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Abstract: In environments characterised by noise or the absence of audio signals, visual cues,
notably facial and lip movements, serve as valuable substitutes for missing or corrupted speech
signals. In these scenarios, speech reconstruction can potentially generate speech from visual data.
Recent advancements in this domain have predominantly relied on end-to-end deep learning models,
like Convolutional Neural Networks (CNN) or Generative Adversarial Networks (GAN). However,
these models are encumbered by their intricate and opaque architectures, coupled with their lack
of speaker independence. Consequently, achieving multi-speaker speech reconstruction without
supplementary information is challenging. This research introduces an innovative Gabor-based
speech reconstruction system tailored for lightweight and efficient multi-speaker speech restoration.
Using our Gabor feature extraction technique, we propose two novel models: GaborCNN2Speech
and GaborFea2Speech. These models employ a rapid Gabor feature extraction method to derive low-
dimensional mouth region features, encompassing filtered Gabor mouth images and low-dimensional
Gabor features as visual inputs. An encoded spectrogram serves as the audio target, and a Long
Short-Term Memory (LSTM)-based model is harnessed to generate coherent speech output. Through
comprehensive experiments conducted on the GRID corpus, our proposed Gabor-based models
have showcased superior performance in sentence and vocabulary reconstruction when compared to
traditional end-to-end CNN models. These models stand out for their lightweight design and rapid
processing capabilities. Notably, the GaborFea2Speech model presented in this study achieves robust
multi-speaker speech reconstruction without necessitating supplementary information, thereby
marking a significant milestone in the field of speech reconstruction.

Keywords: speech reconstruction; lipreading; gabor features; lip features; speech synthesis; image
processing; machine learning

1. Introduction

Speech reconstruction refers to the generation of audio signals from silent lip move-
ment videos [1]. As human beings, speech is our primary mode of communication, but
in scenarios such as noisy environments or surveillance videos, speech may be disrupted,
masked, or even absent altogether [2]. In these cases, visual information such as facial or lip
movements may compensate for missing or disrupted speech signals, thereby enhancing
speech perception [3]. The relationship between audio and visual modalities has been
demonstrated by the McGurk effect [4]. The focus of this paper, estimating speech from
visual information, is known as speech reconstruction [1].

Speech reconstruction differs from speech recognition in that it aims to be a language-
independent visual-to-audio task rather than visual and/or audio-to-text [2]. This makes it
suitable for applications such as enabling effective communication in noisy environments
(e.g., factories or public transportation [5]) or providing artificial speech for patients who
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have undergone a laryngectomy. Moreover, speech reconstruction has numerous potential
applications as part of a larger communication system, including enhancing speech recog-
nition by filtering out background noise [6,7], improving the quality of speech in assistive
hearing devices [8], and generating speech for videos with low-quality or missing sound [9].

However, estimating speech from visual information is challenging due to the incom-
plete nature of the data obtained from a frontal or side camera. The captured visual infor-
mation cannot include critical components such as the excitation signal and the majority of
tongue movements [10]. Previous work by the authors investigated speech recognition with
lipreading using a Chinese language dataset, which included tonal information and found
that while Chinese pinyin words could be successfully recognised by lip movements, this was
not possible for tonal information only, due to the lack of associated mouth movements [11].
Without access to vocal cords and internal tongue movements, it is challenging to synthesise
speech that is intelligible and natural-sounding [10]. Therefore, developing accurate and
effective speech reconstruction techniques is an active area of research.

In this paper, a novel Gabor-based speech reconstruction system for lightweight multi-
speaker speech reconstruction is proposed. The system utilises Gabor filtering to remove
irrelevant facial information and extract key lip features. The extracted features are then
fed into an LSTM to model the time dependencies and then a fully connected layer to
generate an auditory spectrogram. Compared to end-to-end Convolutional deep neural
networks, Gabor feature extraction is a direct and efficient visual extraction process, thus
reducing model structure complexity. Using the Gabor features as visual input instead of
raw facial pixels significantly reduces the size of the input data and the extracted features
can be visualised, making the speech reconstruction system more transparent. The results
show that the proposed Gabor-based model achieves an average spectrogram accuracy
of 74% in single-speaker scenarios and demonstrates excellent vocabulary reconstruction
ability with an average accuracy of 81%. Moreover, the experiments also demonstrate
that the proposed GaborFea2Speech model can maintain robust speech reconstruction
capability in multi-speaker scenarios, with 72%, 68%, 71%, 65%, and 61% accuracy for
different multi-speaker models.

This paper makes several contributions. Firstly, a detailed review of state-of-the-art
research is conducted within the visual speech reconstruction domain. Secondly, using our
proposed Gabor-based feature extraction method, two advanced lightweight speech recon-
struction models are introduced: GaborCNN2Speech and GaborFea2Speech. Thirdly, com-
prehensive testing across single-speaker, multi-speaker, and vocabulary contexts demon-
strates that our proposed GaborCNN2Speech model offers enhanced performance com-
pared to traditional end-to-end Convolutional Neural Network (CNN) models, presenting
a combination of superior results, lightweight design, and rapid processing. Moreover, our
innovative GaborFea2Speech model capitalizes on three-dimensional lip features, achieving
lightweight and rapid system attributes and excelling in single-speaker and vocabulary
reconstruction tasks. Most significantly, it achieves multi-speaker speech reconstruction
without the need for supplemental information.

The remainder of this paper is presented as follows. Section 2 presents a comprehen-
sive literature review of the speech reconstruction field. Section 3 introduces the Gabor
feature extraction technique. Section 4 introduces our novel Gabor-based speech recon-
struction models. The experimental methodology is provided in Section 5, with results in
Section 6 and discussion in Section 7. Finally, Section 8 concludes the paper and provides
future research directions.

2. Literature Review

Initial research into speech reconstruction faced computational limitations [5,12,13].
A full reconstruction was hard to achieve, and so the focus was on low dimensional esti-
mation such as using DCT visual information to estimate filterbank audio features [12–15].
However, increased computational power and more advanced machine-learning models
allowed for improved estimation. Early research [12] reconstructed audio from video using
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a deep-learning network trained on visual features from the mouth region. Recent work by
Akbari et al. [2] utilised an end-to-end deep neural network to learn auditory spectrograms
from raw facial pixels. Similarly, Prajwal et al. [16] proposed a sequence-to-sequence archi-
tecture that learned individual speaking styles from an unconstrained dataset. However,
those approaches are speaker-dependent, which limits their application to a small group of
individuals, as each speaker requires a separate model.

Several studies [17–20] have attempted to address the problem of multi-speaker speech
reconstruction by adding additional information such as speech or output text to distinguish
between speakers. However, if the supplementary information is not present, speakers
can not be distinguished. In addition, despite this extra information, these studies [17–19]
generally suffer from the problem of low speech-quality reconstruction when reconstruct-
ing speech from multiple speakers. Furthermore, the system structure developed in these
studies [17–20] is highly complex, which requires a large amount of data and lengthy train-
ing, leading to high computational costs. Therefore, there is a need for more lightweight and
transparent multi-speaker speech reconstruction models to overcome the limitations of ex-
isting models. These models should maintain high speech-quality reconstruction performance
without the requirement for additional information, simplifying the system structure.

2.1. Speech Reconstruction Using Constrained Datasets

The first key speech reconstruction system was proposed by Le Cornu and Milner [12],
who applied a neural network to estimate a speech signal from a silent video of a speaker’s
frontal face using a deep-learning network trained on hand-engineered visual features
obtained from the mouth region. However, this approach had the limitation of missing
certain speech components such as fundamental frequency and aperiodicity. Le Cornu
and Milner [5] extended this by using visual features to predict a class label and exploring
temporal information using RNNs. Although the intelligibility of the reconstructed speech
improved substantially, speech quality was still low. Ephrat and Peleg [1] used a regression-
based framework to predict LSP coefficients directly from raw visual data with a CNN
and two fully connected layers. They found that no hand-crafted visual features were
needed to reconstruct the speaker’s voice, using the whole face instead of just the mouth
improved performance, and the regression-based method was effective in reconstructing
out-of-vocabulary words. However, the signals sounded unnatural because Gaussian white
noise was used as excitation to reconstruct the waveform from LPC features.

