
INVARIANCE PRINCIPLES FOR G-BROWNIAN-MOTION-DRIVEN1

STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR2

APPLICATIONS TO G-STOCHASTIC CONTROL3

XIAOXIAO PENG∗, SHIJIE ZHOU† , WEI LIN‡ , AND XUERONG MAO§4

Abstract. The G-Brownian-motion-driven stochastic differential equations (G-SDEs) as well as5

the G-expectation, which were seminally proposed by Peng and his colleagues, have been extensively6

applied to describing a particular kind of uncertainty arising in real-world systems modeling. Math-7

ematically depicting long-time and limit behaviors of the solution produced by G-SDEs is beneficial8

to understanding the mechanisms of system’s evolution. Here, we develop a new G-semimartingale9

convergence theorem and further establish a new invariance principle for investigating the long-time10

behaviors emergent in G-SDEs. We also validate the uniqueness and the global existence of the11

solution of G-SDEs whose vector fields are only locally Lipschitzian with a linear upper bound. To12

demonstrate the broad applicability of our analytically established results, we investigate its appli-13

cation to achieving G-stochastic control in a few representative dynamical systems.14
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1. Introduction. Long-time and limit behaviors of the solutions generated by18

stochastic differential equations (SDEs) have received growing attention because19

such behaviors usually correspond to particular functions in real-world systems20

[10, 25, 31, 8, 3]. Interesting physical or/and biological phenomena have been system-21

atically investigated, including asymptotic behaviors of random matrices in quantum22

physics [34], stochastic resonance [2], stochastic homogeneity [4], stochastic stabi-23

lization or synchronization [26, 32, 23, 20], and random-temporal-structure-induced24

emergence [11, 12, 14, 13]. Also developed were stochastic versions of invariance prin-25

ciple, which originated from LaSalle’s invariance principle [17, 18] for deterministic26
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2 X. PENG, S. ZHOU, W. LIN AND X. MAO

systems and then has been extended successfully to study the SDEs [28, 40], the27

stochastic differential delayed equations (SDDEs) [27, 30], the stochastic functional28

differential equations (SFDEs) [29, 39] and even the discrete stochastic dynamical29

systems [41]. These versions of invariance principles are often used to elucidate the30

asymptotic behaviors, such as stability, boundedness, and invariance in some chaotic31

attractors, emergent in random systems.32

In addition to the traditional frameworks of randomness and stochasticity, mea-33

suring uncertainties of randomness is another important issue in those areas replete34

with fluctuations and risks of high level, such as economics [16]. A seminal framework35

by means of sublinear expectation was fundamentally built by Peng and his colleagues36

to quantify such uncertainties [36] and then extended broadly in line with the mod-37

ern probability theory. Indeed, the framework has been put forward to investigating38

the G-Brownian-motion-driven stochastic differential equations (G-SDEs), which thus39

provides a model to describe the randomness with uncertainties in evolutionary dy-40

namics. Also systematically investigated was the well-posedness of G-SDEs [9, 36] and41

stochastic functional differential equations (G-SFDEs) [37, 7]. Furthermore, although42

the stability of G-SDEs has been widely investigated [21, 38], rigorously delicate de-43

scriptions of stability, boundedness, control and even invariance property in dynamical44

attractors using G-SDEs are still lacking.45

In this article, we, therefore, intends to fill in this gap through novelly developing46

an invariance principle for G-SDEs and investigate its applicability to the stochastic47

control, especially in the case that the noise is uncertain. As such, this invariance48

principle can render the analytical investigations of dynamics produced by G-SDEs49

much clearer and more complete. In order to develop this new principle, we need50

to establish a new version of G-semimartingale convergence theorem, nontrivially51

generalizing the classical semimartingale convergence theorem developed in [24].52

The remaining of this article is organized as follows. Section 2 introduces some53

basic concepts and provides some preliminary theorems of sublinear expectations.54

Section 3 rigorously proves the G-semimartingale convergence theorem as follows.55

Theorem 1.1. Assume A1 and A2 are two non-decreasing process with initial56

value 0, A1(t) is a continuous process and Ê[A1(+∞)] < +∞. Assume that Z is57

a non-negative G-semimartingale satisfying Ê[Z+(0)] < ∞ with the form as Z(t) =58

Z(0)+A1(t)−A2(t)+M(t), t ≥ 0, where M(t) is a continuous G-supermartingale with59

initial value 0. M(t) ∈ L1
G(Ωt) for every t ≥ 0. Then, we have that A2(+∞) < +∞,60

limt→+∞ Z(t) finitely exists, and that limt→+∞M(t) finitely exists quasi-surely.61

Here, we sketch the proof of the above convergence theorem as follows. By extending62

the space of random variables, we generalize Fatou’s Lemma on the G-conditional ex-63

pectation. Combining with the uppercrossing inequality, we derive the G-martingale64
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convergence theorem for a continuous process and then establish the essential G-65

semimartingale convergence theorem. Also in this section, we present the other more66

applicable versions of the G-semimartingale convergence theorem. With all these67

preparations, Section 4 presents our main result, the invariance principle for the G-68

SDEs, and validates it using the established G-semimartingale convergence theorem.69

