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Abstract—This study presents a deep learning 
methodology using 3-dimensional (3D) convolutional 
neural networks to detect defects in carbon fiber reinforced 
polymer composites through volumetric ultrasonic testing 
data. Acquiring large amounts of ultrasonic training data 
experimentally is expensive and time-consuming. To 
address this issue, a synthetic data generation method was 
extended to incorporate volumetric data. By preserving the 
complete volumetric data, complex preprocessing is 
reduced, and the model can utilize spatial and temporal 
information that is lost during imaging. This enables the 
model to utilize important features that might be 
overlooked otherwise. 

 

The performance of three architectures were compared. 
The first architecture is prevalent in the literature for the 
classification of volumetric datasets. The second demonstrated a hand-designed approach to architecture design, 
with modifications to the first architecture to address the challenges of this specific task. A key modification was 
the use of cuboidal kernels to account for the large aspect ratios seen in ultrasonic data. The third architecture was 
discovered through neural architecture search from a modified 3D Residual Neural Network (ResNet) search space. 
Additionally, domain-specific augmentation methods were incorporated during training, resulting in significant 
improvements in model performance, with a mean accuracy improvement of 22.4% on the discovered architecture. 
The discovered architecture demonstrated the best performance with a mean accuracy increase of 7.9% over the 
second best model. It was able to consistently detect all defects whilst maintaining a model size smaller than most 
2-dimensional (2D) ResNets. Each model had an inference time of less than 0.5 seconds, making them efficient for 
the interpretation of large amounts of data. 

Index Terms— Ultrasonic Testing, Volumetric, Image Processing and Computer Vision, Neural Architecture 
Search, Non-Destructive Evaluation, Synthetic Data 

 

I. INTRODUCTION 

Composites are versatile materials that are widely used in 

many industries due to their superior mechanical properties 

such as corrosion resistance, specific strength, and specific 

stiffness. Carbon Fiber Reinforced Polymer (CFRP) is a 

widely used composite in the aerospace industry making up 

over 50 wt%  for the two most recent long-range aircraft, the 

Airbus A350 and the Boeing 787, and up to 70-80 wt% for 

private jets and helicopters [1]. CFRP is fabricated by layering 

multiple carbon ply sheets and curing them with a thermoset 

polymer.  
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The anisotropic nature of these composites can be engineered 

to meet specific structural requirements, making them ideal 

for high-performance applications [2]–[10]. However, the 

manufacturing process can introduce defects in the composite, 

compromising its integrity and performance [2], [3], [5], [8], 

[9], [11], [12]. Defects can range from delamination and 

cracks to foreign object inclusions, fiber distortions, and 

porosity [7], [12]. As the use of composites in safety-critical 

parts continues to rise, the detection, characterization, and 

quantification of defects become increasingly important [5].  

Non-Destructive Evaluation (NDE) refers to a suite of 

techniques employed to inspect components without causing 

any damage. Radiography, thermography, electromagnetic 

methods, and ultrasound are among the most widely used 

NDE techniques. These methods allow inspection of 

components with varying levels of complexity and size. The 

choice of NDE technique depends on the nature of the 
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component and the defects to be detected. The application of 

these NDE techniques has significantly improved the 

reliability and safety of various structures and components 

across numerous industries.

Ultrasonic Testing (UT) is a versatile technique that can be 

used to inspect components made of various materials, 

including composites, and is based on the transmission, 

propagation, and reception of ultrasonic waves. UT has 

become widely adopted and standardized for volumetric 

inspection in the aerospace industry due to its relatively easy 

and hazard free implementation compared to radiography and 

its ability to detect a wide range of volumetric defects [3], [7], 

[10], [11]. In UT, sound waves are excited on the surface of a 

component, and the reflected/scattered wave from internal 

scatterers can provide valuable information about the 

volumetric discontinuities of the component. Currently, 

phased arrays are the preferred technology for generating the 

initial sound wave owing to their operational flexibility. 

Phased arrays employ independently controllable UT 

elements that enable more complex electronic scanning and 

imaging, such as beam steering, dynamic depth focusing, and 

variable sub-apertures [9]. By controlling each individual 

element (or sub-aperture of elements) of a linear phased array, 

depth-wise sectional images (B-scans) can be created in a 

single scan (Figure 1, Figure 2 (b)). When combined with 

mechanized scanning perpendicular to the length of a linear 

phased array, complete 3-dimensional (3D) volumetric scan 

data of components can be generated by stacking multiple 

individual B-scans together at known positions (Figure 2 (b)). 

This technique is highly valuable for assessing the structural 

integrity of large and complex components and has significant 

implications for the reliability and safety of aerospace 

structures. 

UT data is  commonly visualized as images, either by 

selecting a B-scan directly, or as an amplitude or time of flight 

C-scan; where either the maximum response amplitude or the 

time index of the maximum response amplitude within the 

volume is imaged to produce a top-down section view across 

the sample [13].  

 

Figure 1: Demonstration of how individual probe elements can make 

up a linear phased array which can produce B-scan and C-scan 

images.  

 

 

a) 

 
 

b) 

 
Figure 2: a) Representation of how A-scans are stacked to form B-

scans. b) How B-scans are stacked to create a full UT volume. 

The integration of robotics into NDE has revolutionized large-

scale inspection processes by enabling efficient automated 

inspection of large components [14]. While robotic scanning 

offers greater flexibility and significantly reduces scan time 

compared to manual scanning, the interpretation of results 

remains a tedious and time-consuming task in industry. To 

interpret results in line with existing standards, there is a 

requirement for highly trained and qualified operators [10], 

[15]–[19]. Despite the significant improvements brought 

about by robotic NDE, the need for expert human 

interpretation of results persists. This highlights the need for 

further research and development of automated data 

interpretation techniques that can supplement or even replace 

human interpretation, to improve the efficiency and reliability 

of NDE in various industries. By reducing the dependence on 
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Highlights 

• Neural Architecture Search is leveraged to discover an effective architecture for detection in ultrasonic 
volumetric data. 

