.241 0.197 4.802
8 0.429 0.129 1.476 0.256 0.210 5.115

focussed wave group, although finding the accurate focusing location is
not necessary for the four-phase combination technique adopted in the
experiments.

The JONSWAP spectrum of peak frequency fp with γ = 3.3 was used
to generate the wave groups. The discretized spectrum cut-off is set as
0.5 fp − 3.0 fp. The tested wave groups were listed in Table 1. kp for
the wave group is the peak wavenumber. Amplitude A(m) is the linear
component of the focused wave group. KC is computed by KC = πA/R.

The test condition gives a range of the ratio A/R = (0.6 - 1.9), that is,
the wave group amplitude is mostly of the same order with the cylinder
radius where FNV model for third-order force should apply. The corre-
sponding wave steepness kpA is (0.10 - 0.25) and no wave breaking is
expected in this range. With the KC number smaller than 5 (except Case
8), we expect the wave force is inertia dominant. Local viscous effects
might play a role when KC > 4.0.

RESULTS

Harmonic decomposition
Experiment

Using the phase manipulation technique described previously, We can
separate the harmonics at least up to the first four orders. Figure 3 shows
the time histories of wave induced moment about the bottom bearing
on the cylinder for the decomposed harmonics near the focusing time.
It is clear that the linear and second harmonic components are easily
recognized. The linear moment is symmetric about the focusing time



near 64 s. The second harmonic is double the linear frequency and
makes a significant contribution as compared with the linear component.
The third and fourth harmonics are relatively small.

In order to identify further higher harmonics, we transfer the time
histories to the frequency domain. Figure 4 shows the decomposed
spectra of horizontal wave moment for Case 8 with A = 0.256 m or
kpA = 0.21. The frequency is normalized by the peak frequency in
the horizontal axis. The vertical axis measured value is plotted in
log scale. The linear moment corresponding to the linear free wave
component is between 0.5 fp − 3 fp in the black line, while the second
harmonic is between 1.0 fp − 5 fp in the red line. The second difference
component is between 0.0 fp − 2.0 fp in the blue line, which can be easily
separated from the fourth harmonic. It is seen that the separation is
clean up to even 16 fp. There is a small amount of ‘leakage’ between
components – for instance a peak in most components can be seen
around f / fp = 1. However, this leakage is typically small and can be
removed by filtering in the frequency domain. This clean separation
of the higher harmonics demonstrates the successful application of the
phase manipulation approach in decomposing harmonic loads on the
structure in the experiments.
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Fig. 3 Decomposed time histories of wave moment for Case 8,
kpR = 0.129 and kpA = 0.21.

Numerical simulatioin

We employ a rectangular numerical wave tank model for studying the
nonlinear wave structure interactions. The numerical model is based
on the fully nonlinear potential flow theory and employs a higher-order
boundary element methods to solve the boundary value problem.
Detailed description of the numerical wave tank and relevant validation
was reported recently in Feng et al. (2019). Specifically, the numerical
model is a representation of the physical tank, with similar mechanism
of wave generation and wave absorption. The model is developed in
the framework of potential flow so that no viscous effects are present.
Anything nonlinear produced in the simulation can be associated with
nonlineraity in the free-surface boundary conditions.

Phase control is implemented in the model to apply the phase manipu-
lation approach as in the experiment. Figure 5 shows the decomposed
wave moment spectra against the normalized frequency. Again the
separation among harmonics are excellent. The numerical results are
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Fig. 4 Energy density spectra of wave moment for for Case 8,
kpR = 0.129 and kpA = 0.21. M/
rhogAR2h

shown only up to the ninth harmonics unlike in the experiments. The
accuracy of numerical results is limited by the mesh resolution used for
the boundary discretization. As the value of the harmonics higher than
the fifth or sixth and the corresponding wavelength of the component is
very short, extremely high mesh resolution would be needed to capture
those components. Considering the efficiency of simulations, we apply
a reasonable resolution for our model such that the accuracy is reliable
up to the fifth harmonic. We see in Figure 5 that beyond f / fp = 6
the spectrum values become messy and overlapping among different
components.
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Fig. 5 Energy density spectra of wave moment for numerical sim-
ulation, kpR = 0.129 and kpA = 0.1. The moment is non-
domensionalized by M/ρgAR2h.

