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5 Abstract. The G-Brownian-motion-driven stochastic differential equations (G-SDEs) as well as

6 the G-expectation, which were seminally proposed by Peng and his colleagues, have been extensively
7 applied to describing a particular kind of uncertainty arising in real-world systems modeling. Math-
8 ematically depicting long-time and limit behaviors of the solution produced by G-SDEs is beneficial
9 to understanding the mechanisms of system’s evolution. Here, we develop a new G-semimartingale
10 convergence theorem and further establish a new invariance principle for investigating the long-time
11 behaviors emergent in G-SDEs. We also validate the uniqueness and the global existence of the
12 solution of G-SDEs whose vector fields are only locally Lipschitzian with a linear upper bound. To
13 demonstrate the broad applicability of our analytically established results, we investigate its appli-

14 cation to achieving G-stochastic control in a few representative dynamical systems.
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16 ance principle, G-stochastic control
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18 1. Introduction. Long-time and limit behaviors of the solutions generated by
19 stochastic differential equations (SDEs) have received growing attention because
20 such behaviors usually correspond to particular functions in real-world systems
21 [10, 25, 31, 8, 3]. Interesting physical or/and biological phenomena have been system-
22  atically investigated, including asymptotic behaviors of random matrices in quantum
23 physics [34], stochastic resonance [2], stochastic homogeneity [4], stochastic stabi-
24 lization or synchronization [26, 32, 23, 20], and random-temporal-structure-induced
25 emergence [11, 12, 14, 13]. Also developed were stochastic versions of invariance prin-

26 ciple, which originated from LaSalle’s invariance principle [17, 18] for deterministic
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systems and then has been extended successfully to study the SDEs [28, 40], the
stochastic differential delayed equations (SDDEs) [27, 30], the stochastic functional
differential equations (SFDEs) [29, 39] and even the discrete stochastic dynamical
systems [41]. These versions of invariance principles are often used to elucidate the
asymptotic behaviors, such as stability, boundedness, and invariance in some chaotic
attractors, emergent in random systems.

In addition to the traditional frameworks of randomness and stochasticity, mea-
suring uncertainties of randomness is another important issue in those areas replete
with fluctuations and risks of high level, such as economics [16]. A seminal framework
by means of sublinear expectation was fundamentally built by Peng and his colleagues
to quantify such uncertainties [36] and then extended broadly in line with the mod-
ern probability theory. Indeed, the framework has been put forward to investigating
the G-Brownian-motion-driven stochastic differential equations (G-SDEs), which thus
provides a model to describe the randomness with uncertainties in evolutionary dy-
namics. Also systematically investigated was the well-posedness of G-SDEs [9, 36] and
stochastic functional differential equations (G-SFDEs) [37, 7]. Furthermore, although
the stability of G-SDEs has been widely investigated [21, 38], rigorously delicate de-
scriptions of stability, boundedness, control and even invariance property in dynamical
attractors using G-SDEs are still lacking.

In this article, we, therefore, intends to fill in this gap through novelly developing
an invariance principle for G-SDEs and investigate its applicability to the stochastic
control, especially in the case that the noise is uncertain. As such, this invariance
principle can render the analytical investigations of dynamics produced by G-SDEs
much clearer and more complete. In order to develop this new principle, we need
to establish a new version of G-semimartingale convergence theorem, nontrivially
generalizing the classical semimartingale convergence theorem developed in [24].

The remaining of this article is organized as follows. Section 2 introduces some
basic concepts and provides some preliminary theorems of sublinear expectations.

Section 3 rigorously proves the G-semimartingale convergence theorem as follows.

THEOREM 1.1. Assume A' and A? are two non-decreasing process with initial
value 0, AX(t) is a continuous process and E[A'(+00)] < +oco. Assume that Z is
a non-negative G-semimartingale satisfying E[ZT(0)] < oo with the form as Z(t) =
Z(0)+AL(t)—A%(t)+M(t), t > 0, where M (t) is a continuous G-supermartingale with
initial value 0. M(t) € LE(Q:) for every t > 0. Then, we have that A%(+o00) < +o00,
limy_y 4o Z(t) finitely exists, and that limy_, o M(t) finitely exists quasi-surely.

Here, we sketch the proof of the above convergence theorem as follows. By extending
the space of random variables, we generalize Fatou’s Lemma on the G-conditional ex-

pectation. Combining with the uppercrossing inequality, we derive the G-martingale
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convergence theorem for a continuous process and then establish the essential G-
semimartingale convergence theorem. Also in this section, we present the other more
applicable versions of the G-semimartingale convergence theorem. With all these
preparations, Section 4 presents our main result, the invariance principle for the G-
SDEs, and validates it using the established G-semimartingale convergence theorem.

Here, we show this principle as follows.

THEOREM 1.2. With those conditions and assumptions listed in Section 4, we sup-
pose that there exists a function V€ C*1(R% x Ry;R,), a function v € L*(R,;R,)
and a continuous function n : R? — R, such that lim| g o0 info<t< 00 V(2,) = 00
and LV (x,t) < ~(t) — n(x), where the diffusive operator LV = Vi + V,, f* +
G((mG (R*9 4 pkit) mGmlg’”glj)?’j:l) where FEinstein’s notations are applied
here. Then, we have that lim;_, o V(x(t),t) finitely exists quasi-surely and that
limy_y oo p(x(t)) = 0 quasi-surely. Moreover, we have lim;_, . d(x(t), Ker(n)) = 0.

Here, x(t) is the solution of the G-SDEs which read
(1.1) dx(t) = f(z(t),t)dt + g(x(t),t)dB(t) + h(x(t),t)d(B)(t).

The proof of such theorem, though inspired by [28], is rather different. By G-Itd’s
formula, we write out the function in a form of the G-semimartingale and then apply
the corresponding convergence theorem. By estimating the calculus of 1 based on the
uppercrossing stopping time, we show that all trajectories converge to the kernel of
the function 7 quasi-surely. Still in this section, we further present several generalized
versions of invariance principle. All these build up a solid foundation for Section 5,
where we use the G-stochastic control to stabilize representative complex dynamics,
demonstrating the broad applicability of our analytically-established results. Finally,

Section 6 provides some discussion and concluding remarks.

2. Preliminaries. In this section, we present some frequently used definitions
and results of sublinear expectation theory, which will be useful for our following
investigations. For more details, we refer to [5, 36, 35, 22].

To begin with, we let 2 be a given set, and H be the space of all real-valued
functions defined on Q. Denote by Cj1;,(R?) the space of all locally Lipschitz-
continuous functions on R?.  And, for any function ¢ € C)p;p(RY), if z;(w) € H
forall i =1,2,---,d, then p(z1(w), - ,z4(w)) € H.

Next, we provide some basic concepts on the sublinear expectation.

DEFINITION 2.1 (Sublinear Expectation [36]). A functional E[-] is said to be
a sublinear expectation on H if it satisfies: (1) El¢] = ¢, for any ¢ € R, (2)
E[X] < E[Y], for any X <Y, (3) E[X +Y] < E[X] +E[Y], and (4) EXX] =

AE[X], for anyA > 0.
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DEFINITION 2.2 (G-Function [36]). A function G : R x ST — R is said to be
sublinear and monotone if it satisfies (1) G(p + p,A + A) < G(p,A) + G(p, A),
(2) G(p,A) < G(p, A),if A< A, and (3) G(Ap, \A) = \G(p, A), ¥V X > 0.

Here, S denotes the space of d x d symmetric matrices. And A < A implies the

nonnegativity of the symmetric matric A — A.

In the following, we assume the function G defined in Definition 2.2 is indepen-
dent of the vector p. It is worthwhile to mention that, when d = 1, G is reduced
to the form G(r) = 1(r*5? — r=¢?) for some non-negative ¢ < . Here r* and r~
correspond to the non-negative and the non-positive parts of r, respectively. More-
over, if a symmetric G-Brownian motion satisfies E[AB(t), B(t)] = 2G(A)t with
G(A) = %I[:][AB(I)7 B(1)], then G is said to be a G-function related to the symmet-
ric G-Brownian motion B. Here, the definition of G-Brownian motion, as well as
G-conditional expectation, can be found in [36].