• The discovered architecture was able to achieve 100% accuracy on the experimental test data, a 7.8% 
improvement over the next best performing architecture.  

• This work demonstrates a deep-learning defect detection technique for volumetric ultrasonic data. It provides a 
solution to the challenge of automated ultrasonic inspection. 
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human interpretation, automation can potentially enhance the 

consistency, repeatability, and traceability of the NDE 

processes, while reducing inspection time and costs. 

The interpretation of UT scan results by human operators 

presents two significant drawbacks, namely, poor time 

efficiency and the risk of human error [17]. Low levels of 

automation for data interpretation is feasible for mass-

produced parts with precisely known geometries, but this 

approach typically relies on hard-coded features such as 

predefined time-gating, filtering, and amplitude thresholding, 

which may not be adequate for complex tasks such as changes 

in manufacturing conditions, variations in geometry, or defect 

characterisation [19]. There is a clear necessity for an 

automated approach to interpret UT data, which could 

leverage Deep Learning (DL). This approach should 

seamlessly integrate with robotic inspection systems, to 

substantially enhance the quality and efficiency of large 

component inspection. Using DL would lead to shorter signal 

interpretation time and faster UT automation uptake in 

aerospace and other industries, where DL has been identified 

as a key requirement for transitioning from low to high levels 

of industrial automation [19]. 

Despite the potential benefits of applying DL techniques to 

ultrasonic signal analysis for composite components, its 

uptake has been limited [19]. Shortage of training data is one 

of the main challenges that hinders research developments in 

this area. This shortage, combined with industrial concerns 

about the interpretability and compliance with standards of 

DL models, has presented challenges for the effective use of 

DL techniques. As a result, the adoption of DL in UT signal 

analysis for composite components has been slow, despite its 

promising potential to enhance the accuracy and efficiency of 

defect detection and characterization. 

Synthetic datasets are widely used in Machine Learning (ML) 

to augment small training datasets [20] and they have been 

successfully implemented for UT of composites with 

encouraging results for 2-dimensional (2D) classification of 

C-scan images [21]. Part of this work builds upon the work in 

the previous paper to extend one of the synthetic data 

generation methods to make it applicable for full 3D volumes. 

The synthetic datasets are based on simulations from semi-

analytical physics based software that has been shown to 

produce experimentally accurate defect responses [22], [23]. 

This software offers a less computationally expensive 

alternative to Finite Element Analysis (FEA), allowing for the 

simulation of composite responses based on bulk material 

properties [24].  

When ML is used to interpret UT NDE data in literature, it is 

typically applied to interpret A-scan time traces or 2D images 

constructed from A-scans [25]–[31]. Compared to B-scans, A-

scans lack all spatial information and nowadays, they are 

rarely used alone to characterize defects by human operators 

since the introduction of phased arrays. C-scans preserve 

detailed spatial information, however constructing the 2D 

image from the volumetric data necessitates the compression 

of temporal information. Whilst C-scans excel in capturing 

intricate spatial details, their need for temporal compression 

results in minimal representation of through-depth features. 

Compression of A-Scans to C-Scans often removes useful 

features such as the backwall response, which can be 

important when detecting defects with a low reflective index 

such as porosity [32]. Furthermore, to produce C-scan images 

appropriate gating must be applied to remove the front wall 

surface response. This can be challenging when trying to 

detect near-surface defects. In the aerospace industry, 

operators typically start with a C-scan to gain a complete 

picture of defect responses and then move to analysis of B-

scans for further information about the nature of the responses 

[33], [34]. Whilst current ML approaches in literature make 

use of data in formats that are easily interpreted by humans 

(images or time-traces), ML algorithms are not limited to 

image-level analysis and have proved very capable at 

interpreting 3D volumetric data [35], [36]. By implementing 

algorithms capable of volumetric interpretation, we retain all 

spatial and depth information, this gives the algorithms more 

relevant features to learn from and removes the need for 

image pre-processing and gating.  

Convolutional Neural Networks (CNNs) have been used 

effectively for decades in a wide variety of image and 

volumetric analysis tasks with models such as ResNet 

typically having tens of millions of parameters [37], and are 

still widely used as backbones or standalone architectures 

[38]. However, these networks are typically applied to data of 

similar dimensions, or data which has been scaled to give 

even dimensionality of each axis. UT data has extreme aspect 

ratios due to the difference in requirements of sample rate in 

the spatial and time dimensions. Compressing the data in the 

time dimension to match the spatial dimension, normally 

dictated by the sub-aperture pitch and the scan acquisition 

rate, would result in a substantial loss of depth information. 

Alternatively, the spatial dimensions could be upscaled to 

match the number of samples in the time dimension, but this 

is highly inefficient, creating data instances that would require 

large amounts of memory, and would make training 

intractable. Therefore, retaining the original dimensionality 

and aspect ratio of the UT data is highly preferable. Using 

CNNs to interpret images with high dimensionality is not new 

and the use of rectangular kernels instead of square kernels in 

CNNs has given positive results for classification of speech 

signals, which have high aspect ratios when represented as 

spectrogram images [39]. This paper makes use of a similar 

approach for volumetric data. 

Network architecture design is a key component of effectively 

leveraging machine learning techniques. Traditionally, 

ne w r   e      e r       a   ’r  e   f      ’ w      e   e , 

in tandem with domain expert knowledge to construct a 

specific architecture. Automatic architecture design or Neural 

Architecture Search (NAS) is a development on this approach 

where a practitioner can leverage compute to aid the process 

of architecture selection. This process, which can be 

considered a subset of hyperparameter optimization, generally 

involves an iterative process of selecting, training, and 

evaluating architectures. In its simples  f r , a ’Ra     

 ear  ’       e  re ea       e a   e  r  e            e 

threshold or limit in terms of performance or computation 

budget is reached. More complex approaches to NAS often 

focus on efficient model evaluations, making use of proxy 

evaluation methods [40], [41] or efficient sampling algorithms 



3-Dimensional residual neural architecture search for ultrasonic defect detection 

 

4 

 

[42], [43] attempting to make the largest improvement with 

each evaluation. 