With such cleanly separated spectra, it is easy to utilize appropriate
bandpass frequency filters to extract the harmonics. Figure 6 presents
the bandpass functions we used for extraction of the second to fifth
harmonics. The shape of the filtering functions follow more or less the



profile of the its corresponding spectra profile – a steep rise and a mild
long tail. Applying these filters to Figure 7 produces the results.
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Fig. 6 Bandpass filtering function used for extracting harmonics
from decomposed time histories.

Figure 7 summaries the results in the time domain for a typical case from
our numerical simulations. It shows the time histories of wave moment
of each harmonic up to the fifth. The moment is non-dimensionalized
by ρgAR2h. For the linear (first order) moment, it can be seen that it
has a similar shape to the NewWave profile. We also plot the envelope
of the time history, from the time-history data and its Hilbert transform

as MA(t) =

√
M2

1(t) + M2
1H(t), where M1H is the Hilbert transform of

the linear moment. The second order difference component is small but
shows a larger skew profile near focusing time. It might be a combi-
nation of the load due to the second order free long wave and a larger
skew-symmetric loading due to the return current under the wave-group.
Higher harmonics appear to be extracted cleanly with some additional
structure discernible at the 5th harmonic. The approximated envelopes
of the nth (n > 1) harmonics are calculated by raising the linear envelope
to the power of n and scaling to the magnitudes of the corresponding har-
monics. The scaling is based on the peak value of the component. It can
be seen that the nth powered envelopes agree very well with the extracted
harmonic time histories, both the shape in time and the timing of the peak
of the envelops. This is consistent with the assumed ‘Stokes-type’ wave
load harmonic structure. This structure provides the basis to predict the
higher harmonic loads using only the linear component.

Nonlinear effects
The effects of nonlinearity on higher-order harmonic loads can be eval-
uated by increased incident wave steepness. The non-dimensionalized
loads gives better understanding of the nonlinear effects. We apply the
scaling introduced by Huseby and Grue (2000), that is, the nth harmonic
is non-dimensionalized as F(n)/ρgAnR(3−n) for the force, and for the nth

harmonic of moment we use ρgAnR3−nh which adds the mean water
depth to the scaling of force. Here we choose to analyse the moment
acting around the base of the column (i.e. the ‘mudline’) as this is
of most significance to practical engineering design. The variation of
the harmonic moment (peaks) with increased wave steepness is shown
in Figure 8. Four cases of wave steepness ranging 0–0.1 are studied.
Peak values of the envelopes of the moments harmonic are extracted as
described above.
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Fig. 7 Harmonic components of wave moment from numerical
simulations for Case 8, kpR = 0.129 and kpA = 0.1. The
envelopes of the components are in solid red. The linear
envelope is directly computed from its time history. En-
velopes of higher harmonics are obtained by raising the
linear envelope to nth power and scaling to its magnitude.

We see in Figure 8 that the non-dimensionalized linear moment
coefficient remains almost constant over the kpA range. Linear results
computed by the Morison inertial formula and by MacCamy-Fuchs’
formula are also included. The theoretical results for linear moment
are not a function of wave steepness, such that they are constant across
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Fig. 8 Numerical results: variation of peak harmonic mud-
line moments with increasing wave steepness kpA. The
nth harmonic moment M(n) is non-dimensionalized by
ρgAnR(3−n)h.

the steepness range. The agreement is very good for the results from
our numerical simulation and theoretical predictions. Note that as the
cylinder in our study is compact (slender cylinder), Morison’s equation
remains valid.