Subsequent studies focused on improving speech quality and intelligibility. Ephrat
and Peleg [21] employed a postprocessing network for transforming a learned mel-scale
spectrogram into a linear scale spectrogram. This spectrogram was then used with a
Griffin-Lim algorithm [22] to regenerate the time-domain signal. Compared with their early
study of Vid2speech [1], their approach demonstrated significant average speech quality
improvements. Specifically, during testing on a single GRID speaker, the average PESQ
score improved by 38%, from 1.19 to 1.922, as measured by Perceptual Evaluation of Speech
Quality (PESQ). Akbari et al. [2] focused on establishing a mapping between the speaker’s
facial cues and speech-related attributes, leveraging a pre-trained deep Autoencoder net-
work. In comparison to their previous work, their methodology led to a 6% enhancement
in average PESQ score and a notable 35% increase in speech intelligibility within the GRID
Corpus, encompassing speakers S1, S2, S3, and S4. Similarly, Vougiouskas et al. [23] and
Mira et al. [24] utilised Generative Adversarial Networks (GANs) for direct audio waveform
synthesis from video frames. During unseen speaker testing, these approaches achieved
word error rates of 40.5% with the GRID Corpus and 42.51 with the LRW dataset. Further-
more, Kim et al. [17] integrated a GAN with an attention mechanism, while Yadav et al. [25]
employed a stochastic modelling strategy utilising a variational autoencoder. Their meth-
ods yielded average PESQ values of 1.961 and 1.932, respectively, with the GRID Corpus.
These studies indicate an improvement in PESQ scores over earlier methods, but there
are limitations relating to constrained datasets and single speakers. A list of approaches
reported in the literature is summarised in Table 1.
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Table 1. Review of research into speech reconstruction from silent videos. Here, UD: Unconstrained data, MS: Multi-speaker, MT: Multi-task, MV: Multi-view.

Task Year Paper Input Output Model Info Dataset Metrics UD MS MT MV

Reconstructed

Speech on

Constrained

Datasets

2015 Cornu and Milner [12] 2D-DCT/AAM mouth
LPC or mel-filterbank

amplitudes
GMM/FFNN GRID corpus WER/PESQ × × × ×

2015 Aihara et al. [13] 2D-DCT STRAIGHT Spectral NMF AV-JP MOS/PESQ/STOI × × × ×

2017 Cornu and Milner [5] AAM mouth
Codebook entries

(mel-filterbank

amplitudes)

FFNN/RNN GRID corpus MSE/ ESTOI/ PESQ × × × ×

2017 Ephrat et al. [1] Raw pixels face
Mel-scale and

lineae-scale
CNN/FFNN/BiGEU GRID corpus Amazon Mechanical

Turk (MTurk)
× × × ×

2017 Ephrat and Peleg [21] Raw pixels face LSP of LPC CNN/FFNN GRID/ TCD-TIMIT STOI/ ESTOI /PESQ
/ViSQOL × × × ×

2017 Ra et al. [14] 2D-DCT STRAIGHT Spectral GMM M2TINIT Mel-cepstrum Distortion

(MelCD)
× × × ×

2018 Akbari et al. [2] Raw pixels face
AE features/

spectrogram
CNN/LSTM/FFNN/AE GRID corpus PESQ/Corr2D/STMI × × × ×

2019 Takashima et al. [26] Raw pixels face WORLD spectrum CNN/FFNN AV-JP MOS / WER × × × ×

2019 Vougioukas et al. [23] Raw pixels face Raw audio waveform GAN/CNN/FFNN GRID corpus
PESQ/WER/

AV Confidence/

AV Offset/STOI/

MCD

× × × ×

2020 Michelsanti et al. [10] Raw pixels mouth

/face
WORLD features CNN/GRU/FFNN GRID corpus PESQ /ESTOI/WER × × × ×

2021 Joanna et al. [27] Raw pixels face Mel spectrograms GRID/Lip2Wav × × × ×
2021 Yadav et al. [25] Raw pixels face Mel spectrograms LSTM/AE GRID corpus STOI/ ESTOI/ PESQ × × × ×

2022 Mira et al. [24] Raw pixels face Raw audio waveform CNN/GAN/AE GRID/LRW/

TCD-TIMIT
PESQ/STOI/MCD/WER × × × ×

2022 Mira et al. [28] Raw pixels face Mel spectrograms
Visual encoder/

SVTS/

Parallel WaveGAN

GRID/LRW,LRS3/

VoxCeleb2
STOI/ESTOI/WER/PESQ × × × ×
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Table 1. Cont.

Task Year Paper Input Output Model Info Dataset Metrics UD MS MT MV

Reconstructed
Speech on
Unconstrained
Datasets

2020 Prajwal et al. [16] Raw pixels face AE features/
spectrogram CNN/LSTM/AE GRID/TIMIT/

Lip2Wav
CNN/LSTM/AE ✓ × × ×

2022 He et al. [29] Raw pixels face AE features/
spectrogram CNN/LSTM/AE Lip2Wav STOI /ESTOI/MOS ✓ × × ×

2022 Varshney et al. [30] Raw pixels face Mel Frequency Cepstral
Coefficients (MFCC )

The latent variable
model/
transformer

GRID/ Lip2wav STOI/ ESTOI/ PESQ ✓ × × ×

2022 Millerdurai et al. [31] Raw pixels face AE features/
spectrogram CNN/AE/BiLSTM AVSpeech/LRW/

UTKFce
MOS/STOI/ESTOI/
PESQ /WER

✓ × × ×

2022 Wang and Zhao [32] Raw pixels face Mel-spectrogram
A spatial-temporal
factorized
transformer
visual encoder

GRID/ Lip2Wav MOS/PESQ ✓ × × ×

2022 Hegde et al. [33] Raw pixels face Mel-spectrogram VAE-GAN GRID/TCD-TIMIT/
LRW/LRS2

PESQ/ STOI/ SED ✓ × × ×

Reconstruct
Speech from
Multi-Speaker

2021 Kim et al. [17] Raw pixels face Mel-spectrogram GAN GRID/TCD-TIMIT/
LRW

STOI/ESTOI/
PESQ/WER/MOS

× ✓ × ×

2021 Oneat, ă et al. [18] Raw pixels mouth Mel-spectrogram CNN/ResNet/LSTM GRID Corpus STOI / PESQ /
MCD/ WER

× ✓ × ×

2022 Wang et al. [20] Raw pixels mouth Mel-spectrogram VCVTS GRID/ LRW PESQ/ STOI/
ESOI / RMSE

× ✓ × ×

2021 Um et al. [19] Raw pixels mouth
/face

Mel-spectrogram GAN-based GRID Corpus NISQA/ CER/
WER/MOS/

× ✓ × ×

Multi-Task
Speech
Reconstruction

2019 Qu et al. [34] Raw pixels face AE features/
spectrogram

CNN/LSTM/Bi-GRU/
FFNN/AE

GRID Corpus PESQ/ESTOI/
WER/CER

× × ✓ ×

2022 Qu et al. [35] Raw pixels face AE features/
spectrogram

CNN/LSTM/Bi-GRU/
FFNN/AE

GRID /TCD-TIMIT/
CMLR/LipSound2

PESQ/ESTOI/
WER/CER

× × ✓ ×

2022 Zeng et al. [36] Raw pixels face AE features/
spectrogram CNN/BiLSTM GRID/TCD-TIMIT MOS/ PESQ × × ✓ ×

2023 Kim et al. [37] Raw pixels face Mel-spectrogram CNN/ASR model LRS2/LRS3/LRW STOI/ ESTOI/
PESQ/ WER

× × ✓ ×

Multi-View
Speech
Reconstruction

2018 Kumar et al. [38] Raw pixels mouth LSP of LPC CNN/ Bi-GRU/FFNN OuluVS2 PESQ × × × ✓
2018 Kumar et al. [39] Raw pixels mouth LSP of LPC CNN/LSTM/FFNN OuluVS2 PESQ × × × ✓
2019 Salik et al. [40] Raw pixels mouth LSP of LPC STCNN/Bi-GRU OuluVS2 PESQ × × × ✓
2019 Kumar et al. [41] Raw pixels mouth LSP of LPC CNN/ Bi-GRU/FFNN OuluVS2 PESQ × × ✓ ✓

2019 Uttam et al. [42] Raw pixels mouth AE features/
spectrogram CNN/LSTM/FFNN/AE OuluVS2 PESQ/Corr2D × × ✓ ✓
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2.2. Reconstructed Speech with Unconstrained Datasets

Recent research has aimed to improve reconstructed speech quality using datasets con-
taining more speech from individual speakers without any constraints, such as Lip2Wav [29],
AVSpeech [31], and UTKFace [31]. Prajwal et al. [16] introduced an adapted autore-
gressive sequence-to-sequence model, Lip2Wav, derived from Tacotron 2, to produce
mel-spectrograms based on video frames. Their emphasis was on precise lip-to-speech
mappings for individual speakers within the unconstrained Lip2Wav dataset, encompass-
ing 120 h of talking face videos from five speakers. Through comparisons with prior
research [21,23] in the same dataset, their approach resulted in a substantial fourfold in-
crease in overall speech intelligibility.

Subsequent studies aimed to enhance the Lip2Wav model. He et al. [29] introduced a
flow-based non-autoregressive lip-to-speech model named GlowLTS, designed to bypass
autoregressive constraints and facilitate faster inference. Varshney et al. [30] used framed
frame sequences as feature distributions using transformers within an autoencoder context.
Their approach yielded marginal improvements, raising the Short-time Objective Intelli-
gibility measure (STOI) measurements from 0.377 to 0.394 and 0.490, respectively, in the
Lip2Wav dataset for Chemistry Lectures. In addition, Millerdurai et al. [31] presented the
Lip2Speech method, with key design choices to achieve accurate lip-to-speech synthesis
with the unconstrained datasets AVSpeech, LRW and UTKFace. They achieved STOI mea-
surements of 1.38 with the LRW dataset and 3.55 MOS score compared to the groundtruth
of 4.56 with the LRW dataset.