Moreover, it is necessary to introduce some definitions on some spaces of functions
and measures. Here, we denote, respectively, by

o .7, : The completion of o(B(s) : s < t),

o B(Q) : The Borel o-algebra on €,

e L°(Q): The space of all Z())-measurable functions,

e L7.(Q) : The completion of the space Lip(€2) under the norm ||- 2z, == (E[|- |p])%,

o Lip(Q):  {¢(B(t),B(t2) — B(t),-, Bltx) — Bltx1) : ¢ €
CrripR™HE) 0<t) <--- <ty <t}

o L2(Q0) : L4(9) N Lip (),

e M : The set of all probability measure defined on 2,

o Eg[]: The expectation under the traditional probability measure @,

e P(t,Q):={R e M: Eqg[X]|=Er[X],VX € Lip ()},

e Q:={Q e M: Eg[X] <E[X],VX € LL ()}, and

o L9(Q):={X € LY(Q): Eg[X] exists for any Q € Q}.

From Theorem 1.2.1 in [35], it follows that the sublinear expectation satisfies
E[X] = supgeg Fo[X] for each X € Lip(Q2). Thus, the definition of E[] can be
extended to £°(). In addition, for the G-conditional expectation defined above, it

can be represented by means of the probability space.

THEOREM 2.3 ([15]). For each Q € Q and X € LL(Q), EJ[X] =
eSS SUPRep(1,Q) QER|[X | %], Q-a.s.. Here, if Y = eSS SUP Rep(1,Q) QER|[X | Z,
it means that for every R € P(t,Q), Er[X | %] < Y,Q-a.s.. Moreover, if
Er[X | %] < Z for each R € P(t,Q), Q-a.s., then we must have Y < Z,Q-a.s..

For introducing G-Itd’s calculus, we define MZ ([0, T7]), a space of random process,

and the G-Itd’s calculus on it (refer to [36] for details). Moreover, the quadratic
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variation is defined in the same manner as that in normal stochastic analysis. However,

the range of the quadratic variation here is much different.

LEMMA 2.4 ([36]). For an m-dimensional G-Brownian motion B, there exists
a bounded, convex and closed set I' € ST such that (B)(t) € tI' := {ty : v € T'},
where ST represents the space of all positive symmetric matrices. Also, (B)(t) and
(B)(t+ s) — (B)(s) are identically distributed.

Remark 2.5. In what follows, denote by ¥ := maxycr(|y|r V |v]2) where |- |r and
| - |2, respectively, are the Frobenius norm [1] and 2-norm for the matrix. Then, it
follows from Lemma 2.4 that [(B)(t)|r V |(B)(t)|2 < 74t. Especially when m = 1, we

have 4 = 2. Also, the largest eigenvalue of a matrix is denoted by Amax (*)-

There are some very useful inequalities for our investigation in this article. Com-
bining the results of Sections 3.3-3.5 in [36], Lemma 2.4, and Remark 2.5, we give the

conclusions as follows.

THEOREM 2.6. For any n(t), v(t) € MZ[0,T], we have E (fOTn(t) dBi(t)> =

S
(T T & T _
0 and B (f; n(t) dB:(t) [} 7(®) aB;(1) = E(f @) a(Bi. BH®) < 7 -
& o T
E(Jy In(t)(®)] at).
Now we introduce the Choquet capacity and some related propositions.

DEFINITION 2.7 (Choquet Capacity, [36]). For A € B(R), define by c(A) :=
Supgeg QA] = E[lA]. A property is called valid quasi-surely if this property is valid
on the set Q\ A with ¢(A) = 0.

PROPOSITION 2.8 (Monotone Convergence Theorem, [5, 35]). If X(n) 1+ X,
{X(n)} € £9(), X(n) is nonnegative, then K[X (n)] 1 E[X].

THEOREM 2.9 ([19]). Assume that {M(n)} is a G-supermartingale, satisfying

sup,, E[]M ~(n)] < +o00. Then, lim,, o, M (n) exists, which is finite quasi-surely. Here,
the definition of G-martingale can be found in [36].

3. G-Semimartingale Convergence Theorem. In the literature, the semi-
martingale convergence theorem mainly describes the asymptotic property of the
semimartingale, which is a random variable comprising a martingale and a process
with bounded variation. Inspired by this well-established and broadly-applied con-
vergence theorem, we are to establish a G-semimartingale convergence theorem and
its variant. It will be shown that the G-semimartingale convergence theorem is based
crucially on Doob’s G-martingale convergence theorem. In fact, to our best knowl-
edge, the continuous version of Doob’s G-martingale convergence theorem has not yet

been established until the result presented as follows.

PROPOSITION 3.1 (G-Martingale Convergence Theorem, A Continuous Version).
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173 Assume that {M(t) : t € [0,+00)} is a right- or left-continuous G-supermartingale,
174 and M(t) € LE(Q4). Moreover, assume that E[suptzo M~(t)] < 4oo0. Then, M(t)
175 converges finitely to M(+o00) € Lg (Q) quasi-surely. Moreover, By [M(+00)] < M(t).
176 Here, the definition of Lé*(Q) is provided in Definition 7.2 of Appendizx 7.1.

177 The proof of this proposition is tedious and tangential to the main focus of this
178 article. To enhance the readability, we include the proof into Appendix 7.1. Now, with

179 this preparation, we establish the following G-semimartingale convergence theorem.

180 THEOREM 3.2 (G-Semimartingale Convergence Theorem). Assume that Al and
181 A? are two non-decreasing processes with initial value 0, and that A'(t) is a con-
182 tinuous process with B[A(+00)] < +o0. Also, assume that Z is a non-negative G-
183 semimartingale satisfying E[Z1(0)] < co with the form Z(t) = Z(0)+ A (t) — A2(t) +
184 M(t), t >0, where M(t) is a continuous G-supermartingale with initial value 0 and
185 M(t) € LL(S) for every t > 0. Then, we have that A%(4+00) < +oo, lim_, 400 Z(t)
186 finitely exists and limy_, oo M(t) finitely exists quasi-surely.

187 Proof. Notice that M(t) = Z(t) — Z(0) — AL(t) + A%(t) > —Z(0) — A'(+00). Then,
188 sup;sq M~ (t) < Z1(0)+ A'(+00). By Proposition 3.1, we have limg_, o M (t) finitely
189 exists quasi-surely. Because A%(t) = Z(0)+AL(t)+M(t)—Z(t) < Z(0)+ A (t)+ M(t)
190 and Z(t) = Z(0) + AL (t) — A%(t) + M(t), their limits also exist quasi-surely.

191 It is mentioned that this G-semimartingale convergence theorem can only deal
192 with the case where the limit of A'(¢) is supposed to be finite under the sublinear
193  expectation. We now give its variant, the G-semimartingale convergence theorem with
194  the F-stopping time. It can deal with the case where the condition on the finite limit
195 of A'(t) in Theorem 3.2 is removed. The tradeoff however requires more conditions

196 for the G-martingale M.

THEOREM 3.3 (G-Semimartingale Convergence Theorem with Stopping Time).
Assume that A' and A% are two non-decreasing processes both with initial value 0,
and that A'(t) is a continuous adapted process. Also assume that Z is a non-negative
adapted process satisfying E[|Z(0)|] < oo with the form Z(t) = Z(0)+ A'(t) — A%(t) +
M(t), t >0, where M(t) is a continuous process with initial value 0. Furthermore,
assume that there exists a series of F-stopping times Ty satisfying {Tn — +00} quasi-
surely such that, for any Q € Q, Eg[M(t A7Tn)|Fs] = M(sA7n). Then, we have

quasi-surely
oAl o . .
{w: Al (400) < 400} C {w : t_13+moo Z(t) finitely emsts}
A2 . , :
N{w: A*(4+00) < +o0} N {w : tl}TooM(t) finitely exzsts} .

197 Here, A C B quasi-surely means that ¢(A\B) = 0, where ¢ is the Choquet capacity
198 provided in Definition 2.7.
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199 Proof. Denote by A = Q\ ({w : limyy 00 Z(t) finitely exists} N {w : A%(+00) <
200 400} N{w : limy 400 M(t) finitely exists}). For every @ € Q, we have Eg[|Z(0)]] <
201 E[|Z(0)]]. By the G-semimartingale convergence theorem for the normal probability

202 space [24], we have Q(A) = 0. By the arbitrariness of the @’s choice, we obtain that
203 ¢(A) = supgeg Q(A) = 0, which therefore completes the proof.

204 4. Invariance Principle in Sublinear Expectation. Now, we consider a d-

205 dimensional G-stochastic differential equation which reads
206 (4.1) dz(t) = f(z(t),t)dt + g(x(t), t)dB(t) + h(x(t), t)d(B)(t),

207 where the initial value 2(0) = zo. Furthermore, we denote, respectively, by |A|s :=
208 /tr(ATA) and |A]:= |Alp = /327 -, a}; different norms of a given matrix A.
209 All functions f: R? x Ry — R g :R?x R, — R¥™X™ and h: R% x R, — Rdxmxm
210 are supposed to be continuous. In addition, h*¥ = h*? and fi(x,-), ¢"(x,-) and

211 hFi(z,-) € MZ[0,T) for every T > 0. We need the following assumptions.

212 Assumption 4.1. For any N € N, there exists a number Cy such that |f(x,t) —
215 f(y,0)|+g(z, 1) —g(y,t)[+[h(z,t) —h(y,1)| < Cn|x—y| for all [z[Aly| < N. Here,

214 |h| still represents the norm for h of d X m x m dimensions.

215 Assumption 4.2. There exists a number C; such that |f(x,t)| + |g(z,t)| +
216 |h(z,t)| < Cy(1 + |]), for all (x,t) € R x R,

217 Underlying these assumptions as prerequisites, the solutions of Eq. (4.1) are well-

218 posed from a certain perspective as follows.

219 PROPOSITION 4.3. If Assumption J.1 holds, there is a global unique solution in
220 a quasi-sure sense on [0, 7o), where Too = liMyy oo 7, 7 = inf{t > 0 : |x(¢)| >
221 N}.For given N > 0, there exists *™ € MZ[0,T] with T > 0 such that x = ¥ on
222 [0,7n). Additionally, for A = (a¥) : R% x Ry — R>*™ with o (x,-) € ML[0,T] and
223 T > 0, we have M (t) = fOtATN A(z(s),s)dB(s) is Q-martingale for each Q € Q. If

224 Assumption 4.2 holds, we have To, = +00 quasi-surely.

225 Remark 4.4. The proof of Proposition 4.3 is similar to those presented in Refs. [31,
226 21], which we omit here. It is worth mentioning that @(-), the solution to Eq. (4.1),
227 does not belong to MZ ([0, T]; RY). Actually, z(-A7n) € M2([0, T]; R?) for each N > 0,
228  which implies that our solution is locally integrable. In particular, if 7o, = 400, we
220 have x(-) € M2([0,T];R?) and it is globally integrable on [0, +0c0) now. Here, both
230 M2([0,T);R%) and M2([0,T); R?) are expanded integrand space defined in Chapter 8
231 of Ref. [36] satisfying M2 ([0, T];RY) ¢ M2([0,T);R?) ¢ M2([0,T];R9).

232 Next, we introduce G-It6’s formula which is useful in the following discussions.
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233 THEOREM 4.5 (G-Itd’s formula [22]). Let V € C*Y(R? x Ry;Ry). For the
234 d-dimensional G-stochastic differential equations dx(t) = f(t)dt + g(t)dB(t) +
235  h(t)d(B)(t) with the initial value x(0) = xy.  Moreover, f : Ry —

236 R, g+ Ry — R gnd h @ Ry — R with fi()), ¢i() €
237 MA[0,T), hKI() € ME[0,T] for every T > O. Then, V(x(t),t) =
238 V(x0,0) + fg Vi(z(s),s)ds + fg Ve, (x(s),8)fi(s)ds + f(f Ve, (x(8), 8)g" (s)dB;(s) +
239 fot Vi, (2(5), 8)h¥ (5)d(B;, B;)(s) + fot %Vz,m (x(s),8)g"(s)g" (s)d(B;, B;)(s).

240 Actually, G-Ité’s formula presented above could be applicable to M2([0, T]; R%)
241 and M2([0,T]; R%) according to Theorem 5.4 established in [22]. By virture of G-
242 It6’s formula, Assumption 4.2 used above can be replaced. To present this result, we
243 introduce the notation as LV = V; +V,, f? +G((ka (¥ 4 pkit) +kaxlgkiglj)§fj:1>,
244 where the function V € C%'(R? x R ;R, ). As such, we obtain the following result.
245 PROPOSITION 4.6. Suppose that Assumption J.1 holds and that there exists a
246 function v € L*(R4;R,) such that LV (z,t) < v(t). Moreover, V satisfies

247 (4.2) lim  inf V(z,t) = +oc.
|z]—00 0<t<+400

248 Then, Too, as defined in Proposition 4.3, satisfies Too = +00 quasi-surely.

249 For simplicity of expression, we still include the proof of Proposition 4.6 in Ap-

250 pendix 7.2, where the following proposition is needed.

251 PROPOSITION 4.7 ([21])). Let M(t) = [} ri;(s)d(B;, B;)(s) — [y 2G(k)ds, where
252 k€ ML([0,T);S™). Then, we have M(t) < 0 quasi-surely. Particularly E[M(t)] < 0.

253 In addition, we present the following G-stochastic Barbalat’s lemma that will be

254 used later, and its proof is provided in Appendix 7.3.

255 LEMMA 4.8. Suppose that Assumption 4.1 holds and T = +o0o quasi-surely,
256 where Too 18 defined in Proposition /.3. Also suppose that the solution to Eq. (4.1)
257 satisfies sup,ep+ |(t)] < +00 g.s.. Besides, there exists n € C(R%Ry) such that

+o0o
b (4.3) /O n(@(t)dt < +00, ¢.s.

259 Then, we have limy_, o n(x(t)) = 0 quasi-surely.
260 Now, with the following assumption, we state our main theorem.

261 Assumption 4.9. For each N > 0, t € Ry and all || < N, there exists a number
262 Ky > 0 such that |f(x,t)| + |g(z,t)| + |h(x,t)] < Kn.

263 THEOREM 4.10. Suppose that Assumptions 4.1 and 4.9 hold. Also suppose that
264 there eist three functions V € C*'(R4xR,;R,), v € LY (R ;R ) andn € C(R%:R,)
265 such that (UB) lim;| o0 info<i< 100 V(2,1) = 00 and LV (z,t) < v(t) —n(x). Then,
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we have that limy_, o V(x(t),t) finitely exists quasi-surely and that

(4.4) lim n(z(t)) =0 g¢.s..

t——+o0
Moreover, lim;_, o d(z, Ker(n)) = 0, where d(x, Ker(n)) := infycker(n) |2 — yl.

Proof. Using Proposition 4.6, the G-SDEs satisfying the conditions assumed in
this theorem have a global solution on [0,4o00) with a property that LV (x,t) <
~(t) — n(x) < 7(t). By G-Itd’s formula in Theorem 4.5, Proposition 4.3 and Remark

4.4, we have

V(@A) A Ty) = Vizo,0) +/O N Via(s), 5)ds

<[ v TV (@(5), 9) (@(5), 5)ds + / TV @ (s), $)97 (2(5), 5)dB; )
V) ) BB + [ Gl w().5)

9" (x(s), 5)d(Bi, B;)(s),

where 7y := inf{t > 0: [z(t)| > N}. Letting N — 400 and setting k = (x;;)]"—, for

every t > 0 where r;; = Vi, (W7 4+ %) 4V, 1, g% ¢, we get that Ty tends to 400
by Proposition 4.3 and

V(w(t)7t)=V(:Bo,O)+/ ds+/ Vo, (x fi(z(s),s)ds
[ Veulol), 9 ts). 148,(6) + / émj(w<s>,s>d<Bi7Bj><s>.

Thus, if we set

V(@(t),t) = V(w0,0) + /0 (s)ds — As(t / Vi (@(s), s)g" ((s), s)dB; (),

then A(0) = 0. Besides, according to Proposition 4.7, for every 0 < t; < t3 < +00,

we have

As(ts) — Ag(ty) = / " (s)ds - / Vi (@(s), 5) fi(x(s), 5)ds

_ Vt(w(s),s)ds—/Z %/{Z—j(a:(s),s)d<Bi,Bj>(s)

t1 t1

| sjas - | Vi(a(s),s)ds

- / Vi (@(s), 5) fi((s), 5)ds — / " Gn(a(s), 9)ds

t1 t1
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which implies that A (t) is a non-decreasing process. Using Proposition 4.3, we obtain
that fOMTN Vi, (x(s), 8)g" (z(s), s)dB;(s) is a Q-martingale for every @ € Q. Noticing
f0+oo v(s)ds < 400 and according to Proposition 3.3, we have a set Qp C § such
that ¢(Q\Q) = 0. Then, we have that, for all w € Qq, lim, 4o A2(t) finitely exists
P n((t))dt < +oo. From the

finite existence of the limit of V', we obtain that, on o, sup,>q V(z(t;w),t) < +oc.

and lim,_, o V(x(t),t) finitely exists. Thus, on Qq,

Hence, from the above-assumed condition (UB), it follows that there exists K (w) such
that sup;> |z(t;w)| < K(w). According to Lemma 4.8, we obtain lim;, o n(x(t)) =
0 quasi-surely.

For every w satisfying limi— oo n(z(t;w)) = 0 and supep, [z(tw)] < +oo,
there exists y(w) and a sequence {¢;} having lim; ,;. x(t;;w) = y(w). So,
lim; oo N(x(ti;w)) = N(y(w)) = 0 and Ker(n) # 0. If limsup,_, , ,, d(z(t;w), ker(n))
is positive, there exist a sequence {t;} such that d(x(t;; w), ker(n)) > ¢, for some € > 0.

This implies n(y) > 0, which is a contradiction.

Remark 4.11. Here, our conclusions nontrivially extend the corresponding results
obtained for the traditional SDEs. Particularly, the significant differences do exist.
First, in terms of the conclusions, we are able to induce relevant results even when the
system randomness itself is uncertain, greatly surpassing the applicability scope of ex-
isting Brownian motion-driven stochastic systems. From a technical standpoint, our
generalized stochastic differential equation (i.e., G-SDE) cannot measure the occur-
rence probability of events from the perspective of traditional probability measures,
but the capacities instead. Second, the construction of the monotone functions in our
semi-martingales differs significantly from the invariance principles in the traditional

stochastic analysis.

Next, we present another version of invariance principle, where 7 is a function

with respect to the function V.

THEOREM 4.12. Suppose that Assumption /.1 holds, and that there exist three
functions V. € C?L(R? x Ry;Ry), v € LY (R ;Ry) and n € C(Ry;R,y) such
that LV (z,t) < v(t) — n(V(x,t)) for all (x,t) € R® x R,. Then, we obtain that
limy s oo V(2(t),t) finitely exists quasi-surely and limy_, 4o n(V(x(t),t)) = 0 ¢.s..
Moreover, lim;_, 4 o d(V(z(t), 1), Ker(n)) = 0.

Proof. Analogously, the G-SDEs have a global solution on [0,+00) according to
Proposition 4.6. By the arguments akin to those for validating Theorem 4.10, we
obtain V(x(t),t) = V(xo,0) + fot'y(s)ds — As(t) + fot Vi, (x(8), 8)g" (z(s), s)dB;(s),
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323 where A3(0) = 0 and for every 0 < t; < ty < 400,

324 As(ts) — As(th) :/zv(s)ds—/Zin(w(s),s)fi(m(s),s)ds

325 —/tzvt(w(s),s)ds—/t2%nij(w(s),s)d<3i,3j>(s)
320 1 1
328 Z/tQ’y(s)ds—/QVzi(w(s)’s)fi(m(s),s)ds

1

- i[“«mwém—[”ama%&ms

330 = /t 27(s)ds - LV (x(s),s)ds > / 277(V(arz(s),s))ds > 0.

t1
Hence, by the G-semimartingale Convergence Theorem 3.3, there exists Q C Q such

that ¢(Q\Q) = 0. Furthermore, we have that, on €,

/000 n(V(x(t),t))dt < 400 and ngrfoo V(x(t),t) finitely exists.

331 Now, we claim that, for every w € Q, we have lim;_, o n(V (z(t;w),t)) = 0. We val-
332 idate the claim by contradiction. If this is not the case, then we have a sequence
333 {tx} with ¢x41 — ¢ > 1 and € > 0, such that n(V(x(ty;w),tx)) > €. Assume
334 sup;sq V(x(t;w),t) < K(w). Hence, there exists ; such that |n(z) —n(y)| < §
335 for 0 < x,y < K(w) and |z —y| < 6;. As limy, o0 V(2(t;w),t) finitely exists and
336 V(x(t;w), ) is continuous about ¢, we can easily check that it is uniformly continuous
337 onRT. Thus, there exists d2 < 1 such that [V (z(t;w),t)—V(x(s;w),s)| < d1, |[t—s| <
338 9. Consequently, for ¢t <t <t + d2, we have n(V(z(t;w),t)) > n(V(x(ty;w), t)) —
339 In(V(z(te;w), tr)) — n(V(2(t;w),t))| > §. Therefore, +oo > [ n(V(x(t),t))dt >
310 SO ::MQ n(V(x(t), t)dt > 3525 €2 = 400, which indicates a contradiction. Fi-
341 nally, the arguments for proving lim;_, . d(V (z(t),t), Ker(n)) = 0 are the same as

342 those for validating the last conclusion in Theorem 4.10.

343 Remark 4.13. A set A € B(Q) is said to be invariant if ¢({3t > 0, z(t;x0) ¢
344 .A}) = 0, for every xy € A. Actually, if we suppose some conditions to be valid only
345 in the invariant set A for Theorems 4.10 and 4.12, the conclusions in these theorems
346 still sustain.

347 Finally, we present two corollaries which can be obtained directly form the in-
348  variance principles established above. These results are related to the stability or the

349 exponential stability of the solution x(t).

350 COROLLARY 4.14. Let Assumption /.1 hold. Assume further that there exists a
351 function V€ C*(R? x Ry ;R,) such that

w2 (45) mlel) < Vi@t < psllal), LV(@.t) < —ps(lal),
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where w1, po and pg are three strictly increasing functions in [0, +00) with the initial

value 0 and pi(r), pa(r) — +oo as r — +oo. Then, we have lim;_, o |x(t)| =0 ¢.s..

Proof. From the condition assumed in (4.5), it follows that us*(V(x,t)) < |z,
which implies £V (x,t) < —puz(uy* (V(z,t))). According to Theorem 4.12, we have
limy o0 p3(py H(V(2(t), 1)) = 0 g.s., which implies lim; o, V(x(t),t) = 0 ¢.s.. There-

fore, we have lim;_, oo 1 (J£(t)|) = 0 g.s., which finally gives lim; o |2(t)| =0 g¢.s..

COROLLARY 4.15. Let Assumption 4.1 hold. Assume further that there exist
two functions: V€ C*Y(R? x Ry;Ry) and v € LY(Ry;Ry), such that eM|z|P <
V(x(t),t) and LV(x,t) < 7(t), where X and p are positive numbers. Then, we

have limy_, 4 o Hoglz(t)| < —% q.s..

Proof. Set n = 0 in Theorem 4.12. Then, lim; , - V(x(t),t) finitely exists quasi-
surely. Further use the condition that e*|x|P < V(x(t),t). The proof is therefore

complete.

5. Illustrative Examples: Applying G-invariance principle to achieving
G-stochastic control. In this section, we use several representative examples to
illustrate the applicability of our analytical results to realizing G-stochastic control of

the unstable dynamical systems.

Ezample 5.1. Consider a linear (complex network) system da(t) = Ax(t)dt.
Here, A = [11,5,2;5,11,2;2,2,14]. Then, it is easy to check that Apax(A) = 18 and
the system is unstable. Now, for a G-Brownian motion where ¢ = 3.5 and 2 = 4, we
choose D = I3 and C = [-19,11,2;11,-19,2;2,2,—10] to G-stochastically control
the linear system as x(t) = z¢ + fot Az(s)ds + fg Dz(s)dB(s) + fot Cz(s)d(B)(s).
Choosing V(z) := |z|? yields: LV (x) = 22" Az + G2z" D" Dx + 4" Czx). As
Amax(C) = —6, we easily derive that LV (x) < —2.5|z|. This, according to Corollary
4.14, ensures the asymptotic stability of the controlled system in a quasi-sure sense.

Moreover, if we set V(z,t) = e*|z|?, we obtain that LV (x,t) = LV (x) =
[T (2A + M)z + G2z D" Dz + 4z " Cx)| e, which, using the parameters g% =
3.5 and 72 = 4, yields LV (x,t) < (A — 1.5)|z|%. If we set A < 1.5, using Corollary
4.15 gives limy_, 4 oo %log|w(t)| < —0.75 g.s.. This clearly illustrates the exponential
stability of the controlled system.

Ezample 5.2. Consider an autonomous system, which reads dz(t) = f(x(¢))dt.
Here, f satisfies Assumption 4.1 and f(0) = 0. Moreover, f satisfies one-sided
Lipschitz condition, i.e., there exists a number L > 0 such that (z, f(z)) < L|z|*.
There are many systems, not globally Lipschitzian, only satisfying this one-sided
Lipschitz condition. For instance, both f(z) = x — 23 and the Lorenz system with
]T

f(x) = [oxe — oz, pr1 — w301 — T2, 2122 — Pus]’ satisfy the one-sided Lipschitz

condition. Now, we apply the G-stochastic control to the original dynamics, which
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500 yields dz(t) = f(z(t))dt + kY7, a(t)dB;(t) with k > (—L/c_1)"? with c_; :=
301 G ((*1)%:1)- Here, (—1)";,_; corresponds to an m x m matrix with all elements
392 are —1. Then, the controlled system becomes stochastically stable, whose proof is
393 included in Appendix 7.4. Take the three-dimensional Lorenz system for example.
394  We are able to use a one-dimensional G-Brownian motion to render the controlled
395  system stable quasi-surely, if we set m =1, c_; = G(—1) = —1¢% L < %(a + p), and

-2
306 k> (o4 p)/2a7 L.

397 Ezample 5.3. Consider an oscillating system da(t) = Cf(x(t))dt, where C =
308 [1,1,4;5,—1,4;8,1,0] and f(x) = [~z1,arctan(xs), tanh(z3)] . Now, we consider the
399  G-stochastically controlled system as dz(t) = Cf(x(t))dt +g(x(t))dB(t), where B is
400 a two-dimensional, independent and identically distributed G-Brownian motion with
101 2 =50 and g2 = 40, and g(z) = [A1x, Axx] in which A; = [1,0.5,0;0,1,0;0,0,1]
102 and As = [1,0,0;0,1,0.5;0,0,1]. Additionally, the G-function of B satisfies G(M ) =
103 Z?:l Gj(ajj), where M = (m;;); ;—, is a two-dimensional matrix, and G; is the G-
404 function related to the one-dimensional G-Brownian motion B;. Set V(x) = || for
105 some a > 0. By Appendix 7.5, R®\{0} is an invariant set of the system. It follows
106 that, on R3\{0},

407 LV (z) = a|z|*?[ — 27 + 21 arctan(z2) + 421 tanh(z3) — 52122 — 22 arctan(zs)
408 +4xs tanh(zs) — 8xzz + 23 arctan(mg)]

409 +alz|* G (|z|’g g + (o — 2)g " zz " g)

110 < alz|* 2 (—2] + 6|z 2a| + 12|z1 23| + 5|Tow3])

2
A11 +>alz]* Gy (|o*| A + (o - 2)(x " A;@)%) .

j=1
112 Notice that (x" Ajx)? > 1|z|?|A;z> + t|z|* and 2" A < 2|x|? for j = 1,2, and

113 set a = 2. Then, we obtain LV (z) < i|z|F + 25:1 2 |z|- 8 G, (%(wTAjw)Q -

414 %|:c|4> < —2|z|%. Setting 1 in Theorem 4.10 as 7(z) = =|x|F guarantees the
415 quasi-sure stability of the above controlled system.
416 In Appendix 7.6, we further provide a few numerical evidences for illustrating

417 the above examples. It is emphasized that those numerically-presented results do
118 not represent all the exact solution produced by the G-SDEs, but only provide some
419 evidences partially supporting the analytical results obtained in the above examples.
420  The numerical scheme used there is not complete, so it awaits further development

421 for rigorously approximating the solution of G-SDEs.

422 6. Conclusion. In this article, we have developed several invariance principles
123 for the stochastic differential equations driven by the G-Brownian motions. Our

124 work is basically inspired by the seminal works from two directions: one is from the
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125  stability theory of the traditional SDEs [28] and the other is from the fundamentally-
426 innovative works on the sublinear expectation [36]. Our contributions include not only
427  the establishment of the G-semimartingale convergence theorem and its variants for
428 the sublinear expectation, but also the establishment of several invariance principles
129 and their applications in investigating the long-term behaviors of G-SDEs. Indeed, we
430 anticipate that our analytical results can be beneficial to understanding and solving
431 the problems associated with uncertain randomness in dynamical systems.

432 As for the future research directions, the assumption on the linear growth and the
133 locally Lipschitz conditions can be further weakened through restricting the discussion
434 for the operator £ in some specific space. Also, further development of the invariance
435 principles for the G-SDDEs and the G-SFDEs could be promoted. More practically,
436 complete scheme for rigorously approximating the solution produced by the G-SFDEs

437  deserves deep investigation.
138 7. Appendix.

439 7.1. Proof of Proposition 3.1. First, we establish Fatou’s lemma for the G-
440 conditional expectation, which is a prerequisite for our proposition to be demon-

441  strated.

442 LEMMA 7.1 (Fatou’s Lemma for G-conditional Expectation). {X(n)} € L5(Q)
443 are a series of random vectors, and there ezists a random variable M such that
11 E[|M|] < 400 and X(n) > M for any n > 0. Then, E[lim, _ X(n)] <
w5 lim B[ X (n)].

—n—0o0

446 In order to present the proof for this lemma, we need to extend the space of

447 random variables and make some necessary preparations.

448 DEFINITION 7.2 ([15]). Introduce some extended spaces of random variables as
449 follows:
LL(Q) = {X € L0Q) : 3X(n) € LL(Q) such that X (n) | X},
LE(Q) = {X e L0(Q) B[] X[] < +00, X € ,cg(Q)},
m L5 Q) = {X € L9(Q) : 3X(n) € L (Q) such that X (n) 1 X},
LE(Q) = {X e L0Q) : B[ X]] < +00, X € cg(Q)}.
451 Then, we extend the G-conditional expectation on Eg (Q). Directly, we have

52 LY (Q) C LY (Q) € £5(Q) and LY (Q) C LE (Q) C L ().

453 LEMMA 7.3 ([15]). Suppose that {X(n)} C Lg (Q) is a series of non-decreasing
154 random wvariables. Denote by X := lim,_ o X(n). Then, we have quasi-surely

155 iMoo Be[X (n)] = By [X].
456 LEMMA 7.4. If X,Y € L5(Q), then X ANY € LL(Q) (resp. X VY € LL(2)).
157 Proof. As X,Y € L5(Q), there exists {X,,} and {V,} contained in Lip(Q2) such
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158 that E[|X(n) — X|] — 0 and E[[Y/(n) — Y]] = 0. For ¢, ¥ € Ci1ip(Q), we have
459 p AP = W € Cr1ip(Q). Thus, X(n) AY (n) € Lip(Q2). So we derive E[|X A
160 Y =X (n)AY (n)]] < E[|X — X (n)|]+E[[Y =Y (n)|] = 0, which implies X AY € LL(Q).
461 The case that X VY € L5(Q) is analogous.

162 LEMMA 7.5. If X(n) € LL(Q) and X (n) converges to X, and there exists a ran-
163 dom variable M such that B[[M|] < 400 and X(n) > M for any n > 0. Then,
464 X € Kg Q).

465 Proof. For any m,n > 0, by Lemma 7.4, we obtain that inf,<x<, X (k) € L5(Q).
166 Then, from Definition 7.2, it follows that infy>, X(k) € L& (). Also, by the
467 fact that M < infg>, X(k) < X(n), we have |infi>, X (k)] < |X(n)| + |M].
168 Thus, E[|infrs, X (k)|] < +oo and infzs, X (k) € LY () using Definition 7.2. As
169 X = lim, 4o infg>, X (k), we immediately obtain the conclusion using Definition
470 7.2

171 Proof of Lemma 7.1. Set Y (n) := infy>,, E;[X (k)]. Using the arguments analogous
172 to those performed in Lemma 7.5, we get Y (n) € L§ (Q). According to Lemma
173 7.3, we obtain lim, e B[V (n)] = E¢lim,_0e Y (n)]. Because of Y (n) < X(n), we
174 derive By [Y (n)] < Ey[X (n)] and lim,, o0 B[V (n)] < lim [ X (n)], which implies
175 Byflim, . X(n)] <lim, . E:[X(n)] we expect.

476 Now, we are in a position to prove the G-martingale convergence theorem step-

N — 00

N—r 00

477 by-step using the uppercrossing inequality.

478 DEFINITION 7.6. A random time 7 : Q — [0,+00) is called an F-stopping time,
179 if {7 <t} € F for every t > 0.

DEFINITION 7.7. For a finite subset ' C [0,+00), the interval [, B8] and the

process M = {M(t)} with M(t) € LL(2), we define the a series of F-stopping times

recursively by:

Ti(w) =min{t € F; M(t;w) < a}, oj(w) =min{t € F;t > 75(w), M(t;w)> B},
Tj+1(w) =min{t € F;t > 0;(w), M(t;w) <a}.

480  And the minimum of an empty set is defined as +oo. Let Up(a, S; M(w)) be the
481 largest number j such that oj(w) < +00. For any general set I C [0,400), we define
482 Ur(ay, B3 M(w)) = sup{Ur(a, B; M(w)); F C I, F is finite} .

183 PROPOSITION 7.8 (Upcrossing Inequality, A Discrete Version, [19]).  Assume
484 that {—=M(n) :n=1,2,--- N} is a G-supermartingale. If M(n) € L& (), then we
485 have IAE[U{LQ“..7N}(a,B;M(w))] < W.

486 LEMMA 7.9 (Uppercrossing Inequality, A Continuous Version).  Assume that
187 {M(t) : t € [0,4+00)} is a right- or left-continuous function and {—M (t) : ¢t € [0,400)}
188 1s a G-supermartingale. If M(t) € L& (), then we have that, for any integer n > 0,

This manuscript is for review purposes only.



Invariance principles for G-Brownian-motion-driven stochastic differential equations and their applications to G-stochastic control

16 X. PENG, S. ZHOU, W. LIN AND X. MAO
189 E[Upgnj (e, B; M(w))] < w.

190 Proof. Define A; = Ui<p<;{ni/k : ¢ = 0,1,--- ,k}. Then, the monotone
491 convergence theorem (Theorem 2.8), together with Definition 7.6 and Proposition
192 7.8, immediately yields: E [Ujo,njna (e, B M(w))] = lim;_ 400 ]I:][UAj (o, B M(w))] <
193 @[(Mén)—a)ﬂ
191 K [Ujo,n)(a, B; M (w))] < ) [Ujonino(a+ 6,8 — e M(w))] < %, which vali-

495 dates the conclusion as required due to the arbitrariness of €’s selection.

. Thus, for any sufficiently small € > 0, as M is right- or left-continuous,

496 Proof of Proposition 3.1. From Lemma 7.9 and Proposition 2.8, it follows that

. . GBl(—M(n) — a)t
97 BlUp ey B ~M@)] = T B[Ujg(0 5 ~M(w)] < sup = =0

n—+oo neN B—a N
sup,>o B[(=M)" ()] + laf _ sup» E[M~(0)] +|af _ Efsupiso M~ (1)) + |of
498 = < < 400
f—a f—a f—a
199 S0 Ul 4o0y(a, f; =M (w)) < 400 quasi-surely. Denote by A,pg =
500 {Upo,400) (@0 ;=M (w)) = +o0}. Since {w : —M(t;w) does not converge} C

501 Ug,geqda,g, —M(t) converges quasi-surely to some —M (+00). Here, M(+00) can
502 be 400 or —oo. By the fact that M(t) > inf;>9 —M™(t) = —sup;>q M~ (t) and
503 Lemma 7.5, we have M (+00) € Eg (€). And by Lemma 7.1, we further have

501 BM(+o0)< tim B[M(n)] < 28 sup 21~ (m)| + lim B
505 <2k [sup M_(t)} +RE[M(1)] < co.
>0

506 Thus, M(+0o0), finite quasi-surely, belongs to Lg (©). Finally, by virtue of Lemma
)7 7.1, we have By [M (+00)] < limy,_, o [ [M (ty)] < M(t), which completes the proof.

508 7.2. Proof of Proposition 4.6. From Propositions 4.5 and 4.3, it follows that

tANTN
509 V(x(t ATn),t ATn) = V(xo,0) + / Vi(x(s), s)ds
0

510 +/ TN ) f (= (),S)ds+/0 ” Vi, (2(s), 8)g" ((s), s)dB;(s)

0

- + / "V, (2(s), )R (2 (s), 5)d(Bi, B, (5)

0

*/0 Ly (@(s), 5)gM (@ (s). 5)g ((s), $)A(By. B;)(s).
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513 Set ;= (kij) € ML([0,T);S™), where n;; = Vi, (RF9 + h*9%) + V. .. g*gY. Using

514 Proposition 4.7 leads us to the calculations as follows:
tATN
515 Vet ATn),t ATn) = V(xo,0) +/ Vi(z(s), s)ds
0
tATN ) tATN N
516 + / Vi, (m(s), ) ((s), s)ds + / V. (@(s), 8)g” ((s), s)dB; (s)
0 0
tATN
517 +/ 5H¢j(l‘(5),8)d<B¢,Bj>
0
tATN tATN
518 < V(xo,0) +/ Vi(z(s), s)ds +/ G(n)ds
0 0
tATN _ tATN g
519 [ e s+ [ Vaes) )7 (). )8 (9
0 0
tATN tATN B
520 =V (x0,0) + / LV (z(s),s)ds + / Vi, (x(s), 5)g" (x(s), s)dB;(s)
0 0
+o0 tINTN N
2 V0t [ [ V()9 (@(s), a8
0 0

522 Then, B[|[V(z(t A7n), t ATn)]] < |V (20,0)| + f0+°° ~(t)dt := K < 400, which implies

523 0o > K > B[V (x(t A7x),t An)|] > Elu(je(t Ay)|)] >
524 (7.1) > u(N)e(ty <t) > pu(N)e(T < 1)
525 where pu(r) := inf|z>p >0 V(2,t) and lim, 4 o p(r) = 400 because of the condition

526 assumed in (4.2). Now, letting N — +oo in (7.1) yields ¢(7o < t) = 0 for any t.
527  Finally, further letting ¢t — 400 gives ¢(70 < +00) = 0, which completes the proof.

528 7.3. Proof of Lemma 4.8. To prove Lemma 4.8, we first establish the inequal-
529 ity as follows.

530 LEMMA 7.10. For A;;(t) € MZ[0,T], denote by A(t) = (aij(t))axm. Then, we
51 have B ‘fOT A(t) dB(t)‘Q <dy E [T |A®)? dt.

532 Proof. For simplicity of expression, we apply Einstein’s notations [6] in the following

533 arguments and throughout if they are necessary. From Theorem 2.6 and Remark 2.5,

T T

T T
]E/ a;j(t)ai(t) d(Bj, Br)(t) = ]E/ trace(A(t) d(B)(t)AT (1))
0 0

534 it follows that
2

535 E /T A(t) dB(t)
0

o
Il

IN
=

d- /OAmax(A(t) d<B>(t)AT(t))=d-I@/O |A(t) d(B)(H)AT (1)

T

T T
s =B [ AOB B0 <aE [ A0Fd<drE [ AP .
0 0 0
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The proof is therefore completed.

Proof of Lemma 4.8. Now, we need to prove the lemma using con-
tradiction. If this is not true, then there exists @@ € @ such that
Q ({w : liminfs, ;oo n(x(t;w)) > 0}) > 0. Thus, there exists € > 0 such that
Q1) > 2 with @ = {weQ:liminf; ;. n(x(t)) > 2€}. Since O =
U2 (21 N {w : supysg [o(t;w)| <n}), there exists a number N > 0 such that
Q(Q2) > € in which Q = Q) N {w : sup,sg [zt w)| < N}.

Now, we define the F-stopping times as

o1(w) :=1inf{t : n(x(t;w)) > 2e}, o09;(w) :=inf{t: n(x(t;w)) <€, t > 09-1(w)},
o2ip1(w) == 1nf{t : n(x(t;w)) > 2¢, t > 09;(w)}, 7n(w) :=inf{t: |x(t;w)| > N}.

For allw € Qq, 7y (w) = 400 and 0;(w) < 400 for all ¢ > 0 using the formula (4.3) and
the definition of 4. By virtue of Proposition 4.3, M (t) = OMTN g(x(s),s)dB(s) is
a Q-martingale for each Q € Q. Hence, using Assumption 4.1, Lemma 7.10, Holder’s
inequality, and Doob’s martingale inequality in traditional stochastic analysis, we

obtain that for each T > 0,

BQ[Lrynosi1<tooy SUP_ (TN A (021 +1)) — ®(Tn A 02i—1)|?]
0<t<

T
TN A(o2i—1+t)
/ F(a(s),5)ds

NAO2;—1

2

SgEQ 1{7—N/\0'2i—1<+00} sup
0<t<T

B 2

TNA(o2i—1+1)
/ g(e(s), 5)dB(s)

NAC2;—1

+3EQ 1{TN/\O'21'71<+00} sup
0<t<T

B 2

TNA(o2i—1+t)
/ h(z(s), $)A(B)(s)

NAC2;—1

F3EQ | L rynosi—1 <400} SUD
0<t<T

TNA(o2i—1+t) )
o T Fl(s),s)ds

0<t<T JrNnAc2i-1

TNA(02i-1+T)
+12Eq ]‘{TN/\1721‘_1<+00}/ g(x(s),s)dB(s)
TNNO2i—1
TNA(02i—1+1)
+3T’72m2EQ 1{7—N/\0'2i—1<+00} sup / Ih($(8),3)|2d8
0<t<T JryAo2i—1
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R TNA(02:-14T)
< 3TE

1{TN/\0'2i71<+00} / f(m(s)a5)2d5‘|

TNANO2;—1

TNA(o2i—1+T)

+12d’$’fE ll{TNAJ2i_1<+w}/ |g(w(8)) S)Pd£‘|

NAO2;—1

TNA(02i-1+T)

Ih(w(S),S)I2d81

NAC2i—1

+3T7y2m2f€ [1{TNA021—1<+W} /
< 3K%T(T + 4dy + T7*m?).

As n is continuous, there exists a number § > 0 such that, for every
z,y € B(N) and |z — y| < 0, In(x) — n(y)] < e  We select suffi-
ciently small 7 > 0 such that 3K3T(T + 4dy + T4*m?)/6*> < £. Thus, we

2
have  Q (1{ryncar 1 <+oo} SUPo<i<r [T(TN A (0251 + 1)) — (7w No2i1)[ 2 6) <
3KRT(T +4dy + T¥*m?)/6* < §. Hence, we have Q({o2i-1 <
+oo, 7 = +oo} N {supo<i<r |®(02i1 + t) — @®(02i-1)] = 0}) <

By the definition and the property of €5, ~we conclude that
Q ({02i-1 < +00,7nv = +00} N {supg<y<r [T(02i1 + 1) —@(02i-1)| <I}) > e~ § =
5, which further implies that

N

Q ({Ugil < 400, 7y = oo} N { sup |n(x(o2i—1 +1)) — n(x(o2i—1))| <€ )
0<t<T

Q ({O’Qil < +OO,TN = +OO} N { sup |ZB(O'QZ 1 +t) — 212(0'22 1)‘ < 5}) Z E
0<t<T 2

Define Q; := {supg<i<r In(@(02i—1 + 1)) — n((02i-1))| < €} . Then, on QiN{o9i_1 <
+o0}, we have 09; —09;—1 > T. By (4.4), if 09;_1 < 400, then o9; < +00 quasi-surely.
Thus,

R +o00o +o0o
+o0 > E/O n(x(t))dt > EQ/O n(x(t))dt

+oo
2D Eo
i=1
+oo
€ Z Eq [1{TN:+OO,O'21‘—1<+OO}(0-21; - 021'71)]
i=1
+oo
2> € Z EQ |:1{TN:+OO,O'2,;_1<+00}F‘|Qi (UZi - 0’2i71)i|
i=1
+oo
>€TZQ{TN—+OO O2i— 1<+OO}ﬁQ >6TZ 400,

i=1 =1

024

I{TN:"!‘OO,Uzi,l <+OO,G’27;<+OO} /

02i—1

n(w(t))dt]

which indicates a contradiction. Consequently, we get lim; 4 n(x(t)) = 0 quasi-

surely.
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584 7.4. Dynamic Stability in Example 5.2. Here, we validate the quasi-
585 sure stability of the considered equations in Example 5.2. To this end, we set
586 V(x) := |z|® for some given 0 < a < 1, which yields LV (z) = a|z|* *(z, f(z)) +
587 G ((kz(oz - 1)a|:1:|°‘):.3.:1) , where (k?(a — 1)a|w|o‘):3:1 stands for an m x m matrix
588 such that all elements are k*(a — 1)az|*. As ¢y := (—=1)7_, is a non-positive sym-
589 metric matrix with eigenvalues 0 and —m, we have c_; < 0. Set 0 < o < 1+WL_1 <1,
500 we obtain that LV (z) = a|z|**(z, f(x))+k?c_1(1—a)alz|* < alz|*(L+k%c_1(1—
501 a)). Set n(x) = alz|*(L + k*c_1(1 — a)) < 0. Hence, in light of Proposition 4.6 and
592  Theorem 4.10, if we could confirm a statement that the system in Example 5.2 does
593 mnot reach 0 before it explodes, V(x) with @ < 1 and along any trajectory apart from
594 0 is differentiable to the second order, so that the quasi-sure convergence of x is guar-
595 anteed to 0, the kernel of 1. To make confirm the statement, we first introduce the

596 following result.

597 PROPOSITION 7.11. Let M(t) = fot Kki;j(s)d(B;, B;)(s) + fot 2G(—n)ds, where n €
505 MA([0,T);S™). Then, we have M(t) > 0 quasi-surely. Particularly, B[M(t)] > 0.

599 The proof of the above proposition is akin to the proof for Proposition 4.7, which
600 is omitted here.

601 Now, we make the final confirmation. We set 7y := inf{t > 0 : |z(¢)| > N} and
602 & = inf{t > 0: |z(t)| < €} for ¢, N > 0, and select V(x) = log |z|. Then, using the

603 formula presented in Theorem 4.5 and Proposition 4.3, we get

tATN NEe
604 log |z(t ATy AE)| = log |xo| + / st
0
n tATN NEe n tATN N e 1
605 +Z/ kdBj(s) — Z / §k2<Bi»Bj>(5)
j=170 i,5=1"0

606 Noticing the local Lipschitz property of f gives |(zx, f(x))| < |x||f(z)| < Ky|z|? on

607 [0,7n). Set 1 := G((1){%;=;) > 0. Then, by Proposition 7.11, we have Elog |a(t A

tATN NEe

608 7§ A E)| > Ellog|ao|] — 0 (Kn + k2¢1)ds] > Ellog |&o|] — (Kn + k2¢p)t. On
609 the other hand, ]E[log e ATN ANE)|] < c(ée <tATN)loge+ c(ée >t ATy)log N <
610 ¢(éc < t ATy)loge + log N. Hence, we obtain E[log |xo|] — (Kn + k2¢1)t < e(é. <
611 t A7n)loge+log N. First, letting € — 0 results in ¢(§y < t A 7y) = 0. Then, letting
612 both t and N — +oo yields ¢(§y < Too) = 0, which confirms the above statement and
613 finally completes the proof.

614 7.5. Invariant Set Associated with Autonomous G-SDEs.
615 THEOREM 7.12. We consider the following autonomous G-SDFEs:
616 (7.2) dz(t) = f(z(t))dt + g(x(t))dB(t) + h(x(t))d(B)(t),

617 where f 1R RY, g R — R>™ p:RY — R™ gnd f(a) = g(a) = h(a) = 0.
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Clearly, f,g and h are all globally Lipschitzian. Then, we have that, for all o # a,
c({fw:3t>0, x(t,w;mo) = a}) = 0, which indicates that the trajectory does not

approach a quasi-surely in a finite time.

Proof. We know that the G-SDEs (7.2) have a unique solution on M¢[0,T] for every
T > 0 according to [36]. First, we need to perform the proof for the situation of @ = 0.
Now set A := {w : z(t,w) = 0 for some ¢ € [0, +00)}. If ¢(A) > 0, then there exists a
number T > 0 such that ¢(Ap) > 0 where Ay := {w : x(¢,w) = 0 for some ¢ € [0, T},
which is due to the fact that A = UL Ar. Next, introduce the stopping time
Te == inf{t € [0,400) : |&(t,w)| < €}. Set V(x) := 1/|x| = (Jz|?)"2. Then, we

perform the calculations using G-It6’s formula, obtaining that

TATe )
V(@(T Ae)) = V(zo) +/O Ve, (®(s)) f* (2(s))ds
TATe 1

[ V) @B ) + [ Gralel)dB B )
TAre (e (s), Fa(s TATe 2:(8) g™ (x(s
Ve - [ LI, [T s el

|z

Tnre g"'((s)) g (x(s))
o [

g (@(9)a (o)

e )| s p e [ (1@ e salg?
St B)) < Vi) + [ [m? Ot
Ih(w)lv

@ +/o Ve (@) (@(s))dB; (s),

where r;; = Vg, (W*9 + h¥%) + V,, ., " g and Einstein’s notations are applied here.
Let p(x) := F@) 4 (@3hlg@) | |h@)y Then, there exists a number K > 0 such

|| 2[z[? ||

that p(x) < K < 400 because f, g and h are globally Lipschitzian as mentioned

above. Hence, it follows that

TAT. TATe .
V(@(T A7) < Vo) + / V(@(s)p(a(s))ds + / Vo (())g" (@(s))dB; (s)

T
V(o) / V(Do) Londs + | Va(w(s)g” (@(5) 1B, ()
T
ZCO + K/ 1[0 Te ]dS + / Vzl (CL’(S))gij (m(s))l[o7T€]dBj(s),
which implies that E[V (z(T A 7.)] < B[V (20)] + KE [ V(2(s)) 10 ds

< B[V (x0)] + KfOTIE[V(x(s A 7¢))]ds. Now, using Gronwall’s inequality, we have

E {m} < B[V (0)]eXT. From the definition of 7, and also from the continuity

of x(t), it follows that |&(T A 7.)| = € on Ap. Thus, ¢(Ap) = € [mlAT} <
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615 €R[V (x0)]eXT, which is valid for every e > 0. Therefore, we immediately obtain
646 ¢(Ar) = 0, which is a contradiction.

647 For the general situation of a, we set y(t) := x(t) — a. Then, y(t) satisfies the G-
648 SDEs: dy(t) = f(y(t) +a)dt+g(y(t) +a)dB(t) + h(y(t) + a)d(B)(t). Consequently,
649 we know that y(t) never approaches 0 quasi-surely, i.e., ®(t) never approaches a

650 quasi-surely. Therefore, the proof is complete.

651 7.6. Numerical evidences. Here, we describe the numerical scheme that we
652 use for partially illustrating the analytical results obtained in the main text. Actu-
653 ally, we do not provide a complete simulation for the solutions of G-SDEs but only
654 simulate the corresponding SDEs under a group of probability measures. A rigor-
655 ous and complete scheme for simulating the solution of G-SDEs still awaits further
656  investigations.

657 To this end, we first suppose W (t) to be a standard m-dimensional Brownian
658 motion on the probability space (2, B(2), P). Also suppose that © is a bounded,
659 closed and convex subset of R™*™ where © = [g,] for m = 1. In addition, Q :=
660 {Pg € M : Py is the law of process fg 0(s)dW (s) forVt > 0,0 € %(?00} C Q,
661 where @, denotes the collection of all ©-valued .# adapted function in [0, +00).
662 According to Remark 15 in Ref. [15], the capacity satisfies ¢(A) = supg 5 P[A] for
663 any A € (), so we can check whether an event is correct quasi-surely on the
664 probability measures space Q. Thus, we make our numerical simulations on a finite
665 subset of Q repeatedly as follows and use the case where (Bi, Bj) = 0 for each i # j
666 and all B; are identically distributed.

667 For the time interval [0, 7], we introduce a uniform time partition 0 = tg < t; <

668 -+ <ty =T with At :=t,,11 —t, = T/N. We use the following Euler-Maruyama
669 scheme, as proposed in [33], to investigate the solution of the SDEs correspondingly
670 from the G-SDEs in (4.1):

(7.3)

671 X(n+1) = X(n) + £F(X(n), ta) At + g(X (n), ta) AB(tn) + h(X (1), tn) A(B)(t,)

672 with X(0) = @¢ and n = 0,1,--- ,N — 1. Here, AB;(t,) ~ N(0,07,At) and
673 A(B;)(tn) = 07, At with 0y, € [0,7) and i = 0,1,--- ,m.

674 In order to investigate the dynamics of the corresponding SDEs on the probability
675 measures space Q, the covariance {0 }1<i<m,1<n<n should be taken from all the
676 element of the set [o,7]™*". To do this numerically, we introduce a uniform interval
677 partition ¢ = 09 < 01 < -+ < 0 = @ with Ao = 0,41 — 0; = (¢ — g)/k. Denote
678 by Xj; = {oi]j <1 <1}, where 1 < j <1 < k. For any given tuple (j,1), we choose
679 an element (lin)1<i<m,1<n<N € Z?}XN, set 0y = pin forall 1 <i<m,1 <n <N,
680 and then approximate the dynamics of the SDEs correspondingly from (4.1) using the

681 scheme specified in (7.3), which enables us to numerically produce a large number of
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simulating trials.

In Figure 1, we show the numerical results, respectively, for Examples 5.1-5.3.

log ||

Fic. 1. (a)The dynamics of log|x| change with t for a group of SDEs correspondingly from
the G-SDEs in Example 5.1. Here, simulated are the 400 trials using the settings, o2 = 3.5,
G2 = 4. (b)The dynamics of |x| change with t for a group of SDEs correspondingly from the G-
SDEs in Example 5.2. Here, simulated are the 400 trials using the settings: o2 = 40, 32 = 50,
o =10, p =10, B = 8/3, and k = 5. (c)The dynamics of |x| change with t for a group of SDEs
correspondingly from the G-SDEs in Example 5.3. Here, simulated are the 400 trials using the
settings: o2 = 40 and 52 = 50.
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