The non-dimensional second harmonic moments from the numerical
simulations show very small variation as the wave steepness increases.
The third and fourth harmonic moments are again almost constant.
These non-dimensional harmonic moments are indeed the coefficients in
Eq. (8). They are useful for reconstructing the harmonic moments at any
wave steepness, given the underlying group structure and phase.

To understand the moment values further, it is useful to consider an ef-
fective point on the cylinder at which the harmonic force ‘acts’. The
force is, of course, oscillatory and therefore we consider the ratio of the

envelope of the moment to the envelope of the force,

Ln =
max(

√
M2

n + M2
nH)

max(
√

F2
n + F2

nH)
, (10)

and we use the maximum values of envelopes of the harmonic mo-
ment and force. Ln is defined as the effective moment arm at nth
harmonic. Both the experimental and numerical results show that
the linear force ‘acts’ at about 0.5 m below the still water surface or
the linear moment arm is about 1.3 m, above the tank bottom. The
second harmonic force ‘acts’ slightly below the water surface. More
interesting is that, harmonic forces higher than the third are mostly
near the undisturbed free surface, which give the moment arms as the
water depth. With these moment arms, we can approximate the higher
harmonic moments from only the linear force, as demonstrated in Eq. (9).

Nonlinear load reconstruction
The harmonic decomposition utilised in this study should allow a
non-linear force time series to be reconstructed given a known linear
loading. It is assumed that the linear loading is relatively straightforward
to calculate: for a sufficiently compact cylinder the linear inertia compo-
nent in the Morison equation or from the McCamy-Fuchs expression for
slightly larger cylinders. To use the present approach for the harmonics,
amplitude and phase coefficients for higher harmonics are needed. These
values are obtained from the experiments or numerical simulations. An
advantage is, the relevant coefficients are shown not to be a function of
wave steepness as demonstrated previously. This implies that we should
be able to use the same set of non-dimensional coefficients for prediction
of the case at a steeper wave condition.
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Fig. 9 Reconstruction of nonlinear force for Case 8, kpR = 0.129
and kpA = 0.21.

As a check on the consistency of the approach taken in the present study,
we now use this approach to reconstruct the force and moment time
histories from only the linear time histories and the non-dimensional
coefficients. Figure 9 shows the reconstructed force which is in almost
perfect agreement with that measured. Figure 10 presents moment of
numerical simulation for Case 8. The averaged values of the coefficients
in Figure 8 are used for the reconstruction, based on the ‘Stokes-like’
harmonic structure. The total moment reconstructed, the top panel
figure, is very close to the simulated results. The time history only shows
a small discrepancy around the crests and troughs either side of the
main crest. We also include a reconstruction of the different individual
harmonics. Overall, the reconstruction for the harmonic moments are



pretty successful. Given that the nonlinear loads follow the Stokes-like
harmonic structure, it is practically useful to approximate higher
harmonic force and moment on the offshore wind turbine monopile in a
simple manner without performing nonlinear diffraction analysis.
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Fig. 10 Reconstruction of moment of numerical simulation for
kpR = 0.129 and kpA = 0.1.

CONCLUSIONS

In this work we have investigated the higher harmonics of moments
acting on an inertia dominated surface-piercing cylinder. Both experi-
mental and numerical results are obtained and carefully analyzed. For
cylinders in the ‘inertia’ range, a Stokes-like model of harmonics for
both force and overturning moment appears to work well.

We focus on the moment on the cylinder. The moment is known to be
more non-linear than force (i.e. higher harmonics are relatively larger) as
the higher harmonics effectively act higher up the cylinder. The experi-
mentally obtained moment arm confirms that these higher (than the sec-
ond) harmonics ‘act’ near the free surface. We demonstrate that with the
harmonic load coefficients and their phases, the time histories of these
harmonics can be successfully reconstructed following the Stokes-like
structure. The simple Stokes-like model for higher harmonics presented
in this paper is a good model for loading on a slender cylinder. The model
does capture much of the structure of the higher harmonics and as such
we believe it can serve as a useful, practical engineering model.
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