These strategies offer viable solutions for unconstrained lip-to-speech synthesis, aim-
ing to enhance speech quality and intelligibility through large datasets. Nonetheless, their
reliance on a two-stage pipeline involving the Griffin-Lim algorithm constrains audio
quality and inference speed. Additionally, the speaker-specific training approach neces-
sitates separate models for each speaker, entailing speaker dependence and restricting
broader applicability.

2.3. Reconstructed Speech with Multiple Speakers

Regarding speaker-dependent models, Takashima et al. [26] introduced an exemplar-
based strategy for multi-speaker reconstruction. They used a CNN to extract high-level
acoustic features from visual frames, aiding the estimation of target spectrograms through
an audio dictionary. Vougioukas et al. [23] proposed a GAN for directly estimating speech
signals from mouth-focused video frames. While this enabled intelligible speech synthesis
in a speaker-independent context, the PESQ score reached only 1.24 on unseen speakers
with the GRID dataset. This is arguably due to the model’s generation of raw waveforms,
for which appropriate loss functions were challenging to ascertain.

Oneat et al. [18] introduced a video-to-speech architecture to enhance previous multi-
speaker speech reconstruction methods. They integrated additional speaker-related input,
including discrete identity or speaker embeddings, to separate linguistic content and
speaker identity. Adversarial losses were introduced to segregate identity from video
embeddings. Their model used both video and a specified identity as input, producing
utterances in the chosen identity while preserving content intelligibility (WER 42.7%) and
showcasing effective speaker control (EER 7.3%) across synthesised audio from videos
of 14 diverse speakers. Similarly, Um et al. [19] proposed a multi-speaker face-to-speech
waveform generation model, employing a GAN alongside linguistic and speaker charac-
teristic features. Their approach enabled the direct conversion of face images into speech
waveforms through end-to-end training. Linguistic features were extracted from lip move-
ments via a lip-reading model, and speaker characteristics were predicted by face encoders
through cross-modal learning. This model achieved MOS scores of 3.74 and 3.87 for seen
and unseen data with four speakers from the GRID dataset. Wang et al. [20] proposed a
multi-speaker VTS system based on cross-modal knowledge transfer from voice conver-
sion (VC). Utilising vector quantization with contrastive predictive coding (VQCPC) for
VC’s content encoding, discrete phoneme-like acoustic units were derived. Their system
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achieved PESQ scores of 1.816 and 1.417 on seen and unseen speaker tests with GRID speak-
ers. While they achieved multi-speaker speech reconstruction to a certain extent, these
studies all necessitate additional information such as speech or output text supplementary
information to reconstruct speech from multiple speakers. In the absence of explicit speaker
details, distinguishing and reconstructing speech from different speakers becomes challeng-
ing for these models. Moreover, their intricate structures hinder lightweight deployment
and implementation on portable devices.

2.4. Multi-Task and Multi-View Speech Reconstruction

Qu et al. [34] introduced LipSound [34] and its successor, LipSound2 [35], which
use visual information for speech synthesis and speech recognition for transcription. By
capturing mouth movements, they reconstructed speech as mel-spectrograms, forming
the basis for recognition. Speaker-dependent evaluations show that LipSound’s mel-
spectrograms exhibit a 0.843% character error rate and 2.525% word error rate with the
GRID Dataset. LipSound2 achieves an average PESQ score of 1.72 with the GRID and
TCD-TIMIT datasets.

Subsequent research [38–40,42] focused on multi-view speech reconstruction, aiming
to enhance speech quality through the integration of visual inputs from multiple angles. Ku-
mar et al. [39] employed multiple mouth angles to estimate the LSP representation of LPC co-
efficients for audio. Notably, they achieved an Average PESQ score of 2.5291 for Speaker 1
(Male) and 2.6255 for Speaker 10 (Female) from the OuluVS2 database. Uttam et al. [42]
extended this to multi-view speaker-independent techniques by using multi-view speaker
videos and lip pose angles to identify optimal views. A decision network selected the best
view combination and model for speech signal reconstruction. Their results showed a
PESQ score of 1.623 and a Corr2d score of 0.816 with the OuluVS2 database.

These studies aimed to enhance speech quality through text information output and
multi-view utilisation. However, a key limitation is the lack of consideration for speaker
independence. Additionally, their system structures are complex, demanding substantial
data, resulting in high computational cost.

2.5. Review Conclusions

Although research has been conducted on speech reconstruction from silent videos,
there are two crucial issues. Firstly, while ensuring the quality of speech prediction, the
model’s performance also needs to be considered. This includes factors such as the model
being lightweight and robust, as these are essential for practical deployment. To the
best knowledge of the authors, there is no relevant research addressing this problem in
this domain, as the key focus of current research is on speech reconstruction with deep
neural networks without considering lightweight solutions. Secondly, speaker-independent
speech reconstruction results are currently unsatisfactory. Reconstructing speech from silent
videos involving multiple speakers requires supplementary audio or textual inputs. There
is a need for a direct speech reconstruction model reconstructing speech from multiple
speakers without additional supplementary data.

3. Gabor-Based Visual Feature Extraction

Gabor filters are a widely used technique in image processing and computer vision,
where an image is convolved with a bank of Gabor filters at different orientations and
scales, resulting in a multi-channel representation of the image that captures both spatial
and frequency information [43]. In the context of facial recognition, Dakin and Watt [44]
used Gabor filters to identify human faces, and found that horizontally oriented features
were the most informative, forming a distinctive “barcode” mapping of the face, with clear
distinctions between features such as the lips, teeth, philtrum, and mentolabial sulcus.

This was extended in previous research by the authors [3] to capture more detailed
mouth movement features with a novel Gabor feature extraction method for capturing
3D geometric lip features using Gabor-based image patches. This can effectively extract
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three-dimensional features from speakers such as mouth opening area and depth, for a
better understanding of mouth movement during speaking. Recent studies [6,11,45] have
demonstrated the effectiveness of the Gabor feature extraction method in visual speech
recognition tasks. The authors previously applied Gabor feature extraction for English and
Mandarin Chinese speech recognition [11], which achieved comparable performance to
deep learning CNN-based approaches while maintaining system simplicity and explain-
ability. Compared to other visual extraction methods such as Active Appearance Models
(AAM) [46], 2D-DCT [47], and CNNs [48], Gabor features strike a good balance between
interpretability and accuracy, enabling parameters to be easily adapted and used for de-
tailed analysis [3]. They also offer the advantage of being explainable and robust enough
to recover from errors, making them suitable for real-world speech analysis applications
such as speech recognition, synthesis, tracking, and linguistics. By first applying a Gabor
transform and then extracting geometric features, information about the movement and
shape of the lips during speech production can be visualised. Our Gabor feature extraction
method was introduced in Li et al. [49], and is summarised below:

3.1. Proposed Feature Extraction Approach

Figure 1 illustrates the feature extraction flow chart, which involves tracking the
ROI, filtering, and calculating Gabor lip region features, which will be explained in more
detail below.

Figure 1. Flowchart of the lip feature extraction system showing frame extraction, ROI identification
and extraction, Gabor transform, and lip feature extraction .

Gabor Lip Image Generation

Given a sequence of images In (where n = 1 . . . N) extracted from a video file, the
widely used Dlib toolkit [50], along with a trained model file, Shape-Predictor-68-Face-
Landmarks, used in previous research by the authors [3,11], is used to identify 68 landmark
face features. To detect the mouth region (ROI), four features are selected, represented by
four x and y coordinate pairs Lnx(1, 2, 3, 4) and Lny(1, 2, 3, 4), respectively, and CnL(X, Y),
the centre point of the ROI (mouth region), is calculated as shown in Figure 2.

Figure 2. (left) Landmark features detected by the dlib toolkit, and (right) ROI extracted using the
4 landmark features.
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Horizontal Gabor filters of greyscale images are then calculated, using the real compo-
nent of a Fast Fourier Transform:

g(x, y; λ, θ, ψ, σ, γ) = exp(− x′2 + γ2y′2
2σ2 ) cos(2π

x′
λ

+ ψ) (1)

where:
x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

This is implemented using the Opencv Python function:

cv2.getGaborKernel((Ksize, Ksize), σ, θ, λ, γ, ψ) (2)

This has six parameters:
Ksize is the Gabor kernel size;
σ is the standard deviation of the Gaussian function used in the Gabor filter;
θ is the orientation of the normal to the parallel stripes of the Gabor function, which is
90 degrees;
λ is the sinusoidal factor wavelength in the equation;
γ is the spatial aspect ratio;
ψ is the phase offset, defined as 0 by default.