This paper presents a comparative analysis of the performance 

achieved from three separates architectures for defect 

detection in volumetric ultrasonic data. The first, VoxNet 

[44], is prevalent in the literature for volumetric classification 

problems, the second architecture presents modifications to 

VoxNet for this task using a traditional network design 

approach, and finally a discovered architecture from NAS.  

VoxNet is a 3D CNN initially proposed for classification of 

LiDAR, RGBD and CAD data. It has since been used as a 

backbone for different volumetric classification tasks [45]. 

Additionally, notable contributions of this study to knowledge 

in the field encompass the introduction of domain-specific 

augmentations, which exert a substantial impact on the 

classification performance. Furthermore, synthetic data 

generation techniques are leveraged from prior 2D work to 

generate 3D UT datasets from semi-analytical simulations, 

effectively addressing one of the prominent challenges 

encountered in the application of deep learning for NDE: the 

scarcity of effective training data. 

This work presents a novel DL architecture designed to 

process volumetric UT data. In contrast to prior methods 

relying on time-series data or 2D image-based approaches, 

which diminish spatial or temporal features, whilst often 

requiring additional processing. The main contributions of this 

work are: 

- Interpretation of volumetric UT data, instead of 

images or time signals. This reduces preprocessing 

requirements and allows the model to learn from 

greater features. 

- Introduction of two domain specific methods for data 

augmentation, helping with the domain transfer from 

synthetic to experimental data. 

- Discovery of a novel 3D CNN architecture through 

NAS. 

1.1. Pipeline overview 

In this work, the automated data interpretation is simplified by 

inspecting the complete volumetric data, eliminating image 

processing steps like gating to remove front and back wall 

responses, while preserving all spatial and temporal 

information. Whilst the models are trained on synthetic data, 

they are tested using experimentally collected UT data from 

samples with manufactured defects that aim to mimic 

 e a   a    ’ . Ma  fa   re   efe    are commonly used in 

literature to act as test cases and qualify NDE techniques and 

operators where naturally occurring defects are not always 

available [6], [27], [28]. An overview of the simulation and 

deep learning pipeline is presented in Figure 3. Figure 3 also 

shows how NAS can fit into this process, with Figure 15 

providing a more detailed overview of the NAS pipeline. 

 
Figure 3: Overview of the pipeline for automated volumetric UT 

classification. 

2. ACQUISITION OF EXPERIMENTAL TEST DATA AND SYNTHETIC 

TRAINING DATA 

2.1. Experimental data collection 

Experimental ultrasonic data was acquired from CFRP 

samples, both with and without artificially introduced defects, 

to serve as test data. To imitate delamination defects, which 

are one of the most common defects in composites [31] and a 

significant life-limiting failure mode [46], flat-bottom holes 

were drilled from the backside of the samples. Prior to 

introducing defects, clean scans of each sample were taken to 

form a defect-free test set. The use of the same CFRP base 

sample ensured that the trained models learned defect-specific 

responses rather than the underlying properties of different 

composite samples.  

Composite samples measuring 254.0 × 254.0 × 8.6 mm (W × 

D × H) were provided by Spirit AeroSystems and were 

manufactured to the BAPS 260 specification with woven 

fabric, and Cycom 890 resin using a vacuum assisted resin 

transfer molding process. Of the three samples, two contained 

defects. The first sample contained 15 flat-bottom holes 

measuring 3.0, 6.0, and 9.0 mm in diameter, with each defect 

drilled to depths of 1.5, 3.0, 4.5, 6.0, and 7.5 mm from the 

front surface. The different defect sizes were spaced 30 mm 

apart with different depth defects spaced 35 mm apart. The 

second sample contained 25 flat-bottom holes, drilled to the 

same depths as the first sample but with additional defect 

diameters of 4.0 and 7.0 mm, as shown in Figure 4. All 

defects were manufactured to tolerances in depth of +/- 0.3 

mm and in diameter of +/- 0.2 mm.  
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Figure 4: The composite test sample showing 25 Flat-Bottom Holes. 

The ultrasonic data was acquired at room temperature using a 

robotically deployed unfocused linear phased array. The array 

used was an Olympus Inspection Solutions RollerFORM-

5L64 [47], which had a central frequency of 5 MHz and was 

made up of 64-elements with a pitch of 0.8 mm and elevation 

of 6.4 mm. The elements were driven at 100 V with a receiver 

gain of 22.5 dB. The sample rate was 100MHz. The pulse 

repetition frequency was set to collect a B-scan every 0.8 mm 

with a scan speed of 10 mm/s which was controlled using a 

fully automated robotic system built around a KUKA KR 90 

R3100 extra HA industrial robot (Figure 5) [48]. Robotic 

scanning enabled the concatenation of encoded B-scans to 

form volumetric datasets. To ensure a steady coupling of the 

roller-probe to the surface of the component and consistent 

transfer of acoustic wave energy into the sample at different 

scanning positions, Force-Torque compensation was used to 

control the distance from the samples surface with feedback 

from the force axis perpendicular to the sample. This was 

accomplished with integration of a Schunk GmbH & Co. 

FTN-GAMMA-IP65 SI-130-10 Force-Torque sensor, 

mounted between the robot’s flange and the roller-probe. This 

ensured a constant scanning force of 70 N which maintained 

consistent tyre compression throughout the scan. Water was 

used as an acoustic couplant in the scanning process. This data 

acquisition setup is widely used in industry and has been 

employed for data collection on large composite aerospace 

components [49]. 

 

Figure 5: Overview of the experimental scan setup of KUKA KR90, 

Force-Torque sensor, and ultrasonic roller probe used for data 

acquisition. 

