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Abstract: The application of protonic ceramic electrolysis cells (PCECs) for ammonia (NH3) synthesis
has been evaluated over the past 14 years. While nitrogen (N2) is the conventional fuel on the cathode
side, various fuels such as methane (CH4), hydrogen (H2), and steam (H2O) have been investigated
for the oxygen evolution reaction (OER) on the anode side. Because H2 is predominantly produced
through CO2-emitting methane reforming, H2O has been the conventional carbon-free option thus far.
Although the potential of utilizing H2O and N2 as fuels is considerable, studies exploring this specific
combination remain limited. PCEC fabrication technologies are being developed extensively, thus
necessitating a comprehensive review. Several strategies for electrode fabrication, deposition, and
electrolyte design are discussed herein. The progress in electrode development for PCECs has also
been delineated. Finally, the existing challenges and prospective outlook of PCEC for NH3 synthesis
are analyzed and discussed. The most significant finding is the lack of past research involving PCEC
with H2O and N2 as fuel configurations and the diversity of nitrogen reduction reaction catalysts.
This review indicates that the maximum NH3 synthesis rate is 14 × 10−9 mol cm−2 s−1, and the
maximum current density for the OER catalyst is 1.241 A cm−2. Moreover, the pellet electrolyte
thickness must be maintained at approximately 0.8–1.5 mm, and the stability of thin-film electrolytes
must be improved.

Keywords: electrochemical ammonia synthesis; protonic ceramic electrolysis cells; hydrogen;
catalysts; nitrogen reduction reaction

1. Introduction

Hydrogen (H2) has considerable potential for energy storage. However, its low energy
density poses challenges to storage and transport. One solution is to convert H2 to ammonia
(NH3), where H2 that is obtained from water electrolysis (i.e., green H2) reacts with nitrogen
(N2) in the air to produce NH3, which can be reversibly converted into H2 and N2 after
transportation [1]. Currently, NH3 is industrially produced using the Haber–Bosch process,
which requires high pressure (100–200 bar) and temperature (300–400 ◦C) to activate the
Fe-based catalysts [2,3]. Recent advancements include the hydrogenation of N2 using Ru
catalysts, which require milder reaction conditions [4].

However, the thermal approach for NH3 synthesis remains expensive, as it requires
a large centralized infrastructure and is energy-intensive, consuming approximately
485 kJ mol−1 (approximately 2% of the global energy use per annum) [5]. Fertilizers
Europe made conjectures about the decarbonization of the European NH3 industry [6].
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They proposed that approximately 10% of H2 derived for NH3 production in 2030 could
possibly originate from renewable sources. Electrochemical NH3 synthesis via N2 re-
duction provides a relatively high efficiency of up to 20%, environmental compatibility
with renewable sources (solar, tidal, and wind), on-site H+ generation from water oxi-
dation, and adaptable reaction control [7]. This process converts sustainable electricity
from sources such as wind power into NH3 for use as a synthetic fuel or chemical
feedstock [8,9].

The operating conditions are classified into three types based on the temperature,
namely, low (<100 ◦C), intermediate (200–500 ◦C), and high (>400 ◦C) temperature. High-
temperature conditions enhance the catalytic activity and substantially increase the Faradaic
efficiency in NH3 synthesis. High-temperature NH3 synthesis can be performed using
proton-conducting electrolytes (PCEs) or oxygen-conducting electrolytes (OCEs). OCEs,
while efficient, generally present slower rates of NH3 production than PCEs [10]. This
review focuses on NH3 production in protonic ceramic electrolysis cells (PCECs), which
operate at high temperatures (400–600 ◦C). As shown in Figure 1, the PCEC combines the
nitrogen reduction reaction (NRR) with other electrochemical reactions that yield protons
(H+), facilitating NH3 production. Liu et al. briefly reviewed three primary PCEC con-
figurations involving H2, CH4, and H2O as proton (H+) sources. Although H2O and N2
have considerable potential as fuels, this specific combination has not been sufficiently
investigated. Despite consuming substantially more electrical energy than the other con-
figurations, using H2O and N2 directly to produce NH3 is carbon-free and abundant in
the feedstock [11]. This configuration couples the NRR with the oxygen evolution reaction
(OER). High-temperature NH3 synthesis has been extensively reviewed [12–16]. However,
reviews of the specific PCEC configurations for NH3 synthesis are limited. The unavailabil-
ity of a comprehensive strategy for PCEC fabrication in a single study poses a considerable
challenge for researchers aiming to develop PCECs customized for NH3 synthesis.
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The three essential components of a PCEC are an electrolyte, an anode, and a cathode
(Figure 1). The electrolyte serves as an ion conductor that separates the electrodes and facil-
itates ion transport. The electrochemical reactions within the PCEC are non-spontaneous,
implying that they do not occur naturally; an external influence, typically electricity, is
necessary to drive the reactions [17].

Anode reaction

• At the anode, an electric current passes through water, thereby splitting water molecules
into hydrogen (protons) and oxygen ions.

• Reaction: 2H2O → O2 + 4H+ + 4e−

Electron and proton transport:

• Electrons generated at the anode during water splitting are transported through an
external electric circuit.

• Protons generated at the anode during water splitting are transported through the
electrolyte [18].

Cathode reaction

• At the cathode, protons (H+) from the anode and nitrogen atoms react to produce NH3

• Reaction: N2 + 3H+ + 3e− → NH3

Based on their supporting materials, high-temperature fuel cells can be categorized
into three types: (i) cathode-, (ii) electrolyte-, and (iii) anode-supported. They are named
based on the component that is fabricated first, which is generally the thickest compo-
nent [19]. In this review, we focus only on electrolyte-supported cells. Despite the lower
ohmic losses and power densities, anode-supported cells are difficult to fabricate on a large
scale owing to the highly porous support and high manufacturing costs [20–23].

A seminal review by Giddey et al. provided a comprehensive overview of material
construction, major technical challenges, and the technological landscape in the field [12].
However, the reaction conditions were not broadly defined. Garagounis et al. exten-
sively reviewed solid-state NH3 synthesis, particularly in PCECs [13]. Another review by
Medvedev et al. in 2019 focused on NH3

− and H2
− producing PCECs, emphasizing design

parameters such as thickness, partial pressure of H2O, and other operational conditions
such as polarization loss, ohmic loss, thermoneutral voltage, and open-circuit voltage [16].

We observed a gap in research involving N2 at the cathode and only H2O at the
anode, except for the study by Yun et al. [24], which will be discussed subsequently. In
another study, although 26.8 nmol NH3 s−1cm−2 was achieved using N2 at the cathode
and H2O at the anode, expensive plasma-assisted technology was employed [25]. Most
studies focused on mixtures of H2O and H2. Among them, the highest NH3 production
rate of 14 mol−9 cm−2 s−1 was reported by Chien et al. [26]. Figure 2 depicts the questions
that we aim to answer through this review.
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In this review, we summarize the existing design strategies in terms of electrolyte
fabrication and properties, in addition to the electrocatalytic performance based on the
NH3 synthesis rate, Faradaic efficiency, and current density. Furthermore, the NRR and
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OER mechanisms are discussed to address prevalent challenges. Finally, we highlight the
challenges encountered in the development of PCEC devices and provide directions for
further advancements in this technology.

2. Reaction Mechanism

For further advancements in the OER and NRR, the underlying mechanisms must
be elucidated. Figure 3 provides a visual representation of the four primary pathways
involved in N2 reduction and NH3 production in the PCECs.
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Pathway A illustrates the electrochemical NH3 synthesis through a dissociative mech-
anism, wherein protons directly combine with electrons to reduce the adsorbed N2 on
the catalyst, thereby producing NH3. In contrast to conventional methods, this direct
electrochemical NH3 synthesis method does not require a stoichiometric amount of gaseous
H2, resulting in a considerably higher Faradaic selectivity. To enhance Pathway A, the
NRR electrode should inhibit the hydrogen evolution reaction (HER) while maintaining
sufficient electrocatalytic activity for N2 reduction.

In contrast, Pathway B represents the conventional Haber–Bosch (HB) reaction, wherein
N2 is reduced by gaseous H2 produced through the HER. Here, thermochemical catalytic
NH3 synthesis primarily governs NH3 production. Therefore, the H2/N2 ratio is instru-
mental in determining the NH3 production rate because it follows the thermodynamics of
thermochemical NH3 synthesis. Increasing the NH3 yield requires the PCECs to operate
at a high current density to ensure that the H2/N2 ratio is approximately 3/1. However,
under such conditions, the NH3 Faradaic selectivity is low because a substantial amount of
H2 remains unused.
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In the N2 adsorption depicted by Pathway C, the N≡N bond remains intact after N2
adsorption until a specific step in the hydrogenation process [27]. In contrast, in Pathway D,
hydrogenation occurs alternately on two nitrogen atoms, and the N≡N bond breaks only in
the final step, thus forming the first NH3 molecule; another NH3 molecule remains bonded
to the surface of the catalyst. These pathways help to clarify the complex mechanisms
governing NH3 production in PCECs [28–33].

The OER mechanism must be investigated in addition to the NRR mechanism. Liu et al.
conducted a comprehensive study based on density functional theory calculations to
elucidate the OER on La0.6Sr0.4Ce0.2Fe0.8O3−δ catalysts, which are prominent catalysts
wherein cobalt is doped in high-entropy perovskites. Figure 4 illustrates the potential OER
pathway in PCECs. Their study revealed the following steps in the OER mechanism [34]:

(i) The reaction is initiated when a water molecule is adsorbed on the catalyst surface.
(ii) Consequently, surface-bound hydroxyl species (HO*) are formed.
(iii) The generated HO* decomposes into hydrogen (H*) and oxygen (O*) species.
(iv) Protons (H+) are transferred to the cathode through the electrolyte.
(v) Finally, gaseous oxygen materializes through desorption [35].
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The analysis of the OER catalytic mechanism elucidates the intricate processes that
govern efficient OERs. By investigating the intricate interplay between surface sites, reac-
tion intermediates, and electron transfer pathways, we can acquire a deeper understanding
of the underlying principles driving the catalytic activity. This can facilitate the optimal
design of catalysts and contribute to the broader field of sustainable energy conversion.

Continued research can potentially reveal more nuances in the OER mechanism. Our
models and predictions can be refined by integrating advanced experimental techniques
and computational approaches, ultimately promoting the development of catalysts with
enhanced performance and durability. Addressing the challenges associated with the OER
mechanism will enable renewable energy technologies to be utilized more efficiently.
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3. PCEC Design Strategies

High-temperature cells such as solid oxide fuel cells (SOFCs) have been exten-
sively designed [14]. However, selecting an appropriate design for each application is
important because the cell performance strongly depends on the cathode, anode, and
electrolyte materials. Medvedev discussed the influence of the design strategies on the
performance of H2-producing PCECs [16]. However, PCEC design strategies for NH3
synthesis are limited. This section describes the fabrication and design strategies for the
electrolyte and electrodes.

3.1. Electrolyte Design Strategies

The electrolyte is considered the most important component of a PCEC, particularly
in electrolyte-supported systems because it occupies the largest volume. BaCeO3 and
BaZrO3-based materials have been reported to be good protonic conductors [20]. Although
BaCeO3 exhibits high conductivity, BaZrO3 provides better stability. Furthermore, Ce and
Zr have been mixed with other dopants, such as Y and Yb, resulting in the well-known
BaZr0.4Ce0.4Y0.1Yb0.1O3−δ (BZCYYB 4411) and BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb 1711)
electrolytes [21,22]. In general, a higher Ce content increases the proton conductivity,
whereas a higher Zr content increases the stability [23,36]. In a PCEC, the applied electrical
current serves two potential pathways: proton and electron transfers. The primary objective
of a PCEC is to facilitate the movement of protons (H+) from the OER to the NRR sides,
where they participate in hydrogen production. However, electron transfer, in which
electrons move instead of protons, can be detrimental to the cell performance. This is
because electron transfer reduces the Faradaic efficiency of the cell; particularly, a portion
of the electrical energy is redirected to unintended reactions, leading to energy losses and
potentially reducing the overall hydrogen production efficiency. Increasing the Ce content
increases the protonic transference number and decreases the electron transference number.
Therefore, BZCYYb 1711 is more suitable for PCECs than BZCYYb 4411 [37].

This discussion pertains to three distinct electrolyte forms: pellets, thin films, and
columnar structures. Pellet-type electrolytes have been extensively used in fuel cells and bat-
teries [38,39]. They are relatively easy to manufacture and integrate into PCEC stacks [40].
This method involves placing a few grams of electrolyte powder into a mold, which is
typically cylindrical, and ultimately shaping it into a coin-like pellet. This conventional
approach has resulted in considerable advancements in terms of electrolyte composition.
The details of various pellet electrolytes developed thus far are listed in Table 1.

Table 1. Conductivities of proton-conducting electrolytes and their synthesis methods.

Electrolyte Method Conductivity (S cm−1) Thickness (mm) Reference

SrCe0.95Yb0.05O3−δ sol–gel Unknown 1.5 [41]
BaZr0.8−x−yCexNdyY0.1Yb0.1O3−δ Pechini method 500 ◦C: 3.77 × 10−4 0.8–1.5 [42]

BaZr0.85Y0.15O3−δ hydrothermal process 600 ◦C: 2.5 × 10−3 1.6 [43]

While the solid-state reaction is common for powder preparation, sol–gel or glycine
nitrate processes are commonly employed to obtain finer particles and higher peak power
densities [42]. The pellet electrolyte thickness is in the range of 0.8–1.6 mm (Table 1).
Medvedev suggested that thin-film technology must be developed for the electrochemical
synthesis of NH3 [16]. With reference to the electrolyte properties, the thickness plays a
crucial role in determining both the ohmic resistance and electron transport characteristics.
Thicker electrolytes increase the ohmic resistance, whereas thinner electrolytes increase
contact resistance at the electrolyte/electrode interface. In conventional electrolytes, the
ohmic resistance tends to increase. This limitation can be effectively addressed using
thin-film electrolytes [44]. Recent advancements in thin-film electrolytes for PCECs have
been comprehensively presented in Table 2.
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Table 2. Conductivities of thin-film electrolytes and their deposition/synthesis methods.

Electrolyte Method Conductivity (S cm−1) Thickness (µm) Reference

BaCe0.7Zr0.1Y0.2

co-precipitation
solid-state reaction

dip-coating
650 ◦C: 2.8 × 10−2 ~20 [45]

BaCe0.8Y0.2−xNdxO3−δ citrate–nitrate combustion 350 ◦C: 8.5 × 10−3 ~20 [46]
BaCe1−xInxO3−δ auto-combustion reaction 700 ◦C: 5 × 10−3 20–25 [47]

BaZr0.1Ce0.7Y0.1Yb0.1 solid-state reaction 500 ◦C: 1.2 × 10−2 10 [48]
BaHf0.8Yb0.2O3−δ pulsed laser deposition (PLD) 500 ◦C: 2.5 × 10−3 110 [48]

BaZr0.1Ce0.7Y0.1Yb0.1 solid-state reaction 500 ◦C: 1.3 × 10−2 ~10 [22]
BaZr0.4Ce0.4Y0.1Yb0.1 solid-state reaction 500 ◦C: 5.6 × 10−3 ~15 [21]

BaZr0.2Ce0.6Y0.1Yb0.1O3−δ
Pechini method
inkjet printing 600 ◦C: 24.39 1 [49]

BaCe0.5Zr0.35Y0.15O3−δ
citric nitrate method

PLD Unknown 2–4 [50]

BaZr1−x−yCexYyO3

ultrafast microwave-assisted
sintering

tape casting
Unknown ~12 [51]

BaZr0.2Ce0.6Y0.2O3
solid-state reaction

spin coating 800 ◦C: 1 × 10−2 ~7 [52]

BaCe0.55Zr0.3Y0.15O3−δ screen printing Unknown ~2.5 [53]

The technological advancements in thin-film electrolytes are attributed to their reduced
dimensions. Various deposition techniques, such as inkjet printing, pulsed layer deposition
(PLD), tape casting, spin coating, and screen printing, are involved [49–53]. Screen printing
and spin coating are known to be simple. However, considerable material wastage occurs,
with a minimum thickness of approximately 10 µm. Furthermore, PLD, which is recognized
for its effectiveness, requires complex operation and energy-intensive vacuum conditions.
Inkjet printing offers the advantage of producing highly uniform surfaces with a minimum
thickness of just 0.83 µm [49].

BaZr0.1Ce0.7Y0.1Yb0.1 is an extensively investigated proton-conducting electrolyte,
although some researchers have diverged, advocating other compositions as the most
studied [22,45,47]. Some researchers have explored doping with elements such as Nd,
Sc, In, and Hf, in addition to Y and Yb, to enhance the stability and sinterability of the
electrolyte [22,43,44,46,48,54]. Ding et al. introduced a novel approach by ball milling,
pelletizing, calcining, and crushing the pellets to produce a pure-phase powder on a
relatively large scale (up to 4 kg per batch) [55]. Another approach involves combining all
BZCYYb1711 nitrate precursors in deionized water, followed by the addition of a specific
quantity of NaOH. NaOH reacts with nitrates and forms mixed metal hydroxides before
calcination, which produce mixed metal oxides (perovskite). This mixture is washed
and then subjected to a high-temperature solid-state reaction [54]. The conventional
box furnace method at 1000–1500 ◦C with a ramp of 1–5 ◦C min−1 is typically used
for sintering. Spark plasma and microwave sintering have been examined for rapid
high-temperature results, with the aim of matching or surpassing the performance of
conventional sintering [47,56].

The previous discussion encompassed two distinct electrolyte types (Figure 5), namely,
the planar type (pellet and thin film), which necessitates sealing agents for the reactor
connection, and the tubular configuration, which operates seamlessly without requiring
sealing. Columnar electrolytes can be fabricated by templating using plaster molds or
by rolling a thin-film electrolyte. Notably, columnar electrolytes have been employed in
SOFCs [57–59]. Table 3 lists examples of columnar electrolyte utilization.
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Table 3. Conductivities of columnar electrolytes and their deposition/synthesis method.

Electrolyte Method Conductivity Reference

BaZr0.4Ce0.4Y0.15Zn0.05O3 solid-state reaction Unknown [60]
BaZr0.1Ce0.7Y0.1Yb0.1 solid-state reaction Unknown [61]

3.2. Electrode Design Strategies

In contrast to thermochemical catalysts, electrocatalysts must be pretreated to ensure
that they can mechanically bond to the electrolyte while remaining catalytically active. In
electrolyte-supported cells, the cathode and anode are deposited on opposite sides of the
cell. The difference between the anode and cathode materials makes it necessary to specify
the method that should be used to deposit them onto the electrolyte.

Recently, various conventional and ambient-condition deposition methods, such as the
doctor blade method, drop coating, screen printing, tape casting, and spray coating, have
been used to develop electrode materials for PCECs (Table 4). Although these methods are
simple, the electrode thickness is controlled only through a randomized parameter, such as
printing passes or number of drops. Therefore, many researchers have recently employed
PLD to produce a smooth electrode surface and ensure good interfacial contact between
the electrolyte and electrode [62].

Table 4. Deposition methods and electrode thickness in key research on OER and NRR catalysts.

Cathode Deposition Method Thickness
(µm) Reference

La0.6Sr0.4Co0.2Fe0.8O3−δ Unknown 44 [24]
Ag - 4
Pt - 8
Fe doctor blade 15–25 [26]

10-Fe-BCY doctor blade 15–25
0.5W-10Fe-BCY doctor blade 15–25

PrBa0.5Sr0.5Co1.5Fe0.5O5+δ - 10–20 [36]
Ru–Ag/MgO Unknown - [41]

Ni-BCYR - - [63]
NdBa0.5Sr0.5Co1.5Fe0.5O5+δ

(NBSCF)-BZCYYb drop coating 15 [64]

Pr2NiO4-BZCY screen printing 13 [65]
PrCo0.05Ni0.5O3−δ tape casting 29 [66]

Ba0.9Co0.7Fe0.2Nb0.1O3−δ screen printing 15 [67]
Pr0.2Ba0.2Sr0.2La0.2Ca0.2CoO3−δ spray coating 20 [68]

PrBa0.5Sr0.5Co1.5Fe0.5O5+δ PLD 20 [69]
Gd0.3Ca2.7Co3.82Cu0.18O9−δ screen printing 30 [70]
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4. Current Progress

The NRR and OER have been studied extensively; the catalysts used for these reactions
are summarized in Tables 5 and 6, respectively.

Table 5. Notable NRR catalysts in PCECs for NH3 synthesis.

Cathode * Electrolyte NH3 Production Rate
[mol cm−2 s−1] × 10−9

Thickness
(µm) Reference

La0.6Sr0.4Co0.2Fe0.8O3−δ BaZr0.8Y0.2O3−δ 0.0850 44 [24]
Ag BaZr0.8Y0.2O3−δ 0.0490 4
Pt BaZr0.8Y0.2O3−δ <0.0010 8
Fe BaCe0.9Y0.1O3−δ 14.000 15–25 [26]

10-Fe-BCY BaCe0.9Y0.1O3−δ 0.4200 15–25
0.5W-10Fe-BCY BaCe0.9Y0.1O3−δ 0.5700 15–25
Ru–Ag/MgO SrCe0.95Yb0.05O3−δ 0.0003 - [41]

Ni-BCYR BaCe0.9Y0.1O3−δ 0.0110 - [63]

* only for OER coupled with NRR configuration.

Table 6. Notable OER catalysts in PCECs for NH3 synthesis.

Anode Electrolyte Current Density @1.3 V and 550 ◦C
[A cm−2]

Thickness
(µm) Reference

Pr0.2Ba0.2Sr0.2La0.2Ca0.2CoO3−δ BaZr0.1Ce0.7Y0.1Yb0.1O3−δ −0.800 20 [68]
PrBa0.5Sr0.5Co1.5Fe0.5O5+δ BaZr0.4Ce0.4Y0.1Yb0.1O3−δ −1.059 20 [69]

Gd0.3Ca2.7Co3.82Cu0.18O9−δ BaZr0.1Ce0.7Y0.1Yb0.1O3−δ −1.241 30 [70]

Based on Table 5, metallic catalysts evidently yield higher reaction rates. This could
be attributed to two main factors. First, perovskite-based electrocatalysts may possibly be
affected by degradation at the interface and thermal mismatch with the electrolyte, thus
decreasing the performance [24]. Second, the electrochemical promotion of catalysis is
more pronounced in pure metal catalysts with a higher effective double layer (S*eff) on
their surfaces than in supported electrocatalysts [26]. However, pure metallic catalysts are
typically expensive.

Ru is regarded as a suitable catalyst for thermochemical NH3 synthesis because of its
peak position on Skulason’s volcano diagram, which shows that it requires a minimum
potential for electrochemical NH3 synthesis. It has also been reported to be an ultra-
efficient electrocatalyst for the NRR, with a lower reduction potential than that of Fe [71–75].
However, Ag is a more cost-effective option because of its natural abundance. Although
noble-metal-based electrocatalysts exhibit favorable activity, efficiency, and selectivity,
their practical application is inhibited by their high cost and scarcity [27]. Consequently,
extensive research has been conducted on transition-metal-based electrocatalysts for the
NRR. The NH3 synthesis rate of Pt catalysts can be primarily attributed to their strong
HER activity [76,77]. At negative potentials, the surface of Pt nanoparticles tends to adsorb
hydrogen atoms rather than nitrogen atoms, thus affecting the overall performance [78].

Considering NH3-producing PCECs, most studies have only focused on the NRR,
whereas the OER has been overlooked. The NH3 synthesis reaction is typically performed
at 475–600 ◦C [24]. Pei et al. briefly summarized the OER performance at a cell voltage of
1.3 V and operating temperature of 550 ◦C [67].

Currently, transition metals, particularly compounds based on Fe, Co, and Ni, have
demonstrated remarkable catalytic activity for the OER [79]. A successful method to
enhance the OER activity involves altering the surface electronic structure through the
addition of supporting materials to the active metal (Fe, Co, or Ni). This strategy has
attracted attention, particularly with reference to multi-metal materials such as high-entropy
perovskites, because they provide numerous possibilities for modifying the characteristics
and improving the catalytic performance [80].



Energies 2024, 17, 441 10 of 14

Among multi-metal materials, Co-based double perovskite oxides are notable for
their rapid ion diffusion and enhanced surface catalysis, resulting in high electrochemical
performance in single cells [35,69,81]. Various studies have explored the application of
OER catalysts in PCECs (Table 6). For example, Gd0.3Ca2.7Co3.82Cu0.18O9−δ exhibits the
highest current density owing to various factors, including abundant oxygen vacancies in
the central Co–O layer of the Ca3Co2O3 rock–salt subsystem, which alters the electronic
charge carrier concentration. The needlelike grain morphology aids in the complex flow of
the reaction components via triple conduction and open diffusion paths [70].

Despite the promising characteristics of Co-based double perovskite oxides, these high-
entropy perovskite oxides have disadvantages such as instability, thermal mismatch, and
high cost, which limit their widespread implementation [35,69,81,82]. Thermal mismatch
occurs when the OER catalyst and electrolyte materials have different coefficients of thermal
expansion (CTE). The CTE indicates the extent to which a material expands when exposed
to changes in temperature. If the OER catalyst and electrolyte have significantly different
CTE, they may expand at different rates as the temperature changes [83]. Therefore,
catalysts with compatible mechanical properties need to be used.

5. Conclusions

This review presented a comprehensive outline of the design strategies for PCECs
aimed at enhancing electrochemical NH3 synthesis. The mechanisms of the reactions
involved were delineated, and design strategies for PCECs were investigated. This
review provides novel insights into catalyst development for the NRR and OER. The
following points summarize our findings and recommendations to further develop
this technology.

Electrolytes must be further developed in terms of their architecture and thickness.
For electrodes, understanding the underlying reaction mechanisms is essential. Co-based
double perovskite oxides display rapid ion diffusion and improved surface catalysis,
resulting in excellent electrochemical performance in individual cells. However, their ap-
plication is challenging owing to high-entropy perovskite instability, thermal mismatch,
and high cost. Computational analysis is indispensable when investigating the reaction
mechanisms, particularly in the context of employing high-entropy perovskites as OER
catalysts. Based on this review, we recommend the following research directions:

1. A more scalable approach must be investigated to deposit Fe- and Co-based perovskite
electrodes to reduce catalyst wastage.

2. A more complex catalyst must be developed for the NRR because existing materials
are not as advanced as OER catalysts.

3. Stability and thermal mismatch issues for the OER must be addressed to decrease
wastage and increase cell stability.

We believe that investigating more scalable methods, such as atomic layer deposi-
tion, will enhance the positive environmental impact of electrochemical catalysts used for
NH2 synthesis. Similar to thermochemical NH3 synthesis catalysts, investigating various
support materials for Fe- or Ru-based catalysts can be beneficial for the NRR. For further
advancements in OER catalysts, the stability of the catalyst must be improved, and the
thermal mismatch must be eliminated to enhance the overall efficiency of the PCEC.
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