The above six parameters control the shape and size of the Gabor function. The role
of each parameter is discussed in detail below. To illustrate the effects of parameters, the
following values were chosen as a starting point: ksize = 50, θ = 90, λ = 10, σ = 5, γ = 0.5,
ψ =0. Figure 3 is a GRID dataset image that is used here to demonstrate Gabor feature
extraction in the following illustrations.

Figure 3. A sample image used to demonstrate Gabor feature extraction.

Ksize: When varying ksize, the size of the convolution kernel varies. Figure 4 shows
example results when applying ksize with 5, 10, 25, 50 pixels. As shown in Figure 4b, when
Ksize = 15, more efficient information about facial features can be extracted. That means a
proper Gabor parameter is vital for feature extraction.

Wavelength (λ): The wavelength governs the width of the strips of the Gabor function.
Increasing the wavelength produces thicker strips and decreasing the wavelength produces
thinner strips. Keeping other parameters unchanged and changing the wavelength to 5, 10,
15, and 20, the stripes shown in Figure 5 get thicker.

Orientation (θ): Theta (θ) controls the orientation of the Gabor function. The zero-
degree theta corresponds to the vertical position of the Gabor function. Figure 6 shows
the different orientations of the Gabor kernel. Different orientations of the Gabor filter
highlight different features of the face. In Figure 6b, the vertical filter (θ = 0) obtains
more vertical information, such as ears and neck, whereas the Horizontal filter (θ = 90)
receives information about the eyes and mouth. The 45 and 135-degree filters can highlight
other information.
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(a) The Gabor kernel with 5, 10, 25, 50 pixel kernel sizes.

(b) Facial Gabor features with 5, 10, 25, 50 pixel kernel sizes.

Figure 4. Gabor kernels and facial Gabor features with different kernel sizes.

(a) The wavelength of the Gabor kernel with sizes of 5, 10, 25, 50.

(b) The facial Gabor feature with 5, 10, 25, 50 kernel wavelengths.

Figure 5. The Gabor kernel and facial Gabor features with different wavelengths.

(a) The orientation of the Gabor kernel for 0, 45, 90, 135 degrees.

(b) The facial Gabor feature with 0, 45, 90, 135 degrees orientation.

Figure 6. The Gabor kernel and facial Gabor features with different orientations.
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Standard deviation of the Gaussian envelope (σ): The sigma parameter (σ) controls the
overall size of the Gabor envelope. For larger values of σ, the envelope increases, allowing
more stripes, and with smaller sigma values, the envelope tightens. Figure 7 shows that
with increasing sigma values from 1 to 15, the number of stripes in the Gabor function
increases. In Figure 7b, it can be seen that when σ = 15, more stripes can be seen in the
features of the eyes.

(a) The sigma of Gabor kernel with 1, 5, 10, 15.

(b) The facial Gabor feature when sigma of 1, 5, 10, 15 is applied.

Figure 7. The Gabor kernel and facial Gabor features with different sigma values.

The spatial aspect ratio (γ): The gamma parameter (γ) controls the ellipticity of the
Gaussian function. When γ = 1, the Gaussian envelope is circular. However, according
to Jones and Palmer [51], it has been found to vary in a limited range of 0.23 < γ < 0.92.
As shown in Figure 8, when increasing the value of gamma from 0.3 to 0.9, keeping other
parameters unchanged, the width of the Gabor function reduces. Figure 8b shows shorter
eye and mouth features.

(a) The gamma of Gabor kernel with 0.3, 0.5, 0.7, 0.9.

(b) The facial Gabor features when applying sigma with 0.3, 0.5, 0.7, 0.9.

Figure 8. The Gabor kernel and facial Gabor features for different gamma values.

In this work, four parameters need to be adjusted: Ksize, σ, λ, and γ. Preliminary
investigation identified the optimal parameters as: Ksize = 12, σ = 6 , λ = 15, and γ = 0.5.
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3.2. Visual Input I: Gabor Lip Image

To minimise noise, filtering is applied to the image with thresholding [52]. To de-
termine the optimal segmentation threshold, the Python function filters.threshold_yen is
used with the Yen algorithm [53]. This identifies each pixel in the transformed image as
belonging to either the target or background region. The resulting image is used to create
the resized Gabor Lip Image (GLI), a 28 × 28 2D image, as shown in Figure 9.

Figure 9. 2D Gabor Lip Image (2D-GIL).

Recent research [2,21,25,26,28] on speech reconstruction often uses raw pixel inputs
of the entire face as the model input, but using the entire face results in a large amount
of visual input data that can be very challenging for a model to learn. For example,
in Akbari et al. [2], the input pixel size of each frame is (228, 228, 3), meaning that the
number of pixel values that the model needs to learn in each frame is as high as 155,952.
However, many of these values are not related to speech, which can affect the model’s
performance and robustness. By using the Gabor filtering method to remove arguably
less relevant information and focus on the mouth region, the input size can be reduced
from 155,952 to just 784 inputs. Furthermore, these filtered data values can more intuitively
reflect the changes in lips when speaking.

3.3. Visual Input II: Gabor Lip Features

In addition to using Gabor Lip Images as network input, this paper also reports
experiments with Gabor Lip Features. For each target lip image, the Gabor lip features are
calculated. The Python regionprops function is used to identify the closest region r to the
ROI centre point as the target lip region and calculate features in the form of a lip ‘patch’
covering the mouth area, as shown in Figure 10. The feature extraction approach has been
fully described in previous research [49], and full details can be found there.

Figure 10. Gabor Transformed ROI.

For each lip patch r, seven feature values are generated: width, height, area, intensity,
x and y values of the central point, and orientation. The box width is the inter-lip width.
The height is the inter-lip height. The area is the number of pixels, The intensity is the sum
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of each pixel density value (the darker the inter-lip area, the deeper the mouth opening
and the larger the sound intensity), as shown in Figure 11.

Figure 11. Example of mouth ROI, showing height, width, area, and intensity.

Compared to pixel-based inputs such as face pictures or Gabor Lip Images, Gabor
lip features significantly reduce the quantity of visual input data required for speech
reconstruction. The original pixel-based image input, which required 155,952 inputs
(one for each pixel), can be reduced to just seven Gabor lip eigenvalues, resulting in a
significantly smaller network input. By utilising Gabor lip eigenvalues, which directly
reflect lip changes, the number of layers in the model can be reduced by removing all CNN
layers entirely, resulting in faster speech reconstruction and more lightweight models.

4. Gabor-Based Speech Reconstruction Network

Gabor lip features offer valuable insights into lip shape and motion during speech
production, suggesting the theoretical feasibility of generating speech signals from lip
movements. In this paper, two novel speech reconstruction systems are introduced, based
on distinct visual features. The first model, GaborCNN2Speech, enhances the baseline
LipAudSpec model. It replaces mouth image inputs with Gabor lip images to simplify the
input, and reduces the number of CNN layers from 7 to 1. The CNN output is then fed into
an LSTM network to capture temporal sequence information, generating an autoencoder
spectrogram, which is subsequently converted into an audio signal. The second model,
GaborFea2Speech, uses Gabor features as inputs, further reducing input complexity and
eliminating all CNN layers. The features are directly input into an LSTM network to
produce the autoencoder spectrogram. Figure 12 shows the overall model architecture,
where (i) presents the Lip2AudSpec baseline model, which is the CNN-based model
used by Akbari et al. [2], and is used here for comparison; (ii) displays our proposed
GaborCNN2Speech model, which is fully introduced in Section 4.1; and (iii) illustrates our
proposed novel GaborFea2Speech which uses the Gabor feature extraction presented in
Section 3.3 as the input to the simplified model, which will be introduced in Section 4.2. In
this work, an LSTM-based model has been chosen for several reasons: Firstly, it mirrors the
approach of Akbari et al. [2], who use an LSTM for their baseline model, and allows for a
consistent comparison. In addition, previous research by the authors has identified that
LSTM-based approaches can achieve good results when using Gabor features for speech
recognition [6,11], and so this approach is used in this paper.
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Figure 12. Architecture of Gabor-based speech reconstruction networks. (i) presents the Lip2AudSpec
baseline model, (ii) displays our proposed GaborCNN2Speech model, and (iii) illustrates our new
GaborFea2Speech model.

4.1. Model I: GaborCNN2Speech

Our GaborCNN2Speech model represents a novel approach to speech reconstruction,
employing a Gabor CNN-based architecture that harnesses the texture and edge informa-
tion extraction capabilities of Gabor filtering and the robust image recognition abilities of
CNNs. This integration of techniques seeks to enhance visual feature extraction perfor-
mance while simplifying model complexity. Gabor filtering is known for its proficiency in
extracting robust and discriminative image features, which are subsequently effectively
processed by CNNs to recognize intricate patterns and structures. This combined approach
has demonstrated high accuracy in various domains, including visual recognition [54],
speech recognition [55], and emotion recognition [56].

In preliminary experiments (not reported here), the architecture design of the Gabor-
CNN2Speech model was explored by reducing the number of CNN layers and parameters
(thus reducing the complexity). We then compared the training time, the inference time, and
the accuracy of the spectrogram reconstruction. Therefore, gradually reducing the number
of CNN layers and model parameters from seven layers to one layer while simultaneously
decreasing its parameters was trialed, thus reducing the training time and consumption of
memory and energy. It was found that good results could be delivered with just a single
CNN layer, and this structure is used for the results presented in this paper.

GaborCNN2Speech Model Structure

Our proposed GaborCNN2Speech model is shown in Table 2. The input is a sequence
of Gabor mouth pictures extracted from each frame and resized to have dimensions W × H.
It is then divided into K non-overlapping slices each of length Lv. First, and second-order
temporal derivatives at each frame were calculated to form a 4D tensor of shape (3, H, W,
Lv), where 3 is the number of time-derivative channels (0th, 1st and 2nd order). The target
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bottleneck feature vector was also divided into K slices with length Lv and no overlap. A
1 layer convolutional network followed by a 3D max pooling layer is used to extract spatial
and temporal features of the video sequence. The CNN maintains its spatial dimension
and order so that an LSTM can model time dependencies, so its output is reshaped to
a tensor of shape (Lv, N f ), in which N f represents the spatial features extracted by the
convolutional network. This reshaped tensor is fed into a single-layer LSTM network with
512 units to capture the temporal pattern. The output of this layer is further flattened and
fed into a single-layer fully connected network and then finally to the output layer. The
output layer has 32*La units to give 32-bin * La-length bottleneck features which are then
connected to the decoder part of the pre-trained autoencoder to reconstruct the auditory
spectrogram. The audio waveform is then reconstructed using NSRTools, the auditory
spectrogram toolbox developed by Chi et al. [57].

Table 2. Structure of GaborCNN2Speech Network.

Layers Size

Input Layer (None, 3, 28, 28, 5)

Conv3D (32)
BatchNormalization ()
LeakyReLU
MaxPooling3D (2, 2, 1)
Dropout (0.25) (None, 16, 40, 80, 5)

Reshape (None, 5, 12,800)

LSTM (512)
BatchNormalization ()
ELU (alpha = 1.0)
Dropout (0.25) (None, 5, 512)

Flatten (None, 2560)

Dense (2048)
BatchNormalization ()
ELU (alpha = 1.0)
Dropout (0.4) (None, 2048)

Output Dense (832)
Activation (sigmoid = 0.05) (None, 832)

4.2. Model II: GaborFea2Speech

Our proposed GaborFea2Speech model uses Gabor Lip Features (as detailed in
Section 3.3) as inputs. Instead of the original 28 × 28 pixel Gabor lip images, seven key
visual features (width, height, mass, area, Xpos, Ypos, and orientation) are used to represent
lip dynamics. This reduction in input data dimensionality, from 782 to 7, is accompanied
by an enhancement of the feature set through the incorporation of three-time derivatives,
effectively extending the Gabor features. This extended Gabor feature set serves as a direct
visual representation of lip changes during speech, eliminating the need for complex CNN
layers. The preprocessed Gabor features are directly fed into a 1-layer LSTM sequence
network to generate the corresponding audio spectrogram. To the best knowledge of
the authors, this is the first attempt to use Gabor Features for speech reconstruction, and
this approach offers advantages in terms of lightweight structure and speed of training.
Moreover, the objective is to harness the distinctness of Gabor feature visual attributes
across different speakers by developing a multi-speaker speech reconstruction model based
on Gabor Features, thereby achieving greater speaker independence.

Pre-processing is an essential step for GaborFea2Speech. In each 3-second Grid video,
the Gabor features input matrix has dimensions Fn ∗ L f (7 × 75), where Fn represents
the feature dimensions and L f is the frame length. The output is a spectrogram with
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dimensions Sn ∗ Ls (32 × 390), where Sn represents the encoded spectrogram components
and Ls denotes the total spectrogram time frequency. When reconstructing speech using
Gabor features, the main challenge is the mismatch between the shorter input length
of 75 and the longer output length of 390, which can result in inaccurate predictions and
information loss. Moreover, the lower input feature dimension of 7 as compared to the
desired output dimension of 32 may result in reduced accuracy and difficulties in capturing
complex relationships in the data. We experimented with pre-processing to investigate
different input sequence lengths and feature dimensionalities.

4.2.1. GaborFea2Speech-Input Sequence Dimension Testing

The effect of input sequence length on speech reconstruction can be evaluated by
extracting input sequences with different numbers of frames from the original videos. The
write_video function from the movie.py package was used to extend the input sequences
during the pre-processing stage of the GaborFea2Speech model. By adjusting the frame
extraction rate, the original rate of 25 fps was transformed to 85 and 130 fps, which
increased the frame count of each video from 75 to 255 and 390 frames, respectively, where
390 matches the desired output sequence length. 100 videos from Speaker 1 were selected,
the accuracy and PESQ scores of the predicted spectrograms was evaluated (more detail
will be provided in the main experiments section), and a sample was randomly selected and
its spectrogram and speech waveform plotted to provide a visual assessment of different
input sequence lengths. These preliminary results indicated that the matching of input
and output sequences is a critical factor in the success of our GaborFea2Speech model. If
the input sequence is only 75 frames, significantly shorter than the output sequence, the
model cannot accurately predict the desired output, which results in unintelligible speech.
With the increase in input sequence length to 255 frames, which is still short of the output
sequence, the model captures a significant portion of the input information, resulting in
higher prediction accuracy and quality than with 75 frames. Upon extending the input
sequence to 390 frames, which matches the length of the output sequence of the model,
the model successfully predicts all essential speech information in the preliminary trials,
resulting in improved prediction accuracy and PESQ scores. Therefore, this configuration
is used in the experiments reported in the following sections.

We also assessed whether input dimensionality affected the quality of reconstructed
spectrograms and speech by varying input dimensionality while keeping the input se-
quence length constant at 390. By applying the time derivative method to input features, it
was possible to increase the dimensionality of the input features in order to ensure that they
accurately represent the data and capture the necessary information. With the addition
of 1D, 2D, 3D, and 4D time derivative channels, the 7 Gabor features were expanded to
14, 21, 28, and 35. It was found that the accuracy of reconstructed spectrograms improves
with increasing the number of input features. The highest accuracy was achieved by using
21 features. As a result of these preliminary trials, the GaborFea2Speech model is con-
figured to use 2-D time derivatives and is also interpolated to have an input sequence of
390 frames.

4.2.2. GaborFea2Speech Model Structure

The final structure of our proposed GaborFea2Speech model is shown in Table 3.
Input to the network is a sequence of Gabor features, denoted as Fn, extracted from silent
video frames. To increase the length of the input sequence, video frames are upsampled
to 130 fps, resulting in a 3-s sample video of 390 frames. This length is then divided into
K non-overlapping slices Lv. Gabor features are augmented with first and second-order
temporal derivatives to enrich the input representation, tripling the dimension of Gabor
features. This fusion results in a 2D tensor with dimensions (Lv, 3*Fn). The target bottleneck
spectrogram feature vector, which acts as the desired output, is also partitioned into K slices
of length La without overlap. By reserving the spatial aspect of the preprocessed input,
an LSTM can be directly used to model time dependencies. A single-layer LSTM network
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with 512 units is utilised to capture temporal patterns. LSTM outputs are then flattened
and passed through a single-layer fully connected network before reaching the final output
layer. A similar procedure is followed in the output process as with the GaborCNN2Speech
model. A sigmoid nonlinearity is used at the output layer, while the LSTM and fully
connected layers use ELU activation functions. The audio waveform is then reconstructed
using the auditory spectrogram toolbox [57], which estimates the phase that corresponds
to the magnitude of the auditory spectrogram and performs an inverse transformation.

Table 3. Structure of GaborFea2Speech Network.

Layers Size

Input Layer (None, 26, 21)

LSTM (512)
BatchNormalization ()
ELU (alpha = 1.0)
Dropout (0.25) (None, 5, 512)

Flatten (None, 2560)

Dense (2048)
BatchNormalization ()
ELU (alpha = 1.0)
Dropout (0.4) (None, 2048)

Output Dense (832)
Activation (sigmoid = 0.05) (None, 832)

5. Experiment Design
5.1. Dataset

The widely used [2,3,5,58,59] GRID audio-visual corpus [60] is utilised for training
speech reconstruction models, allowing comparisons with other related research. The GRID
corpus includes audio and video recordings of 34 speakers, each with 1000 utterances, with
each utterance consisting of a combination of six words categorised into six categories from
a 51-word vocabulary.

Three tests were conducted: individual speakers, multiple speakers, and vocabulary
tests. To assess the generated speech on each individual speaker model, two male speakers
(S1, S27) and two female speakers (S16, S25) were randomly selected. For the multiple
speaker test, data from multiple speakers was combined, using four males (S1, S10, S17, S27)
and four females (S11, S15, S16, S25). These resulted in larger datasets, using the combined
1000 sentences from each speaker. The dataset configurations are shown in Table 4. For the
vocabulary test, 51 words were extracted from sentence samples (S1 and 100 samples) with
the time-aligned file in order to train our proposed system on each word.

Table 4. Multi-Speaker train and test configurations.

Model Speakers on Training Set (80%) Speakers on Test Set (20%)

1-S

S1 (male) S1
S25 (female) S25
S16 (female) S16
S27 (male) S27

2-S S1, S27 (male ×2) S1, S27
S16, S25 (female ×2) S16, S25

4-S S1, S25, S16, S27 (male ×2, female ×2) S1, S25, S16, S27

6-S S1, S17, S27, S16, S15, S25 (male ×3, female ×3) S1, S17, S27, S16, S15, S25

8-S S1, S10, S17, S27, S16, S11, S15, S25 (male ×4, female ×4) S1, S10, S17, S27, S16, S11, S15, S25
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5.2. Implementation

Our system used a GeForce GTX 1050ti GPU (16GB of memory). Keras [61] (with
TensorFlow backend) was used in Python 3. NSRtools [57] in MATLAB was used to
transform auditory spectrograms and waveforms.

For GaborCNN2Speech, the length of each video slice Lv was set to 5, and the length
of each audio slice La to 26, to ensure that there are an equal number of audio and video
slices K. With Gabor lip pictures cropped with a width W and height H of 28, enough
lip features could be extracted. For GaborFea2Speech, seven Gabor features (Fn) were
extracted from each video frame and 2-time derivative channels were added to extend the
feature number to 21. The length of each video slice Lv is 26, which equals the length of
each audio slice La with the same number of audio and video slices K. Both the visual and
audio data were divided into training, validation, and test sets, with ratios of 80%, 10%,
and 10%, respectively.

For model training, weight initialization was performed using the method by proposed
by He et al. [62]. Batch normalization [63] was used for all layers, dropout [64] of p = 0.25 in
the convolutional block, and the L2 penalty multiplier was set to 0.0005 for the convolutional
layer. For LSTM and MLPs after the convolutional blocks, a dropout of p = 0.3 was used,
and regularization was not used. The model was trained using a batch size of 15, and
the parameter α for ELU non-linearity [65] was set to 1. To improve the robustness of
the network, data augmentation was performed in each epoch by randomly selecting
videos and either flipping them horizontally or adding a small level of Gaussian noise.
This approach mirrors the methodology of Akbari et al. [2], who identified that, although
the reconstruction performance dropped slightly, the overall lip performance structure
improved significantly. This paper, therefore, used the same methodology. Optimization
was performed using Adam [66] with an initial learning rate of 0.0001, which was reduced
by a factor of 5 if the validation loss was not improving for 4 consecutive epochs. The loss
function for all networks was CorrMSE [2]. For auditory spectrogram generation, NSRtools
was used, a Matlab toolbox by Chi et al. [57]. Parameters for all auditory spectrogram
generation and audio waveform reconstruction from the spectrogram were f rm_len = 10,
tc = 10, f ac = −2, and sh f t = −1.

5.3. Metrics

Several well-established metrics were used to evaluate the accuracy, intelligibility, and
quality of the reconstructed speech. 2D Pearson’s correlation coefficient (Corr2D) [67] was
used to measure the correlation between the reconstructed and main spectrograms (ranging
from −1 to +1). To assess the intelligibility, the Short-time Objective Intelligibility measure
(STOI) was utilised, which has a range between 0 and 1. For evaluating the overall quality,
Perceptual Evaluation of Speech Quality (PESQ) [68] was employed. PESQ returns a score
between −0.5 and +4.5. Additionally, the Objective Overall Quality (OOQ) metric was
utilised, introduced by Hu and Loizou [69], which combines individual objective measures
such as PESQ, Log-Likelihood Ratio (LLR) [70], and Weighted-Slope Spectral Distance
(WSS) [69], as defined in Equation (3):

CQ = 1.594 + 0.80PESQ − 0.512LLR − 0.07WSS (3)

6. Results

Here, results are reported using both single and multi-speaker models, as well as
individual vocabulary tests, using the datasets introduced in Section 5.1. We compare our
proposed GaborCNN2Speech and GaborFea2Speech models with a leading CNN-based
approach, Lip2AudSpec.

6.1. Single Speaker Model Results

Four speakers were selected (see 1-S in Table 4), using 1000 sentences for each speaker.
Our proposed networks were trained with an 80%, 10%, and 10% split for training, val-
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idation, and testing, respectively. Corr2D, PESQ, OOSQ, and STOI were applied for
evaluation, as discussed in Section 5.3. Additionally, to provide a visual comparison of the
reconstructed results, one sample was selected from each speaker and the reconstructed
spectrogram compared with the original. The results are shown in Table 5.

Table 5. Comparative evaluation of GaborFea2Speech and GaborCNN2Speech Networks against
Lip2AudSpec for individual speaker speech reconstruction.

Measure Model S1 S16 S25 S27 AVG IQR

Corr2D GaborFea2Speech 60.90% 70.10% 65.13% 60.54% 64.17% 24.81%
GaborCNN2Speech 63.60% 70.80% 66.03% 64.70% 66.28% 14.18%

Lip2AudSpec 64.40% 69.10% 56.33% 54.90% 61.18% 17.25%

PESQ GaborFea2Speech 1.488 1.882 1.617 1.889 1.719 0.624
GaborCNN2Speech 1.399 1.816 1.735 1.805 1.689 0.550

Lip2AudSpec 1.646 1.735 1.378 1.746 1.626 0.536

OOSQ GaborFea2Speech −0.334 0.667 0.402 0.391 0.282 0.848
GaborCNN2Speech −0.366 0.659 0.566 0.338 0.299 0.836

Lip2AudSpec −0.145 0.430 −0.039 0.037 0.071 0.522

STOI GaborFea2Speech 0.149 0.332 0.335 0.226 0.261 0.208
GaborCNN2Speech 0.147 0.313 0.315 0.249 0.256 0.170

Lip2AudSpec 0.118 0.327 0.295 0.204 0.236 0.159

Table 5 compares GaborFea2Speech, GaborCNN2Speech, and Lip2AudSpec. While
there are fluctuations for individual speakers, the average shows that our proposed Gabor-
Fea2Speech and GaborCNN2Speech models demonstrate slightly improved performance
compared to Lip2AudSpec across all measures. GaborCNN2Speech achieves the highest
scores in Corr2D (66.28) PESQ (1.689), and OOSQ (0.299), while GaborFea2Speech out-
performs GaborCNN2Speech in the STOI measure (0.261 vs. 0.256) and Lip2AudSpec
only achieves 0.236. This demonstrates that the proposed models better preserve speech
intelligibility and similarity to the original speech. Regarding OOSQ, GaborCNN2Speech
achieves the highest average score of 0.299, followed by GaborFea2Speech with 0.282.
Lip2AudSpec obtains the lowest average score of 0.071. This is the largest difference be-
tween models and indicates that the proposed models effectively reduce speech distortion
and enhance objective speech quality. The IQR values highlight the variation in model
performance across different measures. GaborCNN2Speech generally demonstrates a more
consistent performance based on lower IQR values, suggesting its stability across the evalu-
ated measures. Conversely, GaborFea2Speech and Lip2AudSpec exhibit larger IQR values,
indicating more dispersion in their results.

Figure 13 shows examples of reconstructed spectrograms. Figure 13a(1)–a(3) shows
the original spectrograms of four selected speakers (S1, S25, S27) along with their corre-
sponding sample sentences: “bin blue by f 8 please”; “bin green at l q now”; “bin blue
with x 8 now”; “bin blue by p 8 now”. Figure 13b(1)–b(3) shows reconstructed Gabor-
Fea2Speech spectrograms, Figure 13c(1)–c(3) shows the spectrograms reconstructed with
GaborCNN2Speech. For comparison, Figure 13d(1)–d(3) shows equivalent Lip2AudSpec
spectrograms. The comparison clearly shows that our proposed models outperform the
baseline model in terms of spectrogram reconstruction. Our spectrograms exhibit enhanced
clarity and sharper spectral peaks, indicating a higher fidelity in reproducing the original
speech characteristics. Notably, our GaborFea2Speech method demonstrates superior ac-
curacy in reconstructing the frequency space and maintaining the temporal continuity of
phonemes across window samples. It also demonstrates superior accuracy in reproducing
the original speech characteristics, especially for capturing high-frequency information. In
contrast, the baseline model struggles to retrieve high-frequency information.
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Figure 13. Comparative analysis of spectrogram reconstruction using proposed and baseline models.
(a(1)–a(3)) show the original spectrograms. Reconstructed spectrograms from GaborFea2Speech and
GaborCNN2Speech are displayed in (b(1)–b(3)) and (c(1)–c(3)), respectively. (d(1)–d(3)) show the
Lip2AudSpec spectrograms.

6.2. Multi-Speaker Model Results

Multi-speaker speech reconstruction is important for evaluating model independence.
Our proposed models are compared with the baseline, using the datasets described in
Section 5.1, labelled as 1-S, 2-S, 4-S, 6-S, and 8-S. To validate performance, 100 samples from
speaker S27 were randomly selected and the reconstructed speech from this speaker evalu-
ated in various multi-speaker scenarios. The results are shown in Table 6 and Figure 14.

Table 6. Speech reconstruction results from multiple speaker models.

Measure
Lip2AudSpec GaborCNN2Speech GaborFea2Speech

1-S 2-S 4-S 6-S 8-S 1-S 2-S 4-S 6-S 8-S 1-S 2-S 4-S 6-S 8-S

Corr2D 60.70% 39.22% 39.28% 33.05% 29.55% 66.18% 64.67% 51.47% 49.91% 46.18% 64.77% 61.26% 63.00% 58.17% 54.52%
PESQ 1.627 1.414 1.458 1.476 1.431 1.696 1.697 1.591 1.703 1.699 1.739 1.714 1.809 1.778 1.684
OOSQ 0.071 −0.155 −0.304 −0.170 −0.384 0.300 0.243 −0.049 0.156 −0.042 0.302 0.252 0.221 0.198 −0.031
STOI 0.242 0.213 0.244 0.260 0.251 0.269 0.283 0.285 0.339 0.315 0.278 0.287 0.330 0.355 0.320
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Table 6 shows that GaborFea2Speech consistently outperforms Lip2AudSpec and
GaborCNN2Speech in all speaker scenarios. Under the Corr2D measure, GaborCNN2Speech
achieves the highest percentage (66.18%) in the 1-S scenario, followed by GaborFea2Speech
(64.77%). However, in the 2-S scenario, GaborFea2Speech outperforms both Lip2AudSpec
and GaborCNN2Speech with a percentage of 61.26%. In terms of PESQ, GaborFea2Speech
achieves the highest overall score (1.739), closely followed by GaborCNN2Speech (1.696).
GaborFea2Speech consistently outperforms the other methods in terms of OOSQ, exhibiting
the highest values across all scenarios. Similarly, under the STOI measure, GaborFea2Speech
demonstrates the highest scores, indicating superior speech intelligibility compared to
Lip2AudSpec and GaborCNN2Speech.

Figure 14. Comparative analysis of speech reconstruction for Speaker S27: GaborFea2Speech and
GaborCNN2Speech models versus Lip2AudSpec with different datasets(1-S, 2-S, 4-S, 6-S, 8-S). Sub-
plots (1)–(4) show the average accuracy (Corr2D), PESQ score, objective overall speech quality
(OOSQ), and STOI measurement of the reconstructed speech

Figure 14(1–4) shows the average accuracy (Corr2D), PESQ scores, objective overall
speech quality (OOSQ), and STOI measurement of the reconstructed speech for speaker S27
using models trained with different numbers of speakers. The results show the superior
performance of the proposed GaborFea2Speech and GaborCNN2Speech models. Notably,
the GaborFea2Speech model consistently outshines the other models across all metrics and
scenarios. The results show that with all datasets and metrics, our GaborFea2Speech model
delivers not only the best performance with multiple speakers but is also notably more
stable with different datasets. There is a consistent pattern of both our proposed models
outperforming the CNN model, even when trained with large datasets.

To further compare performance, a sample sentence was randomly selected (“bin
blue by f 8 now”) from speaker S27 and the spectrogram and waveform analysed to
visualise the change across various multi-speaker scenarios. Figure 15i(0) shows the original
spectrogram and waveform. Figure 15a(1)–a(5) presents the reconstructed spectrograms
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and waveforms using our proposed GaborFea2Speech model in 1-S, 2-S, 4-S, 6-S, and
8-S scenarios, Figure 15b(1)–b(5) shows the equivalent for our proposed GaborCNN2Speech
model, and Figure 15c(1)–c(5) shows Lip2AudSpec visualisations.

Figure 15. Reconstructed spectrogram and waveform comparison for Speaker S27. i(0): original
spectrogram and waveform of “bin blue by f 8 now”. (a(1)–a(5)): reconstructed spectrograms
and waveforms for GaborFea2Speech with 1-S, 2-S, 4-S, 6-S, 8-S datasets. (b(1)–b(5)): equivalent
GaborCNN2Speech results. (c(1)–c(5)) equivalent Lip2AudSpec results.

Figure 15 demonstrates that with our multi-speaker dataset, the proposed Gabor-
Fea2Speech model exhibits minimal sensitivity to the number of speakers when reconstruct-
ing spectrograms and waveforms, meaning that it is more suitable for multi-speaker speech
reconstruction. GaborCNN2Speech is moderately affected by the number of speakers, but
the baseline Lip2AudSpec model is heavily influenced by the number of speakers and is
unable to reconstruct multi-speaker speech.

Figure 15a(1)–a(5) shows that GaborFea2Speech consistently and accurately recon-
structs a significant portion of frequency content with excellent temporal continuity and
phonetic accuracy as the number of speakers increases. Moreover, the reconstructed wave-
forms from GaborFea2Speech showcase high amplitude precision and minimal sensitivity
to the number of speakers. GaborCNN2Speech exhibits partial reconstruction of frequency
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content in spectrograms and amplitude information in waveforms when the number of
speakers is low (Figure 15b(1)–b(3)). However, as the number of speakers increases, its re-
construction performance gradually declines. At six speakers, GaborCNN2Speech only cap-
tures the temporal continuity of phonetic samples, losing a significant amount of frequency
content and amplitude information (Figure 15b(4)). The accuracy further decreases with
eight speakers (Figure 15b(5)). In contrast, the Lip2AudSpec results in Figure 15c(1)–c(5)
exhibit the poorest performance in multi-speaker speech reconstruction. It should be noted
that with eight speakers, the model loses almost all frequency content and amplitude
information, resulting in effectively random reconstruction of noise-related information.

6.3. Individual Word Results

In addition to complete sentences, GaborFea2Speech and GaborCNN2Speech per-
formance with individual words was compared. The vocabulary from 1000 sentences of
Grid Speaker 1 was extracted, which encompassed 6 categories and 51 distinct words,
representative of the full set of vocabulary found in the Grid Corpus. The words were
trained using GaborFea2Speech and GaborCNN2Speech models. Table 7 provides a com-
parison of GaborFea2Speech and GaborCNN2Speech across different word categories. The
results indicate that GaborFea2Speech consistently outperforms GaborCNN2Speech in
terms of accuracy, speech quality, overall quality, and intelligibility. Notably, adverbs were
found to have the highest accuracy and speech quality, while letters had the best speech
intelligibility based on GaborFea2Speech. GaborCNN2Speech demonstrates competitive
performance in the command category for accuracy and the colour category for perceptual
quality and intelligibility. These results highlight GaborFea2Speech’s superior performance
in various aspects of word reconstruction. This indicates its effectiveness in capturing and
reconstructing speech from different word categories. This is also shown in the radar graph
in Figure 16.

Table 7. Speech reconstruction from vocabulary: evaluating GaborFea2Speech and Gabor-
CNN2Speech Networks on word category.

Measure Model Command Colour Preposition Letter Digit Adverb Average

Corr2D GaborFea2Speech 79.15% 79.15% 76.15% 77.25% 80.50% 80.56% 78.79%
GaborCNN2Speech 73.32% 72.85% 67.03% 69.52% 71.0% 73.01% 71.08%

PESQ GaborFea2Speech 1.32 1.27 1.27 0.86 1.23 1.28 1.21
GaborCNN2Speech 0.80 0.82 0.75 0.75 0.78 0.81 0.79

OOSQ GaborFea2Speech 0.29 0.31 0.26 0.26 0.34 0.45 0.32
GaborCNN2Speech 0.27 0.27 0.26 0.27 0.31 0.3 0.29

STOI GaborFea2Speech 0.35 0.41 0.44 0.38 0.50 0.45 0.42
GaborCNN2Speech 0.39 0.44 0.43 0.39 0.48 0.43 0.43

Figure 16 shows the accuracy of the reconstructed spectrograms for both methods
across a predefined set of 51 words. Each spoke corresponds to a specific word, while
the distance from the centre represents the Corr2D accuracy metric. The methods are
differentiated by different colours, as shown in the legend. The results show that Gabor-
Fea2Speech achieves higher overall accuracy than GaborCNN2Speech across the word
categories. Specifically, it exhibits superior performance in vocabulary such as “B”, “O”,
and “V”, while GaborCNN2Speech performs more profitably in vocabulary like “Y”, “P”,
and “set”. Furthermore, certain vocabularies such as letters (D, G, H, J, Q, U and Y), digits
(1, 2, 5 and 7), colours (white and red), prepositions (in) and adverbs (please) consistently
perform better in both GaborCNN2Speech and GaborFea2Speech. Conversely, words
such as “F”, “I”, “X”, “Z”, “lay” and “soon”, demonstrate relatively lower performance
in both methods. These limitations may be attributed to the limited visual variations that
occur during the pronunciation of these vocabularies, which make it difficult for speech
reconstruction software to capture subtle visual changes.
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Figure 16. Radar graph analysis of GaborCNN2Speech and GaborFea2Speech in vocabulary-based
speech reconstruction.

6.4. Speed and Memory Performance

One key motivation for using Gabor features is the resulting lightweight models. Fast
and lightweight models are valuable in scenarios demanding quick response times and
minimal resource consumption. Evaluating training time and memory usage is valuable
for assessing a model’s lightweight and speed attributes. These metrics directly influence
the practicality of model deployment, especially in resource-constrained environments.

To compare the training time and memory usage, the GaborFea2Speech, Gabor-
CNN2Speech, and Lip2AudSpec models were trained across various speaker scenarios.
Each model was trained repeatedly in the same speaker scenario to calculate the mean
and Interquartile Range (IQR) values for both training time and memory usage. The mean
provides a central tendency of the data, while the IQR offers insights into the variability and
stability of the model performance. This training did not include time for pre-processing,
and focuses only on model training performance.

The results, as outlined in Table 8, reveal insightful contrasts in the training time and
memory usage among the models, thereby allowing an evaluation of their lightweight
and speed. Due to unavailability of the server used for other experiments, a different
machine was used for these tests, using an Intel Xeon w3-2423 processor, 128 GB of RAM,
and a NVidia RTX A5000 GPU. This improved training time for all models over the initial
experiments. We calculated the mean of five runs of each configuration.

Table 8. Comparison of training time and memory usage.

Model 1-S 2-S 4-S 6-S 8-S
AVG IQR AVG IQR AVG IQR AVG IQR AVG IQR

Training Time (Seconds)

GaborFea2Speech 6.0 1.1 6.4 0.2 9.0 0.7 11.4 0.4 13.6 0.1
GaborCNN2Speech 139.4 0.4 276.5 0.2 548.4 2.8 825.4 1.4 1102.7 1.8
Lip2AudSpec 53.7 0.9 103.0 0.1 204.7 0.2 308.2 1.5 413.2 0.8

Memory Usage (MB)

GaborFea2Speech 2572.1 52.8 2629.1 23.0 2685.9 21.1 2739.0 25.5 2797.2 19.4
GaborCNN2Speech 6042.6 319.9 7271.7 80.2 9334.6 204.1 12,047.3 551.8 14,917.3 92.3
Lip2AudSpec 6241.6 456.6 7805.7 97.0 10,236.4 153.3 13,219.4 375.2 15888.1 645.6

These results demonstrate the advanced lightweight and speed capabilities of our
proposed GaborFea2Speech model, showcasing its superiority over the other models in



Appl. Sci. 2024, 14, 798 25 of 30

terms of both training efficiency and memory optimization. It can be immediately seen that
the GaborFea2Speech approach uses a fraction of the memory and training time, thanks
to the use of lower dimensionality features and no requirement for CNN layers. Even
increasing the training set size to the full set of eight speakers did not make a notable impact.
Conversely, the GaborCNN2Speech approach performed much worse than expected. Less
memory was required than the CNN-based approach, but the training time was almost
three times slower. An investigation identified that although less CNN layers were used,
the consequence was that with less pooling and abstraction, the input into the LSTM layer
became much larger, resulting in a much slower training time.

The significantly lower average training times and memory usage across various
speaker scenarios underscore the GaborFea2Speech model’s suitability for efficient real-
time speech reconstruction, particularly in environments where computational resources
are limited. One caveat is that feature extraction is slower, as while all approaches use
preprocessing, the Gabor-based approach requires the application of a Gabor transform,
etc. However, the results show that for model training, this is a significantly quicker and
less memory intense approach overall.

7. Discussion

One key finding shows that while many results in the literature use CNN-based
performance, using Gabor features can not only generate improved results, but can generate
better results with a much lighter model. We were able to remove a number of layers entirely
from the model without negatively affecting performance. This, along with the reduced
number of input features, had a significant improvement in training time and a reduction
in memory usage.

We also found that using fewer features makes for a simpler and more intuitive
process, as the features can be visualised. The results also showed that by removing
other information, the system was able to maintain performance with multiple speakers
with less performance loss than the CNN-based model. We experimented with using the
filtered Gabor image as input, but ultimately the best performance came with our proposed
GaborFea2Speech approach. Multi-speaker performance is less analysed in the literature
than single-speaker models, and in this paper, the strengths of our proposed approach have
been demonstrated.

One interesting finding was that our Gabor-based features were consistently better
than using a pure CNN-based method. It was hypothesised that this approach would
deliver similar results but with a much smaller model, but the improvement with using
Gabor features, particularly with multi-speaker models, was larger than initially expected.
CNN-based approaches learn their own features, and previous research by the authors into
deep learning with speech recognition [71] used the Lucid Visualisation Python Library [72]
to investigate CNN-based features, finding that distinct features could be seen, focusing
on areas such as the outline and thickness of the lips and the mouth and teeth opening
(see Santos et al. for more details [71]. Arguably, by applying a Gabor transform, and
then extracting features, there is less speaker-specific irrelevant information being learned,
resulting in a reduction of the variability between different speakers. In terms of features,
although we do extract the standard width and height of the mouth region, we also extract
additional features, including orientation, area, and mass, which allows for a more three-
dimensional representation to be constructed, which means that we are arguably still
retrieving detailed information.

As a result of our preprocessing experiments, it was also discovered that effective
speech reconstruction can be achieved by matching the Gabor sequence length with the
output length of the feature and appropriately expanding the dimensionality of the fea-
ture. This shows that there are still limitations with the existing approach, with possible
further improvements from better feature design rather than just using derivatives. The
findings emphasise the superior performance of GaborFea2Speech in multi-speaker speech
reconstruction, capitalizing on the independence of Gabor Features across speakers. How-
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ever, the GaborCNN2Speech model, a GaborCNN-based approach, exhibits limitations
in multi-speaker scenarios, likely due to the CNN model’s difficulty in automatically dis-
tinguishing between speakers. Additionally, the performance of the Lip2AudSpec model
provides further evidence of the constraints of CNN-based speech reconstruction models
in multi-speaker scenarios.

In terms of the difference between approaches, there were differences between indi-
vidual speakers in the single-speaker models, but these performance differences tended to
be mirrored with both CNN and Gabor approaches, meaning that if the CNN approach
worked well with an individual speaker, then the Gabor approaches would also report
better scores. This reflects differences in articulation and speaker style and suggests that the
Gabor approach is not learning anything fundamentally different from the CNN approach,
just arguably a more optimised version. We have also found that both approaches, CNN
and Gabor, do not perform when presented with completely novel speakers, and so there
is still a fundamental limitation with regard to generalisation.

In addition, compared to other existing studies in multi-speaker speech reconstruction,
such as Takashima et al.’s exemplar-based approach [26], Vougioukas et al.’s GAN-based
approach [23], Um et al.’s GAN-based approach [19], and Prajwal et al.’s sequence-to-
sequence system [16] adapted from Tacotron 2, which necessitate the inclusion of additional
speaker characteristic features as auxiliary conditions for speaker identification, our Gabor-
based model eliminates the need for such additional features, allowing for direct application
in multi-speaker speech reconstruction.

Finally, it should also be noted that although our results are an improvement over
CNN-based approaches, the resulting speech quality is still very limited, with significant
distortion present. The work in this field is still relatively young, and there is still a lot
of improvement to be found to achieve higher speech quality and improve intelligibility,
especially with multiple speakers. However, fundamentally, while improved results have
been reported in this paper, there will always be limitations with a purely front-facing
lipreading approach, due to tongue and vocal cord movement that is not visible.

While this paper reports a number of interesting findings and demonstrates the
viability of using low-dimensional Gabor features for speech reconstruction, there are
a number of future research directions that will be explored. Firstly, in this paper, the
focus was on comparing our proposed method using the same datasets and metrics as
in other research, so future work could consider additional datasets and, in particular,
data also recorded from 30 degrees and side on, rather than simply full-face cameras
only. This would require additional datasets, and also additional experimentation with the
Gabor feature extraction. While focusing on lightweight features, future work will also
consider additional Gabor features, as well as integrating other feature extraction methods
and modalities. Finally, after improving system performance, future work would require
the improved system and additional feature extraction method to be tested with both
objective metrics and subjective listening tests, as well as in environments with acoustic
and visual noise.

8. Conclusions

In this paper, we presented a detailed literature review of audiovisual speech re-
construction and proposed two novel approaches for reconstructing speech from audio
information, GaborFea2Speech and GaborCNN2Speech. These used Gabor-based fea-
ture extraction to generate relevant features. Both of these approaches outperformed
CNN-based methods, and in particular, GaborFea2Speech performed particularly well
with models trained with multiple speakers. Our approach used a much smaller model
than is commonly used in the literature, with good results generated with a single LSTM
layer. However, although good results have been demonstrated, there is still room for
improvement. Future research will focus on improving output speech quality with im-
proved models, larger datasets, and additional context information, while still prioritising
a lightweight approach.
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