2.2. CIVA Simulations 

Due to the lack of available experimental training data, a 

simulated dataset was constructed for training. This was done 

using CIVA, a semi-analytical physics-based commercial 

NDE simulation software [50]. CIVA has the ability to 

accurately model wave propagation and its interaction with 

defects, which has been experimentally validated for UT [22], 

[23]. Additionally, the software is computationally efficient 

when compared to other alternatives such as Finite Element 

Analysis (FEA). The full control of the simulated domain 

enabled the modelling of similar defects and material 

properties to the experimental domain. However, the use of 

semi-analytical software instead of FEA had limitations in 

that the software was unable to model responses from ply 

interactions and lacks noise seen in experimental data. As a 

result, differences existed between the simulations and 

measured experimental responses, leading to the use of the 

synthetic data generation steps discussed in Section 2.4 to 

reduce the differences between simulated and experimental 

domains. For further information on the difference between 

the simulated and experimental domain and the need for 

accurate synthetic data, please refer to the previous work on 

this topic [21]. 

To set up the simulation, the individual layers of composite 

were constructed and used to generate equivalent 

homogeneous material properties of the experimental CFRP 

samples. A single ply layer was constructed and alternated 

repeatedly with 8 layers at orientations of 0, 45, -45, and 90 

degrees to match the experimental sample as closely as 

possible. The resulting multilayer structure was homogenized 

to be consistent with a homogeneous medium having 

mechanical properties equivalent to those of the multi-ply 

composite, with the fiber density set to 50% best match the 

e  er  e  a   a   e’   ensity of 1440 kg/m3. 

To simulate the waveform, a sinusoidal wave of 5 MHz was 

employed, accompanied by a Hanning filter that provided a 

bandwidth of 66% at 12 dBs. 

For running multiple, sequential simulations, a parametric 

study was set up, using the composite bulk properties 

previously calculated and varying the diameter and depth of 

defects. Flat bottom hole defects were simulated with 

diameters from 3.0 mm to 15.0 mm, increasing every 0.5 mm, 

with varying depths from 1.5 mm to 7.0 mm from the surface, 

in increments of 1.5 mm. A defect-free simulation was also 

run to provide the basis for defect-free synthetic data. Both the 

front and back wall surface reflections were included in the 

model. The full simulations took less than 15 hours on a 

desktop computer with a 24-Core 3.79 GHz CPU and 128 GB 

of memory. 

 

2.3. Signal processing and dataset generation 

The resolution of the UT data in the array dimensions was 

constrained by the element pitch, and the scan width was 

restricted by the number of elements in the array. This limited 

the inspection data to 64 voxels in the array dimension. To 
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match this, 64 B-scans were selected in the scan dimension to 

create cuboidal datasets (Figure 2(b)). The distance between 

the elements was 0.8 mm, and the robotic scanning speed was 

regulated with the pulse repetition frequency to ensure a B-

scan offset of 0.8 mm. This enabled the generation of volumes 

with square voxels in the spatial domains, along both the 

probe and scan directions. By utilizing this approach, the 

study was able to achieve a standardized volumetric resolution 

that was consistent throughout the dataset. 

The data collected in both experimental and simulated 

domains was in the form of radio frequency A-scans, also 

known as amplitude scans. In order to obtain 3D volumetric 

datasets from these sources, a number of signal processing 

steps were performed. Initially, the A-scans were centered at 

zero amplitude and enveloped by taking the absolute of the 

Hilbert transform, as shown in Figure 6 (a). The Hilbert 

transform was used to obtain the analytical signal, which is 

useful for calculating the instantaneous response of a time 

series. This approach is a standard signal processing technique 

used when generating C-scan images from time series 

ultrasonic data. Subsequently, each volumetric dataset was 

normalized between 0 and 1 by dividing by its maximum peak 

amplitude. 

a) 

 
b)  

 
Figure 6: a) Example of relative amplitude response from 

simulations, normalized signal, and Hilbert transform, applied to the 

original signal. b) Demonstration of how individual A-scans are time 

shifted to the front wall response. 

Once the data was normalized, the offset in the time domain 

was compensated for by aligning the peak front wall response 

to the origin. This made sure that features were correctly 

aligned in the time domain and helped to account for any 

variability in the acoustic path length between individual 

transducers and the surface of the sample. Figure 6 (b) Shows 

how the time shifting was done for an individual A-scan with 

the Hilbert transform applied. Figure 7 shows the effect of this 

on the complete ultrasonic volume. 

a) 

 
b) 

 
Figure 7: a) Volumetric data with Hilbert transform applied only. B) 

Volumetric data with time shifting to the central response of the front 

wall peak. Both figures have been thresholded to remove the lowest 

10% of amplitudes to aid in visual clarity. 

2.4. Synthetic data generation method 

Our previous studies have shown that semi-analytical 

simulated data alone is not representative enough of the 

experimental domain [21]. Therefore, there is a need for 

methods of translating the simulated domain closer to the 

experimental domain. Fully statistical methods of 

generating noise are advantageous as they can be re-

sampled continuously to keep generating unique noise 

profiles which are in line with experimental data. In this 

paper, we extend previous work in generating 2D 

synthetic images, and propose a new approach for adding 

noise to complete volumetric UT data. 

The previous study concluded [21] that A-scan level 

noise was the best fully generative statistical method for 

adding noise. Additionally, all the other approaches, 

except for the simulated A-scan noise, introduced noise at 

an image level, which is intractable for volumetric data. 

To adapt the methodology described in the original paper 

for the analysis of full volumetric data, unique noise 
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profiles for each A-scan were generated and subsequently 

summed with the simulated responses past the front wall. 

To temporally align the responses, the time shift of the 

front wall response was performed when generating the 

noise distributions from experimental data, and when 

combining the simulated responses with the generated 

noise profiles (Figure 6 b)).  

Figure 8 shows an example of the addition of noise on 

simulated data at an A-scan level and Figure 9 

demonstrates this for a complete ultrasonic volume. The 

statistical noise distributions of the A-scans were 

calculated from a separate hold out sample with the same 

layup and thickness as the test samples. For further details 

on building up the noise profiles, please refer to the 

previous work [21]. 

A) 

 
b) 

 
Figure 8: a) A frame of 64 simulated A-scans for a simulated defect 

response. b) the corresponding A-scans with synthetically added 

noise for the same defect response. 