Here, we show this principle as follows.70

Theorem 1.2. With those conditions and assumptions listed in Section 4, we sup-71

pose that there exists a function V ∈ C2,1(Rd × R+;R+), a function γ ∈ L1(R+;R+)72

and a continuous function η : Rd → R+ such that lim|x|→∞ inf0≤t<+∞ V (x, t) = ∞73

and LV (x, t) ≤ γ(t) − η(x), where the diffusive operator LV = Vt + Vxif
i +74

G
(

(Vxk(hkij + hkji) + Vxkxlg
kiglj)ni,j=1

)
where Einstein’s notations are applied75

here. Then, we have that limt→+∞ V (x(t), t) finitely exists quasi-surely and that76

limt→+∞ η(x(t)) = 0 quasi-surely. Moreover, we have limt→+∞ d(x(t),Ker(η)) = 0.77

Here, x(t) is the solution of the G-SDEs which read78

(1.1) dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) + h(x(t), t)d〈B〉(t).79

The proof of such theorem, though inspired by [28], is rather different. By G-Itô’s80

formula, we write out the function in a form of the G-semimartingale and then apply81

the corresponding convergence theorem. By estimating the calculus of η based on the82

uppercrossing stopping time, we show that all trajectories converge to the kernel of83

the function η quasi-surely. Still in this section, we further present several generalized84

versions of invariance principle. All these build up a solid foundation for Section 5,85

where we use the G-stochastic control to stabilize representative complex dynamics,86

demonstrating the broad applicability of our analytically-established results. Finally,87

Section 6 provides some discussion and concluding remarks.88

2. Preliminaries. In this section, we present some frequently used definitions89

and results of sublinear expectation theory, which will be useful for our following90

investigations. For more details, we refer to [5, 36, 35, 22].91

To begin with, we let Ω be a given set, and H be the space of all real-valued92

functions defined on Ω. Denote by Cl,Lip(Rd) the space of all locally Lipschitz-93

continuous functions on Rd. And, for any function ϕ ∈ Cl,Lip(Rd), if xi(ω) ∈ H94

for all i = 1, 2, · · · , d, then ϕ(x1(ω), · · · , xd(ω)) ∈ H.95

Next, we provide some basic concepts on the sublinear expectation.96

Definition 2.1 (Sublinear Expectation [36]). A functional E[·] is said to be97

a sublinear expectation on H if it satisfies: (1) E[c] = c, for any c ∈ R, (2)98

E[X] ≤ E[Y ], for any X ≤ Y , (3) E[X + Y ] ≤ E[X] + E[Y ], and (4) E[λX] =99

λE[X], for anyλ ≥ 0.100
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Definition 2.2 (G-Function [36]). A function G : Rd × Sd → R is said to be101

sublinear and monotone if it satisfies (1) G(p + p̄,A + Ā) ≤ G(p,A) + G(p̄, Ā),102

(2) G(p,A) ≤ G(p, Ā), if A ≤ Ā, and (3) G(λp, λA) = λG(p,A), ∀ λ ≥ 0.103

Here, Sd denotes the space of d× d symmetric matrices. And A ≤ Ā implies the104

nonnegativity of the symmetric matrix Ā−A.105

In the following, we assume the function G defined in Definition 2.2 is indepen-106

dent of the vector p. It is worthwhile to mention that, when d = 1, G is reduced107

to the form G(r) = 1
2 (r+σ2 − r−σ2) for some non-negative σ ≤ σ. Here r+ and r−108

correspond to the non-negative and the non-positive parts of r, respectively. More-109

over, if a symmetric G-Brownian motion satisfies Ê[AB(t),B(t)] = 2G(A)t with110

G(A) = 1
2 Ê[AB(1),B(1)], then G is said to be a G-function related to the symmet-111

ric G-Brownian motion B. Here, the definition of G-Brownian motion, as well as112

G-conditional expectation, can be found in [36].113

Moreover, it is necessary to introduce some definitions on some spaces of functions114

and measures. Here, we denote, respectively, by115

• Ft : The completion of σ(B(s) : s ≤ t),116

• B(Ω) : The Borel σ-algebra on Ω,117

• L0(Ω): The space of all B(Ω)-measurable functions,118

• LpG(Ω) : The completion of the space Lip(Ω) under the norm ‖·‖LpG := (Ê[|·|p])
1
p ,119

• Lip (Ωt): {ϕ(B(t1),B(t2) − B(t1), · · · , B(tk) − B(tk−1)) : ϕ ∈120

Cl,Lip(Rm×k), 0 ≤ t1 < · · · < tk ≤ t},121

• LpG(Ωt) : LpG(Ω) ∩ Lip (Ωt),122

• M : The set of all probability measure defined on Ω,123

• EQ[·]: The expectation under the traditional probability measure Q,124

• P(t, Q):= {R ∈M : EQ[X] = ER[X], ∀X ∈ Lip (Ωt)},125

• Q := {Q ∈M : EQ[X] ≤ Ê[X], ∀X ∈ L1
G (Ω)}, and126

• L0(Ω):= {X ∈ L0(Ω): EQ[X] exists for any Q ∈ Q}.127

From Theorem 1.2.1 in [35], it follows that the sublinear expectation satisfies128

Ê[X] = supQ∈QEQ[X] for each X ∈ Lip(Ω). Thus, the definition of Ê[·] can be129

extended to L0(Ω). In addition, for the G-conditional expectation defined above, it130

can be represented by means of the probability space.131

Theorem 2.3 ([15]). For each Q ∈ Q and X ∈ L1
G(Ω), Êt[X] =132

ess supR∈P(t,Q)
QER [X | Ft] , Q-a.s.. Here, if Y = ess supR∈P(t,Q)

QER [X | Ft],133

it means that for every R ∈ P(t, Q), ER [X | Ft] ≤ Y,Q-a.s.. Moreover, if134

ER [X | Ft] ≤ Z for each R ∈ P(t, Q), Q-a.s., then we must have Y ≤ Z,Q-a.s..135

For introducing G-Itô’s calculus, we define Mp
G([0, T ]), a space of random process,136

and the G-Itô’s calculus on it (refer to [36] for details). Moreover, the quadratic137
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variation is defined in the same manner as that in normal stochastic analysis. However,138

the range of the quadratic variation here is much different.139

Lemma 2.4 ([36]). For an m-dimensional G-Brownian motion B, there exists140

a bounded, convex and closed set Γ ∈ Sm+ such that 〈B〉(t) ∈ tΓ := {tγ : γ ∈ Γ},141

where Sn+ represents the space of all positive symmetric matrices. Also, 〈B〉(t) and142

〈B〉(t+ s)− 〈B〉(s) are identically distributed.143

Remark 2.5. In what follows, denote by γ̄ := maxγ∈Γ(|γ|F ∨ |γ|2) where | · |F and144

| · |2, respectively, are the Frobenius norm [1] and 2-norm for the matrix. Then, it145

follows from Lemma 2.4 that |〈B〉(t)|F ∨ |〈B〉(t)|2 ≤ γ̄t. Especially when m = 1, we146

have γ̄ = σ2. Also, the largest eigenvalue of a matrix is denoted by λmax(·).147

There are some very useful inequalities for our investigation in this article. Com-148

bining the results of Sections 3.3-3.5 in [36], Lemma 2.4, and Remark 2.5, we give the149

conclusions as follows.150

Theorem 2.6. For any η(t), γ(t) ∈ M2
G[0, T ], we have Ê

(∫ T
0
η(t) dBi(t)

)
=151

0 and Ê
(∫ T

0
η(t) dBi(t)

∫ T
0
γ(t) dBj(t)

)
= Ê

(∫ T
0
η(t)γ(t) d〈Bi, Bj〉(t)

)
≤ γ̄ ·152

Ê
(∫ T

0
|η(t)γ(t)| dt

)
.153

Now we introduce the Choquet capacity and some related propositions.154

Definition 2.7 (Choquet Capacity, [36]). For A ∈ B(Ω), define by c(A) :=155

supQ∈QQ[A] = Ê[1A]. A property is called valid quasi-surely if this property is valid156

on the set Ω\A with c(A) = 0.157

Proposition 2.8 (Monotone Convergence Theorem, [5, 35]). If X(n) ↑ X,158

{X(n)} ⊂ L0(Ω), X(n) is nonnegative, then Ê[X(n)] ↑ Ê[X].159

Theorem 2.9 ([19]). Assume that {M(n)} is a G-supermartingale, satisfying160

supn Ê[M−(n)] < +∞. Then, limn→∞M(n) exists, which is finite quasi-surely. Here,161

the definition of G-martingale can be found in [36].162

3. G-Semimartingale Convergence Theorem. In the literature, the semi-163

martingale convergence theorem mainly describes the asymptotic property of the164

semimartingale, which is a random variable comprising a martingale and a process165

with bounded variation. Inspired by this well-established and broadly-applied con-166

vergence theorem, we are to establish a G-semimartingale convergence theorem and167

its variant. It will be shown that the G-semimartingale convergence theorem is based168

crucially on Doob’s G-martingale convergence theorem. In fact, to our best knowl-169

edge, the continuous version of Doob’s G-martingale convergence theorem has not yet170

been established until the result presented as follows.171

Proposition 3.1 (G-Martingale Convergence Theorem, A Continuous Version).172
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Assume that {M(t) : t ∈ [0,+∞)} is a right- or left-continuous G-supermartingale,173

and M(t) ∈ L1
G(Ωt). Moreover, assume that Ê[supt≥0M

−(t)] < +∞. Then, M(t)174

converges finitely to M(+∞) ∈ L1∗
∗
G (Ω) quasi-surely. Moreover, Êt[M(+∞)] ≤ M(t).175

Here, the definition of L
1∗
∗
G (Ω) is provided in Definition 7.2 of Appendix 7.1.176

The proof of this proposition is tedious and tangential to the main focus of this177

article. To enhance the readability, we include the proof into Appendix 7.1. Now, with178

this preparation, we establish the following G-semimartingale convergence theorem.179

Theorem 3.2 (G-Semimartingale Convergence Theorem). Assume that A1 and180

A2 are two non-decreasing processes with initial value 0, and that A1(t) is a con-181

tinuous process with Ê[A1(+∞)] < +∞. Also, assume that Z is a non-negative G-182

semimartingale satisfying Ê[Z+(0)] <∞ with the form Z(t) = Z(0) +A1(t)−A2(t) +183

M(t), t ≥ 0, where M(t) is a continuous G-supermartingale with initial value 0 and184

M(t) ∈ L1
G(Ωt) for every t ≥ 0. Then, we have that A2(+∞) < +∞, limt→+∞ Z(t)185

finitely exists and limt→+∞M(t) finitely exists quasi-surely.186

Proof. Notice that M(t) = Z(t)− Z(0)− A1(t) + A2(t) ≥ −Z(0)− A1(+∞). Then,187

supt≥0M
−(t) ≤ Z+(0) +A1(+∞). By Proposition 3.1, we have limt→∞M(t) finitely188

exists quasi-surely. Because A2(t) = Z(0)+A1(t)+M(t)−Z(t) ≤ Z(0)+A1(t)+M(t)189

and Z(t) = Z(0) +A1(t)−A2(t) +M(t), their limits also exist quasi-surely.190

It is mentioned that this G-semimartingale convergence theorem can only deal191

with the case where the limit of A1(t) is supposed to be finite under the sublinear192

expectation. We now give its variant, the G-semimartingale convergence theorem with193

the F-stopping time. It can deal with the case where the condition on the finite limit194

of A1(t) in Theorem 3.2 is removed. The tradeoff however requires more conditions195

for the G-martingale M .196

Theorem 3.3 (G-Semimartingale Convergence Theorem with Stopping Time).

Assume that A1 and A2 are two non-decreasing processes both with initial value 0,

and that A1(t) is a continuous adapted process. Also assume that Z is a non-negative

adapted process satisfying Ê[|Z(0)|] <∞ with the form Z(t) = Z(0) +A1(t)−A2(t) +

M(t), t ≥ 0, where M(t) is a continuous process with initial value 0. Furthermore,

assume that there exists a series of F-stopping times τN satisfying {τN → +∞} quasi-

surely such that, for any Q ∈ Q, EQ[M(t ∧ τN )|Fs] = M(s ∧ τN ). Then, we have

quasi-surely{
ω : A1(+∞) < +∞

}
⊂
{
ω : lim

t→+∞
Z(t) finitely exists

}
∩
{
ω : A2(+∞) < +∞

}
∩
{
ω : lim

t→+∞
M(t) finitely exists

}
.

Here, A ⊂ B quasi-surely means that c(A\B) = 0, where c is the Choquet capacity197

provided in Definition 2.7.198
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Proof. Denote by A = Ω\
(
{ω : limt→+∞ Z(t) finitely exists} ∩ {ω : A2(+∞) <199

+∞} ∩ {ω : limt→+∞M(t) finitely exists}
)

. For every Q ∈ Q, we have EQ[|Z(0)|] ≤200

Ê[|Z(0)|]. By the G-semimartingale convergence theorem for the normal probability201

space [24], we have Q(A) = 0. By the arbitrariness of the Q’s choice, we obtain that202

c(A) = supQ∈QQ(A) = 0, which therefore completes the proof.203

4. Invariance Principle in Sublinear Expectation. Now, we consider a d-204

dimensional G-stochastic differential equation which reads205

(4.1) dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) + h(x(t), t)d〈B〉(t),206

where the initial value x(0) = x0. Furthermore, we denote, respectively, by |A|2 :=207 √
tr(A>A) and |A| := |A|F =

√∑n
i,j=1 a

2
ij different norms of a given matrix A.208

All functions f : Rd ×R+ → Rd, g : Rd ×R+ → Rd×m, and h : Rd ×R+ → Rd×m×m209

are supposed to be continuous. In addition, hkij = hkji, and f i(x, ·), gij(x, ·) and210

hkij(x, ·) ∈M2
G[0, T ] for every T > 0. We need the following assumptions.211

Assumption 4.1. For any N ∈ N, there exists a number CN such that |f(x, t) −212

f(y, t)|+ |g(x, t)−g(y, t)|+ |h(x, t)−h(y, t)| ≤ CN |x−y| for all |x|∧ |y| ≤ N . Here,213

|h| still represents the norm for h of d×m×m dimensions.214

Assumption 4.2. There exists a number Cl such that |f(x, t)| + |g(x, t)| +215

|h(x, t)| ≤ Cl(1 + |x|), for all (x, t) ∈ Rd × R+.216

Underlying these assumptions as prerequisites, the solutions of Eq. (4.1) are well-217

posed from a certain perspective as follows.218

Proposition 4.3. If Assumption 4.1 holds, there is a global unique solution in219

a quasi-sure sense on [0, τ∞), where τ∞ = limn→+∞ τN , τN := inf{t ≥ 0 : |x(t)| ≥220

N}.For given N > 0, there exists xN ∈ M2
G[0, T ] with T > 0 such that x = xN on221

[0, τN ). Additionally, for A = (aij) : Rd × R+ → Rd×m with aij(x, ·) ∈M1
G[0, T ] and222

T > 0, we have M(t) =
∫ t∧τN

0
A(x(s), s)dB(s) is Q-martingale for each Q ∈ Q. If223

Assumption 4.2 holds, we have τ∞ = +∞ quasi-surely.224

Remark 4.4. The proof of Proposition 4.3 is similar to those presented in Refs. [31,225

21], which we omit here. It is worth mentioning that x(·), the solution to Eq. (4.1),226

does not belong to M2
G([0, T ];Rd). Actually, x(·∧τN ) ∈M2

∗ ([0, T ];Rd) for each N > 0,227

which implies that our solution is locally integrable. In particular, if τ∞ = +∞, we228

have x(·) ∈ M2
w([0, T ];Rd) and it is globally integrable on [0,+∞) now. Here, both229

M2
∗ ([0, T ];Rd) and M2

w([0, T ];Rd) are expanded integrand space defined in Chapter 8230

of Ref. [36] satisfying M2
G([0, T ];Rd) ⊂M2

∗ ([0, T ];Rd) ⊂M2
w([0, T ];Rd).231

Next, we introduce G-Itô’s formula which is useful in the following discussions.232
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Theorem 4.5 (G-Itô’s formula [22]). Let V ∈ C2,1(Rd × R+;R+). For the233

d-dimensional G-stochastic differential equations dx(t) = f(t)dt + g(t)dB(t) +234

h(t)d〈B〉(t) with the initial value x(0) = x0. Moreover, f : R+ →235

Rd, g : R+ → Rd×m, and h : R+ → Rd×m2

with f i(·), gij(·) ∈236

M1
G[0, T ], hkij(·) ∈ M2

G[0, T ] for every T > 0. Then, V (x(t), t) =237

V (x0, 0) +
∫ t

0
Vt(x(s), s)ds +

∫ t
0
Vxi(x(s), s)f i(s)ds +

∫ t
0
Vxi(x(s), s)gij(s)dBj(s) +238 ∫ t

0
Vxk(x(s), s)hkij(s)d〈Bi, Bj〉(s) +

∫ t
0

1
2Vxkxl(x(s), s)gki(s)glj(s)d〈Bi, Bj〉(s).239

Actually, G-Itô’s formula presented above could be applicable to M2
∗ ([0, T ];Rd)240

and M2
w([0, T ];Rd) according to Theorem 5.4 established in [22]. By virture of G-241

Itô’s formula, Assumption 4.2 used above can be replaced. To present this result, we242

introduce the notation as LV := Vt+Vxif
i+G

(
(Vxk(hkij +hkji)+Vxkxlg

kiglj)ni,j=1

)
,243

where the function V ∈ C2,1(Rd × R+;R+). As such, we obtain the following result.244

Proposition 4.6. Suppose that Assumption 4.1 holds and that there exists a245

function γ ∈ L1(R+;R+) such that LV (x, t) ≤ γ(t). Moreover, V satisfies246

(4.2) lim
|x|→∞

inf
0≤t<+∞

V (x, t) = +∞.247

Then, τ∞, as defined in Proposition 4.3, satisfies τ∞ = +∞ quasi-surely.248

For simplicity of expression, we still include the proof of Proposition 4.6 in Ap-249

pendix 7.2, where the following proposition is needed.250

Proposition 4.7 ([21]). Let M(t) =
∫ t

0
κij(s)d〈Bi, Bj〉(s)−

∫ t
0

2G(κ)ds, where251

κ ∈M1
G([0, T ]; Sn). Then, we have M(t) ≤ 0 quasi-surely. Particularly Ê[M(t)] ≤ 0.252

In addition, we present the following G-stochastic Barbalat’s lemma that will be253

used later, and its proof is provided in Appendix 7.3.254

Lemma 4.8. Suppose that Assumption 4.1 holds and τ∞ = +∞ quasi-surely,255

where τ∞ is defined in Proposition 4.3. Also suppose that the solution to Eq. (4.1)256

satisfies supt∈R+ |x(t)| < +∞ q.s.. Besides, there exists η ∈ C(Rd;R+) such that257

(4.3)

∫ +∞

0

η(x(t))dt < +∞, q.s..258

Then, we have limt→+∞ η(x(t)) = 0 quasi-surely.259

Now, with the following assumption, we state our main theorem.260

Assumption 4.9. For each N > 0, t ∈ R+ and all |x| ≤ N , there exists a number261

KN > 0 such that |f(x, t)|+ |g(x, t)|+ |h(x, t)| ≤ KN .262

Theorem 4.10. Suppose that Assumptions 4.1 and 4.9 hold. Also suppose that263

there exist three functions V ∈ C2,1(Rd×R+;R+), γ ∈ L1(R+;R+) and η ∈ C(Rd;R+)264

such that (UB) lim|x|→∞ inf0≤t<+∞ V (x, t) = ∞ and LV (x, t) ≤ γ(t) − η(x). Then,265
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we have that limt→+∞ V (x(t), t) finitely exists quasi-surely and that266

(4.4) lim
t→+∞

η(x(t)) = 0 q.s..267

Moreover, limt→+∞ d(x,Ker(η)) = 0, where d(x,Ker(η)) := infy∈Ker(η) |x− y|.268

Proof. Using Proposition 4.6, the G-SDEs satisfying the conditions assumed in269

this theorem have a global solution on [0,+∞) with a property that LV (x, t) ≤270

γ(t) − η(x) ≤ γ(t). By G-Itô’s formula in Theorem 4.5, Proposition 4.3 and Remark271

4.4, we have272

V (x(t ∧ τN ), t ∧ τN ) = V (x0, 0) +

∫ t∧τN

0

Vt(x(s), s)ds273

+

∫ t∧τN

0

Vxi(x(s), s)f i(x(s), s)ds+

∫ t∧τN

0

Vxi(x(s), s)gij(x(s), s)dBj(s)274

+

∫ t∧τN

0

Vxk(x(s), s)hkij(x(s), s)d〈Bi, Bj〉(s) +

∫ t∧τN

0

1

2
Vxkxl(x(s), s)gki(x(s), s)275

glj(x(s), s)d〈Bi, Bj〉(s),276

where τN := inf{t ≥ 0 : |x(t)| ≥ N}. Letting N → +∞ and setting κ = (κij)
m
i,j=1 for277

every t ≥ 0 where κij = Vxk(hkij + hkji) + Vxkxlg
kiglj , we get that τN tends to +∞278

by Proposition 4.3 and279

V (x(t), t) = V (x0, 0) +

∫ t

0

Vt(x(s), s)ds+

∫ t

0

Vxi(x(s), s)f i(x(s), s)ds280

+

∫ t

0

Vxi(x(s), s)gij(x(s), s)dBj(s) +

∫ t

0

1

2
κij(x(s), s)d〈Bi, Bj〉(s).281

Thus, if we set

V (x(t), t) = V (x0, 0) +

∫ t

0

γ(s)ds−A2(t) +

∫ t

0

Vxi(x(s), s)gij(x(s), s)dBj(s),

then A2(0) = 0. Besides, according to Proposition 4.7, for every 0 ≤ t1 < t2 < +∞,282

we have283

A2(t2)−A2(t1) =

∫ t2

t1

γ(s)ds−
∫ t2

t1

Vxi(x(s), s)f i(x(s), s)ds284

−
∫ t2

t1

Vt(x(s), s)ds−
∫ t2

t1

1

2
κij(x(s), s)d〈Bi, Bj〉(s)285

≥
∫ t2

t1

γ(s)ds−
∫ t2

t1

Vt(x(s), s)ds286

−
∫ t2

t1

Vxi(x(s), s)f i(x(s), s)ds−
∫ t2

t1

G(η(x(s), s))ds287

=

∫ t2

t1

γ(s)ds−
∫ t2

t1

LV (x(s), s)ds ≥
∫ t2

t1

η(s)ds ≥ 0288
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which implies that A2(t) is a non-decreasing process. Using Proposition 4.3, we obtain289

that
∫ t∧τN

0
Vxi(x(s), s)gij(x(s), s)dBj(s) is a Q-martingale for every Q ∈ Q. Noticing290 ∫ +∞

0
γ(s)ds < +∞ and according to Proposition 3.3, we have a set Ω0 ⊂ Ω such291

that c(Ω\Ω0) = 0. Then, we have that, for all ω ∈ Ω0, limn→+∞A2(t) finitely exists292

and limn→+∞ V (x(t), t) finitely exists. Thus, on Ω0,
∫ +∞

0
η(x(t))dt < +∞. From the293

finite existence of the limit of V , we obtain that, on Ω0, supt≥0 V (x(t;ω), t) < +∞.294

Hence, from the above-assumed condition (UB), it follows that there exists K(ω) such295

that supt≥0 |x(t;ω)| ≤ K(ω). According to Lemma 4.8, we obtain limt→+∞ η(x(t)) =296

0 quasi-surely.297

For every ω satisfying limt→+∞ η(x(t;ω)) = 0 and supt∈R+
|x(t;ω)| < +∞,298

there exists y(ω) and a sequence {ti} having limi→+∞ x(ti;ω) = y(ω). So,299

limi→+∞ η(x(ti;ω)) = η(y(ω)) = 0 and Ker(η) 6= ∅. If lim supt→+∞ d(x(t;ω), ker(η))300

is positive, there exist a sequence {ti} such that d(x(ti;ω), ker(η)) ≥ ε, for some ε > 0.301

This implies η(y) > 0, which is a contradiction.302

Remark 4.11. Here, our conclusions nontrivially extend the corresponding results303

obtained for the traditional SDEs. Particularly, the significant differences do exist.304

First, in terms of the conclusions, we are able to induce relevant results even when the305

system randomness itself is uncertain, greatly surpassing the applicability scope of ex-306

isting Brownian motion-driven stochastic systems. From a technical standpoint, our307

generalized stochastic differential equation (i.e., G-SDE) cannot measure the occur-308

rence probability of events from the perspective of traditional probability measures,309

but the capacities instead. Second, the construction of the monotone functions in our310

semi-martingales differs significantly from the invariance principles in the traditional311

stochastic analysis.312

Next, we present another version of invariance principle, where η is a function313

with respect to the function V .314

Theorem 4.12. Suppose that Assumption 4.1 holds, and that there exist three315

functions V ∈ C2,1(Rd × R+;R+), γ ∈ L1(R+;R+) and η ∈ C(R+;R+) such316

that LV (x, t) ≤ γ(t) − η(V (x, t)) for all (x, t) ∈ Rd × R+. Then, we obtain that317

limt→+∞ V (x(t), t) finitely exists quasi-surely and limt→+∞ η(V (x(t), t)) = 0 q.s..318

Moreover, limt→+∞ d(V (x(t), t),Ker(η)) = 0.319

Proof. Analogously, the G-SDEs have a global solution on [0,+∞) according to320

Proposition 4.6. By the arguments akin to those for validating Theorem 4.10, we321

obtain V (x(t), t) = V (x0, 0) +
∫ t

0
γ(s)ds − A2(t) +

∫ t
0
Vxi(x(s), s)gij(x(s), s)dBj(s),322
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where A2(0) = 0 and for every 0 ≤ t1 < t2 < +∞,323

A2(t2)−A2(t1) =

∫ t2

t1

γ(s)ds−
∫ t2

t1

Vxi(x(s), s)f i(x(s), s)ds324

−
∫ t2

t1

Vt(x(s), s)ds−
∫ t2

t1

1

2
κij(x(s), s)d〈Bi, Bj〉(s)325

326
327

≥
∫ t2

t1

γ(s)ds−
∫ t2

t1

Vxi(x(s), s)f i(x(s), s)ds328

−
∫ t2

t1

Vt(x(s), s)ds−
∫ t2

t1

G(η(x(s), s))ds329

=

∫ t2

t1

γ(s)ds−
∫ t2

t1

LV (x(s), s)ds ≥
∫ t2

t1

η(V (x(s), s))ds ≥ 0.330

Hence, by the G-semimartingale Convergence Theorem 3.3, there exists Ω̄ ⊂ Ω such

that c(Ω\Ω̄) = 0. Furthermore, we have that, on Ω̄,∫ ∞
0

η(V (x(t), t))dt < +∞ and lim
n→+∞

V (x(t), t) finitely exists.

Now, we claim that, for every ω ∈ Ω̄, we have limt→+∞ η(V (x(t;ω), t)) = 0. We val-331

idate the claim by contradiction. If this is not the case, then we have a sequence332

{tk} with tk+1 − tk > 1 and ε > 0, such that η(V (x(tk;ω), tk)) > ε. Assume333

supt≥0 V (x(t;ω), t) ≤ K(ω). Hence, there exists δ1 such that |η(x) − η(y)| ≤ ε
2334

for 0 ≤ x, y ≤ K(ω) and |x − y| ≤ δ1. As limt→+∞ V (x(t;ω), t) finitely exists and335

V (x(t;ω), t) is continuous about t, we can easily check that it is uniformly continuous336

on R+. Thus, there exists δ2 < 1 such that |V (x(t;ω), t)−V (x(s;ω), s)| < δ1, |t−s| <337

δ2. Consequently, for tk ≤ t < tk + δ2, we have η(V (x(t;ω), t)) ≥ η(V (x(tk;ω), tk))−338

|η(V (x(tk;ω), tk)) − η(V (x(t;ω), t))| ≥ ε
2 . Therefore, +∞ >

∫∞
0
η(V (x(t), t))dt ≥339 ∑+∞

k=1

∫ tk+δ2
tk

η(V (x(t), t))dt ≥
∑+∞
k=1

εδ2
2 = +∞, which indicates a contradiction. Fi-340

nally, the arguments for proving limt→+∞ d(V (x(t), t),Ker(η)) = 0 are the same as341

those for validating the last conclusion in Theorem 4.10.342

Remark 4.13. A set A ∈ B(Ω) is said to be invariant if c
(
{∃t ≥ 0, x(t;x0) /∈343

A}
)

= 0, for every x0 ∈ A. Actually, if we suppose some conditions to be valid only344

in the invariant set A for Theorems 4.10 and 4.12, the conclusions in these theorems345

still sustain.346

Finally, we present two corollaries which can be obtained directly form the in-347

variance principles established above. These results are related to the stability or the348

exponential stability of the solution x(t).349

Corollary 4.14. Let Assumption 4.1 hold. Assume further that there exists a350

function V ∈ C2,1(Rd × R+;R+) such that351

(4.5) µ1(|x|) ≤ V (x, t) ≤ µ2(|x|), LV (x, t) ≤ −µ3(|x|),352
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where µ1, µ2 and µ3 are three strictly increasing functions in [0,+∞) with the initial353

value 0 and µ1(r), µ2(r)→ +∞ as r → +∞. Then, we have limt→+∞ |x(t)| = 0 q.s..354

Proof. From the condition assumed in (4.5), it follows that µ−1
2 (V (x, t)) ≤ |x|,355

which implies LV (x, t) ≤ −µ3(µ−1
2 (V (x, t))). According to Theorem 4.12, we have356

limt→∞ µ3(µ−1
2 (V (x(t), t))) = 0 q.s., which implies limt→∞ V (x(t), t) = 0 q.s.. There-357

fore, we have limt→∞ µ1(|x(t)|) = 0 q.s., which finally gives limt→∞ |x(t)| = 0 q.s..358

Corollary 4.15. Let Assumption 4.1 hold. Assume further that there exist359

two functions: V ∈ C2,1(Rd × R+;R+) and γ ∈ L1(R+;R+), such that eλt|x|p ≤360

V (x(t), t) and LV (x, t) ≤ γ(t), where λ and p are positive numbers. Then, we361

have limt→+∞
1
t log|x(t)| ≤ −λp q.s..362

Proof. Set η = 0 in Theorem 4.12. Then, limt→+∞ V (x(t), t) finitely exists quasi-363

surely. Further use the condition that eλt|x|p ≤ V (x(t), t). The proof is therefore364

complete.365

5. Illustrative Examples: Applying G-invariance principle to achieving366

G-stochastic control. In this section, we use several representative examples to367

illustrate the applicability of our analytical results to realizing G-stochastic control of368

the unstable dynamical systems.369

Example 5.1. Consider a linear (complex network) system dx(t) = Ax(t)dt.370

Here, A = [11, 5, 2; 5, 11, 2; 2, 2, 14]. Then, it is easy to check that λmax(A) = 18 and371

the system is unstable. Now, for a G-Brownian motion where σ2 = 3.5 and σ2 = 4, we372

choose D = I3 and C = [−19, 11, 2; 11,−19, 2; 2, 2,−10] to G-stochastically control373

the linear system as x(t) = x0 +
∫ t

0
Ax(s)ds +

∫ t
0
Dx(s)dB(s) +

∫ t
0
Cx(s)d〈B〉(s).374

Choosing V (x) := |x|2 yields: LV (x) = 2x>Ax + G(2x>D>Dx + 4x>Cx). As375

λmax(C) = −6, we easily derive that LV (x) ≤ −2.5|x|2. This, according to Corollary376

4.14, ensures the asymptotic stability of the controlled system in a quasi-sure sense.377

Moreover, if we set V (x, t) = eλt|x|2, we obtain that LV (x, t) = LV (x) =378 [
x>(2A+ λId)x+G(2x>D>Dx+ 4x>Cx)

]
eλt, which, using the parameters σ2 =379

3.5 and σ2 = 4, yields LV (x, t) ≤ (λ − 1.5)|x|2. If we set λ ≤ 1.5, using Corollary380

4.15 gives limt→+∞
1
t log|x(t)| ≤ −0.75 q.s.. This clearly illustrates the exponential381

stability of the controlled system.382

Example 5.2. Consider an autonomous system, which reads dx(t) = f(x(t))dt.383

Here, f satisfies Assumption 4.1 and f(0) = 0. Moreover, f satisfies one-sided384

Lipschitz condition, i.e., there exists a number L > 0 such that 〈x,f(x)〉 ≤ L|x|2.385

There are many systems, not globally Lipschitzian, only satisfying this one-sided386

Lipschitz condition. For instance, both f(x) = x − x3 and the Lorenz system with387

f(x) = [σx2 − σx1, ρx1 − x3x1 − x2, x1x2 − βx3]> satisfy the one-sided Lipschitz388

condition. Now, we apply the G-stochastic control to the original dynamics, which389
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yields dx(t) = f(x(t))dt + k
∑m
j=1 x(t)dBj(t) with k > (−L/c−1)

1/2
with c−1 :=390

G
(
(−1)mi,j=1

)
. Here, (−1)mi,j=1 corresponds to an m × m matrix with all elements391

are −1. Then, the controlled system becomes stochastically stable, whose proof is392

included in Appendix 7.4. Take the three-dimensional Lorenz system for example.393

We are able to use a one-dimensional G-Brownian motion to render the controlled394

system stable quasi-surely, if we set m = 1, c−1 = G(−1) = − 1
2σ

2, L ≤ 1
2 (σ+ ρ), and395

k > (σ + ρ)1/2σ−1.396

Example 5.3. Consider an oscillating system dx(t) = Cf(x(t))dt, where C =397

[1, 1, 4; 5,−1, 4; 8, 1, 0] and f(x) = [−x1, arctan(x2), tanh(x3)]>. Now, we consider the398

G-stochastically controlled system as dx(t) = Cf(x(t))dt+g(x(t))dB(t), where B is399

a two-dimensional, independent and identically distributed G-Brownian motion with400

σ̄2 = 50 and σ2 = 40, and g(x) = [A1x,A2x] in which A1 = [1, 0.5, 0; 0, 1, 0; 0, 0, 1]401

and A2 = [1, 0, 0; 0, 1, 0.5; 0, 0, 1]. Additionally, the G-function of B satisfies G(M) =402 ∑2
j=1Gj(ajj), where M = (mij)

2
i,j=1 is a two-dimensional matrix, and Gj is the G-403

function related to the one-dimensional G-Brownian motion Bj . Set V (x) = |x|α for404

some α > 0. By Appendix 7.5, R3\{0} is an invariant set of the system. It follows405

that, on R3\{0},406

LV (x) = α|x|α−2
[
− x2

1 + x1 arctan(x2) + 4x1 tanh(x3)− 5x1x2 − x2 arctan(x2)407

+4x2 tanh(x3)− 8x3x1 + x3 arctan(x2)
]

408

+α|x|α−4G
(
|x|2g>g + (α− 2)g>xx>g

)
409

≤ α|x|α−2(−x2
1 + 6|x1x2|+ 12|x1x3|+ 5|x2x3|)410

+
2∑
j=1

α|x|α−4Gj
(
|x|2|Ajx|2 + (α− 2)(x>Ajx)2

)
.411

Notice that (x>Ajx)2 ≥ 1
2 |x|

2|Ajx|2 + 1
8 |x|

4 and x>Ajx ≤ 5
4 |x|

2 for j = 1, 2, and412

set α = 2
25 . Then, we obtain LV (x) ≤ 17

25 |x|
2
25 +

∑2
j=1

2
25 |x|

− 98
25Gj

(
2
25 (x>Ajx)2 −413

1
4 |x|

4
)
≤ − 3

25 |x|
2
25 . Setting η in Theorem 4.10 as η(x) = 3

25 |x|
2
25 guarantees the414

quasi-sure stability of the above controlled system.415

In Appendix 7.6, we further provide a few numerical evidences for illustrating416

the above examples. It is emphasized that those numerically-presented results do417

not represent all the exact solution produced by the G-SDEs, but only provide some418

evidences partially supporting the analytical results obtained in the above examples.419

The numerical scheme used there is not complete, so it awaits further development420

for rigorously approximating the solution of G-SDEs.421

6. Conclusion. In this article, we have developed several invariance principles422

for the stochastic differential equations driven by the G-Brownian motions. Our423

work is basically inspired by the seminal works from two directions: one is from the424
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stability theory of the traditional SDEs [28] and the other is from the fundamentally-425

innovative works on the sublinear expectation [36]. Our contributions include not only426

the establishment of the G-semimartingale convergence theorem and its variants for427

the sublinear expectation, but also the establishment of several invariance principles428

and their applications in investigating the long-term behaviors of G-SDEs. Indeed, we429

anticipate that our analytical results can be beneficial to understanding and solving430

the problems associated with uncertain randomness in dynamical systems.431

As for the future research directions, the assumption on the linear growth and the432

locally Lipschitz conditions can be further weakened through restricting the discussion433

for the operator L in some specific space. Also, further development of the invariance434

principles for the G-SDDEs and the G-SFDEs could be promoted. More practically,435

complete scheme for rigorously approximating the solution produced by the G-SFDEs436

deserves deep investigation.437

7. Appendix.438

7.1. Proof of Proposition 3.1. First, we establish Fatou’s lemma for the G-439

conditional expectation, which is a prerequisite for our proposition to be demon-440

strated.441

Lemma 7.1 (Fatou’s Lemma for G-conditional Expectation). {X(n)} ∈ L1
G(Ω)442

are a series of random vectors, and there exists a random variable M such that443

Ê[|M |] < +∞ and X(n) ≥ M for any n > 0. Then, Êt [limn→∞X(n)] ≤444

limn→∞ Êt[X(n)].445

In order to present the proof for this lemma, we need to extend the space of446

random variables and make some necessary preparations.447

Definition 7.2 ([15]). Introduce some extended spaces of random variables as448

follows:449

L1∗

G (Ω) :=
{
X ∈ L0(Ω) : ∃X(n) ