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Yielding to percolation: a universal scale
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A theoretical and computational study analysing the initiation of yield-stress fluid
percolation in porous media is presented. Yield-stress fluid flows through porous media are
complicated due to the nonlinear rheological behaviour of this type of fluid, rendering the
conventional Darcy type approach invalid. A critical pressure gradient must be exceeded
to commence the flow of a yield-stress fluid in a porous medium. As the first step in
generalising the Darcy law for yield-stress fluids, a universal scale based on the variational
formulation of the energy equation is derived for the critical pressure gradient which
reduces to the purely geometrical feature of the porous media. The presented scaling is
then validated by both exhaustive numerical simulations (using an adaptive finite element
approach based on the augmented Lagrangian method), and also the previously published
data. The considered porous media are constructed by randomised obstacles with various
topologies; namely square, circular and alternatively polygonal obstacles which are
mimicked based on Voronoi tessellation of circular cases. Moreover, computations for
the bidispersed obstacle cases are performed which further demonstrate the validity of the
proposed universal scaling.

Key words: porous media, plastic materials

1. Introduction

Yield-stress fluid flows through porous media are inherent to many industries including
filtration, oil and gas, mining (Frigaard, Paso & de Souza Mendes 2017) and also numerous
other applications such as biomedical treatments (Keating, Hajducka & Harper 2003).
Although in the case of Newtonian fluids many aspects of flows in porous media are
well-discussed in the literature, when it comes to yield-stress fluids, our understanding
of the phenomenon is limited mainly because modelling this problem is cumbersome due
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to the computational costs and/or the complexity of the experiments needed to carry out
the analysis.

To overcome these barriers, several studies focused on pore-scale features of this
problem (Bleyer & Coussot 2014; Shahsavari & McKinley 2016; De Vita et al. 2018; Bauer
et al. 2019; Waisbord et al. 2019; Chaparian et al. 2020), however, it is yet unclear how to
link/upscale the studies in microscale to macroscale, especially due to the nonlinearity of
the constitutive equations which renders the bulk transport properties unpredictable from
pore-scale dynamics. Nevertheless, in the intricate transport mechanism of yield-stress
fluids through porous media, several mutual features can be identified regardless of the
scales on which the previous studies are focused. In a number of studies (Talon & Bauer
2013; Liu et al. 2019; Chaparian & Tammisola 2021; Talon 2022), four regimes are
detected in terms of flow rate (Q)-applied pressure gradient (�P/L): (i) when the applied
pressure gradient is less than a critical pressure gradient (�Pc/L), there is no flow (Q = 0);
(ii) if the applied pressure gradient slightly exceeds the critical value, the flow is extremely
localised in a channel and the flow rate linearly scales with the excessive pressure gradient
where other parts of the fluid are quiescent; (iii) the third regime emerges when the
applied pressure gradient increases, more and more channels appear (moderate values of
pressure gradient) and the flow rate scales quadratically with the excessive applied pressure
gradient; (iv) finally, when the applied pressure gradient is much higher than the critical
value, the flow rate again scales linearly with the excessive pressure gradient.

Although these generic features/scales have been evidenced in a large number of studies,
still the lack of an inclusive Darcy type expression for bulk properties is evident. The very
first step for finding such a generic model is to thoroughly understand the pressure gradient
threshold and more generally the yield limit which scaffolds any further progression of this
aim.

In spite of the previous efforts to address the yield limit of the current problem (Liu
et al. 2019; Chaparian et al. 2020; Fraggedakis, Chaparian & Tammisola 2021), mostly
the findings are case dependent, thereby limiting their application for more complicated
practical systems. As discussed, in this limit the flow is extremely heterogeneous, hence,
pore-scale studies are not fully reliable since they do not contain any statistical data in
‘real’ porous media where a wider range of length scales are involved. Thus, in the present
study, the aim is to derive a theoretical model based on yield-stress fluid flows principles
and then validate the proposed model with exhaustive simulations.

To this end, we construct our porous media by randomly distributed obstacles of various
shapes and lengths to avoid any biased results. Namely, three major types of obstacles
are considered: circles, squares and polygons. Then, fluid flow simulations based on the
adaptive augmented Lagrangian approach (Roquet & Saramito 2003; Glowinski & Wachs
2011) are performed which is shown to be a reliable tool for investigating the present
problem, especially at the yield limit where non-regularised rheology is essential (Frigaard
& Nouar 2005). To be fit for purpose, both monodispersed and bidispersed systems are
considered. We have recently delved into the study of monodispersed circular obstacles by
means of pore-network approaches where a large data set has been generated (Fraggedakis
et al. 2021). This data set is adopted here in conjunction with the present computational
data for further validation of the proposed theory.

The outline of the present paper is as follows. The problem is described in § 2.1 and the
details of the utilised numerical method and porous media construction are highlighted.
The numerical results are given in § 3. The theory is developed in § 4 and the comparison
with the computational results is performed. Conclusions are drawn in § 5.

980 A14-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
90

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1090


Yielding to percolation: a universal scale

L

Linl

y

Lx

Figure 1. Schematic of the coordinate system directions and the inlet length Linl which in this case consists of
two segments depicted in blue.

2. Problem description

2.1. Mathematical formulation
We consider incompressible two-dimensional Stokes flow through a set of obstacles
(i.e. X) in a box of size L × L (i.e. Ω) which is governed by

0 = −∇p + ∇ · τ and ∇ · u = 0 in Ω \ X̄, (2.1)

where p, τ and u represent the pressure, deviatoric stress tensor and the velocity vector of
the fluid, respectively. We use the Bingham model to describe the fluid’s rheology,

⎧⎨
⎩τ =

(
1 + B

‖γ̇ ‖
)

γ̇ iff ‖τ‖ > B,

γ̇ = 0 iff ‖τ‖ ≤ B,

(2.2)

in which γ̇ is the rate of strain tensor (i.e. ∇u + ∇uT ) and ‖·‖ is the second invariant of
the tensor. Therefore, yielding obeys the von Mises criterion.

The above equations are non-dimensional and B = τ̂y�̂/μ̂V̂ is the Bingham number,
where μ̂ is the plastic viscosity of the Bingham fluid, V̂ is the mean inlet velocity and �̂

is the characteristic length scale which will be fixed later in § 2.2. Hence, the Bingham
number is the ratio of the yield stress of the fluid to the characteristic viscous stress. To
derive equations (2.1) and (2.2), we use the following scalings:

(x, y) =
(
x̂, ŷ

)
�̂

, u = (u, v) = (û, v̂)

V̂
and (p, τ ) =

(
p̂, τ̂

)
μ̂V̂/�̂

, (2.3a–c)

where x and y are the coordinates in the streamwise and spanwise directions, respectively
(see figure 1). Please note that all the variables with a hat (·̂) are dimensional throughout
the paper; the same symbols are used for the dimensionless parameters without a hat.
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As mentioned above, V̂ is the mean inlet velocity, hence

V̂ =

∫
û dŷ

L̂inl
⇒ 1 =

∫
(û/V̂) dy

(L̂inl/�̂)
⇒ Q =

∫
u dy = Linl, (2.4)

where Q is the flow rate and Linl is the length of the domain’s inlet, i.e. the obstructed
length by the solid obstacles is subtracted from L to calculate Linl (see figure 1). Therefore,
in this setting, the flow rate is always equal to Linl, irrespective of the Bingham number.
This approach in formulating the present problem is called resistance formulation or
[R]. Indeed, the yield limit in this type of problem set-up moves to B → ∞. We will
predominantly use this approach in our following simulations and analytical derivations.
Alternatively, another formulation is possible: mobility formulation or [M].

In the [M] approach, the applied pressure gradient is used to scale the pressure and
the stress tensor (i.e. (�P̂/L̂)�̂), while the velocity vector is scaled with (�̂2/μ̂)(�P̂/L̂).
Hence, as a result, the non-dimensional applied pressure gradient in [M] is always equal
to unity.

In the [M] formulation, the independent flow parameter is

Y = τ̂y

�̂(�P̂/L̂)
, (2.5)

which is known as the yield number. Indeed, the flow rate changes as the yield number
varies: it is zero when Y ≥ Yc and increases as the yield number drops below Yc and
decreases. Indeed, the yield limit in [M] is marked by Yc which is the critical yield number;
if Y < Yc, the applied pressure gradient is enough to overcome the yield stress resistance
and the fluid flows inside the medium.

There is a one-to-one map between the [R] and [M] approaches: these two distinct
formulations are linked together by Y(�P/L) = B. This makes the interpretation of the
results feasible; no matter whether the analysis (analytical, computational, etc.) is done in
the [R] or [M] settings. For more detailed explanations of these two formulations in porous
media flows or more general pressure-driven flows, readers are referred to Chaparian &
Tammisola (2021).

2.2. Porous media construction
To construct the porous media for the fluid flow simulations, we randomly distribute
non-overlapping obstacles (X) inside a square domain (Ω) of size L × L = 50 × 50, see
figure 2. Indeed, the centre of each obstacle is chosen randomly with uniform distribution
in the interval [−ε, L + ε] × [−ε, L + ε] and then it will be checked if the obstacle
satisfies the non-overlapping condition. Here ε is introduced to let the obstacles cross the
computational borders.

Three different obstacle topologies are used: circles, squares and polygons. We consider
monodispersed and bidispersed cases. In the monodispersed circular cases, the radius of
the obstacles is used as the length scale, �̂ = R̂, from which we deduce that each individual
obstacle area is equal to π. In the monodispersed square cases, to be consistent, the

individual area of an obstacle is again π or indeed �̂ =
√

L̂s/π where L̂s is the length
of squares’ edges.
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(e) ( f )

(b)(a)

(d )

(c)

Figure 2. Schematic of the porous media where (a–c) are monodispersed topologies and (d– f ) are bidispersed
ones: (a,d) square obstacles; (b,e) circular obstacles; (c, f ) generated polygon obstacles based on Voronoi
tessellation of panels (b,e).

In the bidispersed cases, the area of the larger obstacles is 25π while the area of the
smaller ones is still π. This is the only parameter which is fixed in the construction of
bidispersed cases. To ensure generality of the results, both the positions and the number
of the larger obstacles are also chosen completely randomly.

For the case of polygons (see figure 2c, f ), firstly the domain is partitioned based on the
Voronoi tessellation in which the centres of circles are adopted as the set of points in the
Euclidean plane. Then each Voronoi cell (the edges of cells are depicted in red in figure 2)
is squeezed (or expanded in the bidispersed cases) to get the desired area of π (or 25π

in the bidispersed cases). Hence, this method provides us with a variety of shapes for the
polygon cases.

As mentioned, here we are interested in two-dimensional flows, hence, the solid
‘volume’ fraction in the porous media is denoted by φ = meas(X)/meas(Ω). Therefore,
the porosity of the medium (i.e. void fraction) can be represented simply by 1 − φ.

Note that in the polygon bidispersed cases, the obstacles may weakly overlap because of
the expansion of the cells associated with the larger obstacles. In these cases, the effective
solid volume fraction is considered.

2.3. Computational details
We implement an augmented Lagrangian method to simulate the viscoplastic fluid
flow (Roquet & Saramito 2003; Glowinski & Wachs 2011). This method is capable of
handling the non-differentiable Bingham model by relaxing the rate of the strain tensor.
An open-source finite element environment – FreeFEM++ (Hecht 2012) – is used for
discretisation and meshing, which has been widely discussed and validated in our previous
studies, for more details (choice of elements, etc.) please see Chaparian & Frigaard
(2017), Iglesias et al. (2020), Chaparian & Tammisola (2021) and Chaparian, Owens &
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(b)(a)

Figure 3. Mesh generation for a sample case: (a) initial mesh (‘uniform’ coarse grid); (b) final mesh after six
cycles of adaptation. This mesh is associated with the simulation illustrated in panel (d) of figure 4. Note that
only part of the mesh in the white window of panel (d) of figure 4 (at the pore-scale) is shown here.

McKinley (2022). The anisotropic adaptive mesh in Ω/X̄ is combined with this method
to get high resolution of the flow features and more accurate results. Details about the
mesh adaptation can be found in Roquet & Saramito (2003) and Chaparian & Tammisola
(2019). Basically, the initial mesh is adapted on the piecewise linear approximation of
the Hessian of the square root of the dissipation function which results in a finer mesh
in sheared regions and a coarser mesh in unyielded regions. Also the adapted mesh is
stretched anisotropically to align with the yield surfaces (boundary between unyielded and
yielded regions), see figure 3.

Regarding the velocity boundary conditions: (i) no-slip is imposed at the surface of
the obstacles (i.e. u = v = 0); (ii) a natural boundary condition (or ‘non-essential’ finite
element boundary condition) is imposed on the inlet (left face) and the outlet (right face),
∂u/∂x = 0; and (iii) free-slip on the top and bottom edges, ∂u/∂y = 0.

As discussed in § 2.1, in [R] setting, the flow rate must be equal to Linl, hence,
the imposed pressure gradient �P/L (which is a body force term in the numerical
implementation) will be iterated to match the flow rate (Roustaei, Gosselin & Frigaard
2015).

In the present study, a number of simulations are performed at different porosities to
validate the scaling which will be derived in § 4. As mentioned in § 1, the main aim
here is presenting a mathematical model for the yield limit based on physical features
of the problem, and then validating it with the present simulations and the previous
published data. Due to the high computational cost of the full fluid flow simulations,
we do not follow a statistical approach by simulating the flow in many realisations here.
Rather, we use our data previously published in Fraggedakis et al. (2021) which will
be discussed later in § 4. Recent advances in computational methods of viscoplastic
fluids (e.g. known as PAL (penalized augmented Lagrangian) and FISTA (fast iterative
shrinkage/thresholding algorithm) methods) accelerate the simulations of this type of
fluids, yet the implementation of these methods is beyond the scope of this work. Interested
readers are referred to Dimakopoulos et al. (2018), Treskatis, Moyers-González & Price
(2016) and Treskatis et al. (2018).

3. Illustrated examples

Figure 4 shows the flow in the six sample geometries at φ = 0.45 and B = 103. As
discussed in § 2.1, the yield limit in the [R] setting goes to B → ∞, so in the illustrated
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Figure 4. Contour of velocity (i.e. |u|) for six sample simulations at φ = 0.45 and B = 103. Here (a–c) are
monodispersed cases and (d– f ) are the bidispersed ones. The white window in panel (d) marks where the
mesh represented in figure 3 belongs to.

examples for this relatively large Bingham number, the channelisation is clear. However,
clearly for different geometries, different ‘large’ Bingham numbers are required to get
only the very first open channel. This translates to different critical yield numbers which
are expected for different topologies and will be discussed in § 4 with other features of the
flows.

4. Universal scale

For the present problem defined in § 2.1, the energy equation at the steady state implies
that the work done by the applied pressure gradient (i.e. (�P̂/L̂)

∫
Ω\X̄ û dÂ) balances

the total dissipation (i.e.
∫
Ω\X̄(τ̂ : ˆ̇γ ) dÂ = μ̂

∫
Ω\X̄( ˆ̇γ : ˆ̇γ ) dÂ + τ̂y

∫
Ω\X̄ ‖ ˆ̇γ ‖ dÂ) which in

dimensionless form reads

a(u, u) + B j(u) =
∫

Ω\X̄
(γ̇ : γ̇ ) dA + B

∫
Ω\X̄

‖γ̇ ‖ dA = �P
L

∫
Ω\X̄

u dA, (4.1)

where a(u, u) is the viscous dissipation and B j(u) is the plastic dissipation. At the yield
limit (B → ∞ in [R] or alternatively Y → Y−

c in [M]), the viscous dissipation (which is
quadratic in terms of γ̇ ) is at least one order of magnitude less than the plastic dissipation
(Frigaard 2019; Chaparian et al. 2020), hence, the critical yield number (or indeed the
inverse of the non-dimensional critical pressure gradient) can be predicted by

Yc = τ̂y(
�P̂c

L̂

)
�̂

= lim
B→∞

∫
Ω\X̄

u dA

j(u)
. (4.2)
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Figure 5. Channelisation characteristics: (a) schematic illustration of Lch and hch definition; (b) velocity
contour for φ = 0.5 and B = 104; (c) velocity contour for φ = 0.1 and B = 104.

One can re-write the numerator as∫
Ω\X̄

u dA = L ×
∫

u dy = L × Linl, (4.3)

since the flow rate is equal to Linl, see expression (2.4). At the yield limit, the flow in the
porous media is localised to a single channel. Thus, to find the scalings for j(u) and Linl
at this limit, it is worth revisiting the two-dimensional Poiseuille flow of a yield-stress
fluid. In this type of flow, the fluid moves as a core unyielded region with a constant
velocity which is sandwiched between two sheared regions in which the velocity profile
is parabolic. In the yield limit, these two sheared regions are viscoplastic boundary layers
(Piau 2002; Balmforth et al. 2017) with thickness δ. To simplify the plastic dissipation
functional j(u) substantially, we approximate the flow in the first open channel with the
discussed Poiseuille flow. Hence, the leading order of ‖γ̇ ‖ can be approximated as ≈
2(Uch/δ) δ Lch ∼ UchLch in the boundary layers where the index ch stands for the first open
channel. Indeed, Uch and Lch represent the core unyielded region velocity and the length
of the first channel, respectively, see figure 5(a). Moreover, the continuity equation in the
leading order obeys Q = Linl ≈ Uchhch which allows us to rewrite Uch in terms of the flow
rate and the channel height; thus

Yc ∼ L × Linl

UchLch
= L × Linl

(Linl/hch)Lch
= hch

Lch/L
. (4.4)

In our recent study (Fraggedakis et al. 2021), we have shown that the mean height of
the first open channel scales with the porosity, i.e. 〈hch〉 ∼ 1 − φ and the mean relative
length of the first channel scales with the volume fraction, i.e. 〈Lch〉/L ∼ φ, where 〈·〉
stands for the mean quantity which is acquired by ensemble averaging through different
simulations and also various porosities. To elaborate, in a condensed system of obstacles
(i.e. low porosities), hch is smaller since the fluid path is squeezed between the obstacles or
the mean void length between the obstacles becomes smaller as the solid volume fraction
increases. On the other hand, the mean relative length of the first channel or tortuosity
(i.e. Lch/L) scales with the solid volume fraction since in a denser system, the minimum
path’s shape is a zigzag rather than straight, which is more probable in a more dilute
system of obstacles. These interpretations are evidenced in figure 5 by sample illustrations:
figure 5(b) shows a sample simulation for φ = 0.5 in which the first channel is very thin
and long compared with figure 5(c) in which φ = 0.1 and the channel is rather thick and
straight (Lch → L).
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(�
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Circular obstacles

Square obstacles

Polygonal obstacles

Expression (4.4)

Fraggedakis et al. (2021)

Castañeda (2023)

Figure 6. Comparison between our theory and the computational result: non-dimensional critical pressure
gradient versus φ/(1 − φ). The dashed orange line is the scale derived in (4.2). The filled circle symbols
with uncertainty bars are the data borrowed from Fraggedakis et al. (2021). Each colour intensity is dedicated
to a different value of R̂/L̂ between 0.02 to 0.1 (see the reference for more details). The black and purple
hollow symbols denote the monodispersed and bidispersed cases, respectively. Circles, squares and pentagrams
represent the circle, square and polygon obstacles, respectively. Inset: comparison between the upper bound of
the critical pressure gradient (cyan line) derived by Castañeda (2023) and the proposed universal scale (dashed
orange line). Please note that the axes of the inset are the same as the main figure.

Inserting the scales for the mean height and the mean relative length of the first channel
to expression (4.4), the critical yield number can be re-written as

Yc ∼ 〈hch〉
〈Lch〉 /L

∼ 1 − φ

φ
≡ Void space

Obstructed space
, (4.5)

which means that the critical yield number scales with the ratio of the void space to the
solid (i.e. obstructed) space.

In figure 6, we present a comparison of the theory (i.e. expression (4.5)) with the data
associated with the simulations performed in the current study and also the previously
published data: the non-dimensional critical pressure gradient (i.e. 1/Yc) is plotted versus
φ/(1 − φ). The dashed orange line is the scale derived above, i.e. expression (4.5). The
hollow symbols are the present computed data: black and purple colours are denoted
to monodispersed and bidispersed cases, respectively. Circles, squares and pentagrams
represent the circle, square and polygon obstacles, respectively. The filled circle symbols
with the uncertainty bars are the data borrowed from Fraggedakis et al. (2021) where a
pore-network approach is utilised to analyse a large number of realisations (∼ 500 for each
porosity) with circular obstacles where each colour represents a specific R̂/L̂ ratio. Indeed,
the filled circle symbols are the ensemble averages of all previously performed simulations
and the uncertainty bars represent the range of obtained values. For more clarification
of the used data, please see Fraggedakis et al. (2021). However, as explained in § 2.3,

980 A14-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
90

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1090


E. Chaparian

the current data is acquired through individual simulations (i.e. they are not ensemble
averages of many simulations), hence, no uncertainty bars are associated with the new
data (i.e. hollow symbols).

A reasonable agreement can be observed between the derived scale (with a fitted slope
≈ 3.14 or π) and the computational data for all class of considered topologies. Moreover,
the bidispersed cases data also fits reasonably to the proposed theory.

In a very recent study, using a ‘variational linear comparison’ homogenisation method,
Castañeda (2023) has derived an upper bound for the critical pressure gradient where the
solution of Newtonian fluids is used as a test function in the dissipation-rate potential of
viscoplastic fluids. This upper bound is shown by the cyan line in the inset of figure 6 along
with the proposed universal scale for comparison. Note that the upper bound proposed by
Castañeda (2023) has a linear functionality with φ/(1 − φ) which further validates the
universal scale derived here, although its slope is steeper – which is not surprising as it is
an upper bound.

5. Concluding remarks

Adaptive finite element simulations based on an augmented Lagrangian scheme were
performed to study the fluid flows of yield-stress fluids in porous media. The specific
objective was to fully understand the yield limit of this type of flow and propose a theory to
address the critical applied pressure gradient which should be exceeded for flow assurance
purposes. This is a vital and a very base step in proposing a generic Darcy type expression
for bulk transport properties of the yield-stress fluid flows in porous media.

For this aim, and to avoid prevailing analysis, flows in various porous media constructed
with a wide range of obstacle shapes are investigated. The studied geometries have
been generated by randomly distributing non-overlapping obstacles of circular and square
shapes. In addition, more complicated topologies (i.e. polygon obstacles), have been
generated by using the Voronoi tessellation of circular cases. The computational data
includes both monodispersed and bidispersed systems.

In the yield limit, which is the main focus of the present study, the flow is restricted to a
single channel connecting the inlet to the outlet, while the fluid outside of it is unyielded
and thus quiescent. The configuration of this very first channel has been investigated in our
previous study (Fraggedakis et al. 2021) and statistical geometrical properties (e.g. height
and length) are reported as a function of the solid volume fraction (φ) or alternatively
the porosity of the domain (1 − φ) which can be summarised as 〈hch〉 ∼ 1 − φ and
〈Lch〉/L ∼ φ.

A theory was proposed based on variational formulation of the energy equation. The
leading-order plastic dissipation has been approximated by a channel Poiseuille flow at
the yield limit where the channel dimensions are borrowed from the discussed statistical
results (Fraggedakis et al. 2021). Indeed, in the very first channel, the transport mechanism
is predominantly postulated by the core unyielded plug in the middle of the channel and
the leading-order plastic dissipation occurring in the sheared boundary layer between the
quiescent fluid outside of the channel and the mobilised core unyielded region. It should
be noted that due to the complex shape of this limiting channel in the porous media, the
mechanism is not as simple as explained above since the limiting channel is not straight
and channel height varies (especially in the dense systems), see figure 5. Thus, the core
unyielded plug and the adjacent boundary layers are not uniform. Nevertheless, since the
mean height and length of the channel is used in our model, the proposed scaling is still
valid in the leading order. This has been assessed using the obtained computational data
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for a wide range of obstacle topologies mentioned above and also previously published
data. We have shown that our theoretical approach is capable of predicting the numerical
data with a reasonable agreement.

Due to the high cost of unregularised numerical simulations of yield-stress fluid flows
and also handling various shapes of obstacles, the available data, especially in the yield
limit, is limited. This limitation is more evident in three-dimensional flows. Although in
some studies (Bittleston, Ferguson & Frigaard 2002; Pelipenko & Frigaard 2004; Hewitt
et al. 2016; Izadi et al. 2023), the Hele-Shaw approximation for yield-stress fluids has
been developed, still the lack of a compelling study linking this pore-scale approximation
to bulk transport mechanisms/features in three dimensions is evident. This is left for future
investigations, both theoretically and computationally, which is a massive step forward for
many industrial applications.
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