 

a) 

 
b) 

 
Figure 9: a) Complete ultrasonic volume of simulated A-scans for a 

defect response. b) the corresponding synthetically noised volume for 

the same defective response. Both figures have been thresholded to 

remove the lowest 10% of amplitudes to aid in visual clarity.  

A summary of the datasets generated from the experimental 

and synthetic data is given in Table 1.  
 

Table 1: Summary of the datasets produced.  
Data source Dataset Number of 

datapoints 

Simulated defect responses 

(300 Flat-Bottom Holes) 

Synthetic defective 

train 

300 

Simulated defect free 

response 

Synthetic defect free 

train 

300 

Experimental defect 

reference sample 
(15+25 Flat-Bottom Holes) 

Defect test (70%) 25 

Defect validation 
(30%) 

15 

Experimental defect free 

reference sample 

Defect free test (70%) 25 

Defect free validation 

(30%) 

15 

2.5. Augmentation methods for synthetic training data 

The generalizability of ML models is a critical aspect of their 

performance. One approach to improve generalizability is to 

augment the training data. Augmenting the training data 

makes the task more challenging by adding noise at the 

training stage, reducing the likelihood of overfitting, and often 

improves performance in the target domain. This is 

particularly important when the target (experimental) domain 

is different from the training (synthetic) domain.  

As demonstrated in Figure 9 (a), there is little variation 

between simulated A-Scans. However, this is not the case for 
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experimentally acquired data. Received amplitudes are 

affected by the sensitivity of individual elements, variations of 

couplant on the surface of the sample, and roughness of 

surface finishes (particularly for manufactured defects). The 

anisotropy of CFRP can also result in variations in 

attenuation, which impact effect received amplitudes. Surface 

roughness and local changes in fiber density due to the 

materials inherent anisotropy produce small changes in time 

of flight. Traditional augmentation methods such as those 

used for images (e.g. crop, mix-up, flipping etc.) do not model 

these variations well and can produce unrealistic examples. 

Therefore, in this study, we introduce two types of 

augmentation that were generated online for each minibatch 

during training. These augmentations aim to mimic the inter-

element response variability observed within the UT probes 

used for data collection.  

The first type of augmentation is related to the magnitude of 

response measured by the UT elements, which varies due to 

many factors not included in the simulation, such as 

manufacturing tolerances of the sample and the UT array 

probe, wear and tear of the probe and electrical 

wires/connections, or inter-layer multiple scattering of the 

sound waves. To mimic these whilst preserving the correct 

normalization, each A-scan was scaled by a constant past the 

front wall. The scale factor was sampled from a uniform 

distribution to give a scale factor between 80-120%. An 

example of this is given in Figure 10 (a). 

a) 

 
b) 

 
Figure 10: a) Example of how scaling augmentation is done on an 

individual A-scan. b) Example of how dilation augmentation and 

padding is completed for an individual A-scan. 

The second type of augmentation mimics any changes in 

ultrasonic travel time seen by different elements. This can be 

caused by a variety of factors, such as variations in component 

sound speed due to the anisotropic nature of composites, 

departure from central frequency for certain elements, etc. To 

simulate this 1-D interpolation was used to randomly stretch 

or compress the signal in the time domain. The dilation 

amount was randomly sampled from a uniform distribution 

for each A-scan up to  ± 15 samples. An example of this is 

given in Figure 10 (b). 

By introducing these augmentation methods, we aim to 

improve the generalizability of the models to the experimental 

domain. The online nature of these augmentations means that 

they can be easily incorporated into the training process 

without the need for additional data collection or pre-

processing steps. To ensure consistent length of data in the 

time domain, each A-scan was padded with zeroes to a length 

of 1024 samples during training.  

3. NETWORK ARCHITECTURES 

In this paper we investigated the performance of three 

different 3D CNN architectures for binary classification of 3D 

defect and defect free UT data with extreme aspect ratios. 

The first 3D CNN, VoxNet, was designed for similar 

volumetric classification tasks and acts as a baseline 

architecture. For low aspect ratios CNNs (such as VoxNet) 

typically make use of square or cuboidal kernels which are 

appropriate for their equal (or near equal) aspect ratios. The 

use of CNNs on data with more extreme aspect ratios is less 

common and is particularly extreme for UT data between the 

time and the spatial domains, with an aspect ratio of 16.  

To overcome this challenge, a task-specific architecture was 

hand-crafted by adapting VoxNet in a manner that follows the 

traditional approach to architecture design. This custom 

network is specifically designed to tackle the extreme aspect 

ratio problem and enhance overall classification performance. 

As an alternative to traditional architecture design, neural 

architecture search was employed to develop a third 

architecture for comparison. For each model Adam optimizer 

[51] was use  w    a      a    ear     ra e  f  .   , β1 of 0.9 

a   β2 of 0.999. A batch size of 8 was utilized in the training 

process. The chosen loss function for this model was binary 

cross-entropy, with a sigmoid activation function applied to 

the final layer to facilitate classification. 

Due to the small amounts of experimental test data, there was 

a likelihood of noisy results during both training and testing 

phases. To mitigate this, each model was trained ten times 

with varying random initializations, and their individual 

results were averaged across the performance metrics. This 

   e  a  e  er re re e  a      f   e    e ’   erf r a  e    

averaging out any noisy results due to the small datasets.  

During the training phase, a fixed validation set comprising 

30% of the total test data was randomly selected from each 

class of experimental data. This set was used to monitor the 

model's performance and minimize the risk of overfitting. The 

models were trained with a patience of 10 epochs, where the 

training process monitored binary cross entropy loss on the 

validation data, for improvement. If there was no 

enhancement for a consecutive period of 10 epochs, the 

training process was halted. The model parameters with the 

lowest validation loss were used to evaluate the classification 
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performance on the test set. This approach ensured that the 

final model's defect detection performance was evaluated 

using the parameters that had the best ability to generalize to 

the target domain, as opposed to the model that had overfit to 

the synthetic domain. 

3.1. Evaluation metrics 

 

To quantitatively assess the binary classification performance 

of each network, average mean accuracy, precision, recall and 

F1 scores were calculated according to Equations 1-4. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 1 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) 2 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) 3 

 𝐹1 =  (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 𝑅𝑒𝑐𝑎𝑙𝑙) 

4 

Where TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative, with positives being the 

presence of a defect. Each result was individually averaged 

using a simple mean across the 10 training cycles. 

3.2. VoxNet: Baseline Architecture 

 

Introduced by Maturana and Scherer, VoxNet [44] is a 3D 

CNN designed to tackle classification problems of 3D data 

that can be represented as voxels to form an occupancy grid. 

Originally tested on LiDAR, RGBD and CAD data it has 

since been used as the backbone for methods tested on 

ModelNet40 [45]. 

While the data from UT for this task differs from the datasets 

previously employed with VoxNet, the process of converting 

data into voxel-based format within the VoxNet pipeline is 

well aligned to the 3D representation of UT data. As a result, 

VoxNet was employed to establish baseline model 

performance metrics for this task. 

VoxNet is constructed using two 3D convolutional layers with 

cuboidal kernels, followed by a pooling layer and two fully 

connected layers (Figure 11). For further details on the model 

please refer to the original paper. VoxNets total number or 

parameters is 235M.  

 

 

 
Figure 11: The VoxNet architecture. Where Conv (f,d,s) indicates the 

number of filters f, filter size d, and stride s, of the convolutional 

layer.  

3.3. Hand Designed Architecture 

The second architecture, referred to as CustomNet, 

demonstrates a conventional approach to architectural design. 

In this context, adaptations to VoxNet have been implemented 

to contemporize and enhance its performance specifically for 

the given task. 

Our UT dataset stands out to previous VoxNet datasets due to 

its higher dimensionality coupled with notable differences in 

spatial and temporal dimensions. To effectively handle these 

unique attributes, adjustments were made to the    e  ’ 

architecture. Specifically, the number of convolutional layers 

was increased to enhance the extraction of meaningful 

features from the complex dataset. Additionally, cuboidal 

kernels with non-uniform dimensions were employed in the 

initial four blocks (refer to constant blocks in Figure 12) of the 

model. This approach aimed to address the uneven 

dimensionality inherent in the data, ultimately equalizing the 

dimensions and contributing to a more robust feature 

representation throughout the network (Figure 12). After this a 

feature block with cube kernels of equal dimensionality could 

be used (refer to feature block in Figure 12). 

In the process of updating VoxNet, we incorporated 

convolutional layers for pooling instead of the previously 

employed max-pooling layers. Additionally, ReLU was 

substituted with LeakyReLU, and batch normalization was 

introduced. To mitigate overfitting, dropout and global 

average pooling were employed to reduce the number of 

features for classification, avoiding the use of large fully 

connected layers. These modifications are geared towards 

improving the model's performance by incorporating 

contemporary practices that have shown substantial 

performance benefits, as highlighted in previous studies [52]. 

The final architecture is given by the diagram in Figure 12. 

The total parameter size of the network was estimated to be 

1.28 M parameters. 
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Figure 12: Network architecture for the CustomNet. 

3.4. NAS Discovered: 3D ResNet based Neural Architecture 

Search 

3.4.1. Neural Architecture Search 

The final architecture was developed through NAS of a 

modified ResNet search space to account for 3D convolutions 

and operations. One of the challenges in applying NAS to a 

new domain task is the design of the search space. For this 

task, a new search-space framework which utilizes a novel 

search space based on a ResNet-like structure is introduced. A 

fixed stem was used to down sample the data by a factor of 4 

in the spatial dimensions and a factor of 8 in the time 

dimension whilst aiming to retain information through 

increasing the channels to 64. A further down sample block 

with average pooling followed by two to four residual blocks 

were all searched individually. An overview of the structure 

can be seen in Figure 13. The residual blocks and bottleneck 

features of the ResNet architecture are retained, whilst 

searching operations for each edge within the residual block. 

This provided a large diversity of architectures, which is key 

to attaining good performance in a novel application, whilst 

also ensuring that many networks conformed to successful 

design principles. Each residual block contained two fixed 

point-wise convolutions used to down and up sample the 

number of channels. Figure 14 shows an example of a residual 

block denoting the searched and fixed operations. 

 
Figure 13: Representation of the ResNet style searched space.  

 
Figure 14: Diagram of the searched residual block. 

These blocks were then stacked in groups, with the resolution 

down sampled between groups. Equation 5 gives the 

probability of a new group being created for each residual 

block, otherwise they were added to the current group. This 

makes groups unlikely to be extremely long or short.  

 𝑃(𝑛𝑒𝑤𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘𝐺𝑟𝑜𝑢𝑝) = 
1

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘𝐺𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒
 

5 

 

The primitive operations of a search space are the list of 

operations which are assigned to the edges of a network 

architecture. The implemented approach incorporated a 

standard set of operations commonly found in the NAS 

literature. These operations comprised of convolutions, 

pooling, and skip connections, which are widely recognized 

and utilized within the field. These operations were all 3D due 

to the dimensionality of the data. In contrast to standard 

practice, which makes use of separable convolutions, the 

approach presented in this study deployed both depth-wise 

and point-wise convolutions as the fundamental convolutions 

within the search space. This significantly reduced the number 

of parameters in each operation of the architecture, greatly 

reducing the computational cost. Specifically, the depth-wise 

convolutions were applied with equidimensional cube kernels, 

of size 3, 5, or 7, coupled with dilation values that ranged 
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from 1 to 4. Skip connections, point-wise convolutions, as 

well as average and max pooling operations were also 

searched for. For the pooling operations, equidimensional 

cube kernels of size 3, 5, or 7, with a dilation value of one 

were employed. The search encompassed the exploration of 

GELU activation function and batch normalization, as well as 

the absence of activation and normalization operations. This 

allowed for architectures with fewer activation and 

normalization function which has been shown to be beneficial 

[52]. The searched down sample operation had a fixed kernel 

size with two in the spatial dimensions a four in the temporal 

dimension with a dilation of one. Throughout the relevant 

operations, a stride of one was employed.  

A simple random search was applied to this search space for 

80 iterations. Each model was evaluated using the validation 

dataset, with the lowest loss on validation across the training 

taken as the evaluation metric. For each searched architecture, 

a model was retrained with new initializations three times and 

the mean evaluation metrics were used when selecting the 

discovered architecture, this ensured a more accurate estimate 

of model performance. Cross validation was unable to be used 

as the combination of NAS and domain transfer would have 

resulted in data leak between the NAS stage and the final 

model test evaluation stage. Figure 15 provides an overview 

of the NAS process and demonstrates how separation of the 

validation and test set were maintained in context of the 

complete model pipeline, given in Figure 3. 

 

 
Figure 15: Overview of the process for NAS implementation 

The final discovered architecture had 1.03 M parameters and 

is given in Figure 16, with the details of the residual blocks 

given in Figure 17.  

 
Figure 16: The overall structure of the discovered architecture. 

Res Block 1 

 
Res Block 2 
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Res Block 3 

 
Figure 17: The details of each discovered residual block. 

4. RESULTS 

Table 2:Average confusion matrices for VoxNet, CustomNet and the 

NAS discovered architecture. 

 
True 

Predicted 

 No Defect Defect 

VoxNet 
No Defect 15.8 9.2 

Defect 2.1 22.9 

    

CustomNet 
No Defect 24.3 0.7 

Defect 3.2 21.8 

    

NAS 

Discovered 

No Defect 25.0 0.0 

Defect 0.0 25.0 

 
Table 3: Comparison of classification results across the different 

architectures. The means and standard deviations are presented as 

mean ± std. 

Model VoxNet CustomNet NAS 

Accuracy 0.774 ± 0.184 0.922 ± 0.095  1.00 ± 0.00 

F1 0.825 ± 0.114 0.904 ± 0.130 1.00 ± 0.00 

Precision 0.793 ± 0.219 0.975 ± 0.050 1.00 ± 0.00 

Recall 0.916 ± 0.073 0.872 ± 0.197 1.00 ± 0.00 

 

Table 2 provides average confusion matrixes for the test 

results of the VoxNet, CustomNet and NAS discovered 

models. Table 3  presents a summary of each method's 

performance, displaying the mean and standard deviation 

across various performance metrics. 

The architecture discovered by NAS consistently produced 

ideal results when trained using data augmentation, with a 

mean classification accuracy of 1.00 and a standard deviation 

of 0.00 across the 10 separate training iterations, this 

 e     ra e          f  e  e      e    e ’              and 

robust design for the target domain.  

 

 

Table 4: Comparison of the effects of data augmentation on the NAS 

discovered architecture. The means and standard deviations are 

presented as mean ± std. 

Augmentation None Scaling Both 

Accuracy 0.776 ± 0.178 0.806 ± 0.227 1.00 ± 0.00 

F1 0.830 ± 0.123 0.842 ± 0.168 1.00 ± 0.00 

Precision 0.745 ± 0.19 0.846 ± 0.227 1.00 ± 0.00 

Recall 0.972 ± 0.044 0.916 ± 0.182 1.00 ± 0.00 

 
Table 5: Comparison of model sizes and inference time for each 

architecture. 

Model VoxNet CustomNet NAS 

Total Parameters (M) 235 1.28 1.03 

Total Size (MB) 1779 557 93 

Inference Time 

(seconds) 
0.37 0.03 0.40 

 

Table 4 demonstrates the impact of data augmentation on the 

best performing NAS model. Discarding data augmentation 

completely during training had a significant impact on the 

classification performance with a 22.4% drop in mean 

accuracy, along with a standard deviation increase in 17.8%, 

which demonstrated a significant reduction in statistical 

confidence. Whilst the addition of amplitude scaling 

augmentation improved the mean accuracy, it was only by 

3%. This demonstrates the importance of using both 

augmentation methods in parallel for increased 

generalizability to the experimental domain.  

Table 5 provides a summary of model sizes, and inference 

times for a single batch of test data. The NAS discovered 

architecture has a total size 16.7% and 5.2% smaller than 

CustomNet and VoxNet respectively. Whilst the CustomNet 

was 12 times faster at inference than the next closest, VoxNet. 

 

5. DISCUSSION 

VoxNet demonstrated it was able to learn features from 

synthetic data and performed reasonably well on experimental 

data, with a mean F1 score of 0.825. However, its significant 

standard deviation in accuracies between training instances 

demonstrates that the architecture was not well optimized for 

the problem. The CustomNet improved on the accuracy of 

VoxNet substantially by 14.8%, whilst also reducing the 

standard deviation of results by 8.9% which indicated an 

increase in consistent generalizability to the experimental 

domain. This illustrates the benefits of tailoring architectural 

modifications to address the needs of specialized tasks. The 

experimental results demonstrated that the architecture 

discovered from NAS greatly outperformed the other two in 

terms of classification accuracy. Whilst all the models used in 

this paper are not large and are considerably smaller than 

typica    ze  f r    Re  e ’  a      er      [37], the NAS 

model was able to achieve the highest performance with a 

significantly lower model size, at only 5.2% the memory 

requirement of VoxNet. The black box nature of DL makes it 

difficult to specify which features lead to this improvement in 
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performance. This complexity is in fact a large motivator for 

NAS as the design space is too large for a human to efficiently 

find an optimal network architecture. The authors believe that 

the addition of skip connections and the ability to vary 

operations at different depths added by the NAS has a 

significant positive impact on performance. This demonstrated 

the importance of utilizing neural architecture search to 

optimize CNNs.  

Due to the large fully connected layers, VoxNet results in a 

far greater number of total parameters than the other two 

networks. This results in a model which occupies far more 

memory. Whilst CustomNet and the NAS discovered 

architecture have a comparable number of parameters the 

discovered network is far smaller. This is a result of many of 

its operations being far more efficient, such as the separation 

of point and depth wise convolutions. Whilst the discovered 

architecture is the smallest, its inference time takes the longest 

due to the greater architectural complexity of the model and 

its operations. This said, all models have acceptable inference 

time and can process 8 samples in under half a second. 

However, CustomNet is notably twelve times faster at 

inference than the second fastest network, VoxNet, which 

could be an advantage in some industrial settings.  

When trained without data augmentation the NAS model 

performed significantly worse. Furthermore, the performance 

was only slightly improved by adding amplitude scaling 

augmentation alone. For best performance, both augmentation 

methods were needed in combination. This indicates that 

despite accurate synthetic data generation, data augmentation 

still has a significant role in producing generalizable models 

to the experimental domain.  

Whilst ideal classification was achieved consistently for the 

discovered architecture when trained with data augmentation, 

this was tested on detection of manufactured defects only. 

Specifically, back drilled holes which are perpendicular to the 

propagating sound wave and act as ideal reflectors. This 

makes them comparably easier to detect than other defects. 

Whilst samples with naturally occurring defects are 

challenging to get access to, in future work the authors aim to 

expand the simulation scope and test the models on naturally 

occurring defects which will likely prove more challenging to 

detect. For more challenging detection and characterization 

tasks a more sophisticated search optimization algorithm 

could be employed to discover architectures more efficiently.   

The achieved classification results suggest that the synthetic 

data generation process is a viable approach for producing 

fully synthetic 3D UT volumetric datasets that closely map to 

the experimental domain and enable the development of 

effective classifiers. However, due to the substantial 

improvement in classification performance achieved through 

the implementation of data augmentation methods, it is 

important to acknowledge that disparities between the 

synthetic and experimental domains persist. This observation 

underscores the necessity for augmentation techniques to 

further enhance the generalizability of the model. 

Nonetheless, it is worth noting that the data augmentation 

methods employed in this study proved to be highly effective 

in aiding not only generalizability but also in facilitating the 

transfer of knowledge across domains. 

The key benefits for analyzing the complete 3-D volumetric 

data instead of processed images were the ability to learn from 

greater features, the reduction in pre-processing requirements, 

and the potential reduction in inference time by analyzing the 

complete volume all at once. The impact on inference time is 

challenging to quantify, however if comparing the compute 

required to process 64 B-scan images (the equivalent spatial 

scan data), without parallelization for equivalent 2D 

classifiers, there is the potential for up to 64 times saving in 

inference time for the same scan area. Despite these 

advantages there are still potential benefits to analyzing UT 

data as images. One of these is the many opportunities for 

detection of a single defect in multiple B-scans. It is likely 

that defects will span multiple B-scan images, and as such by 

analyzing each B-scan there are multiple chances to detect an 

individual defect. This means an individual defect can still be 

detected even if individual defective images are incorrectly 

classified. However, the opportunities for characterization and 

localization of defects are far greater when retaining the 

volumetric spatial information and this work opens future 

prospects for 3D classification and segmentation which would 

be much more challenging if using C-scans or B-scans alone.  

The research outcomes demonstrated the considerable 

potential of employing 3D-CNNs in conjunction with well-

designed data augmentation techniques and optimized 

architecture search spaces to address challenging 3D 

classification tasks characterized by extreme aspect ratios, as 

observed in the context of UT. Insufficient utilization of data 

augmentation severely hampered the model's ability to 

generalize to experimental datasets, leading to suboptimal 

classification performance. Likewise, choosing an unsuitable 

model architecture could result in the failure to capture crucial 

features necessary for accurate classification. Consequently, it 

is imperative to thoroughly consider both aspects during the 

design of a classification model for 3D UT data to ensure 

optimal performance. 

6. CONCLUSION 

Deep learning has demonstrated prior success in ultrasonic 

non-destructive evaluation when applied to either time series 

or image data. However, analyzing only time series or image 

data can result in a significant loss of information in either the 

temporal or spatial domains. This paper proposes the use of 

3D convolutional neural networks to classify complete 

volumetric ultrasound data without compression, retaining all 

spatial and temporal information. This approach not only 

reduced the need for accurate gating when constructing C-

scan images but also decreased the amount of signal 

processing required. To train the models, synthetic data was 

generated from semi-analytical simulations, while 

experimentally collected ultrasonic responses from 

manufactured defects were used for testing. Two forms of 

data augmentation were implemented based on physical 

variations seen in experimental ultrasonic responses to 

improve the model's classification performance in the 

experimental domain. Furthermore, the performance of three 

different architectures; one existing in the literature, one hand-

designed based on current practices, and one designed by 
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Neural Architecture Search (NAS) from a ResNet search 

space modified for 3D, were compared.  

The first architecture, VoxNet, performed reasonably well on 

experimental data, achieving a mean F1 score of 0.825. 

However, its notable standard deviation in accuracies during 

training suggests suboptimal architecture optimization for this 

task. CustomNet's greatly improved on VoxNet with an 

accuracy increase of 14.8%, whilst reducing the standard 

deviations in accuracy by 8.9%, hence demonstrating an 

architecture better optimized for this task. 

The third architecture, designed by NAS, when trained with 

data augmentation, gave the best results, providing 100% 

classification accuracy. The impact of online domain specific 

augmentation was notable, leading to a 22.4% decrease in 

mean accuracy for the NAS model when augmentation was 

omitted.  

Overall, this work demonstrated that it is possible to train 

successful Deep Learning models to classify full volumetric 

ultrasonic data for NDE. The issue of a lack of data in most 

NDE situations was addressed by successfully implementing 

synthetic data generation in 3D. The work highlighted the 

importance of appropriate architecture selection and effective 

data augmentation when translating between synthetic and 

experimental domains, with both factors essential in achieving 

high classification accuracy.  

The focus of this work was on the use of volumetric datasets, 

and whilst 100% classification accuracy was achieved through 

effective NAS, the authors recognize that back drilled holes 

are generally simple defects to detect by human operators. 

Future work aims to increase the complexity of the task by 

detecting a wider range of more challenging defects and 

expanding the simulation scope to better cover naturally 

occurring defects, where performance can be measured 

against human operators in a more realistic industrial scenario. 

Further work also aims to extend the problem to defect 

classification and sizing.  
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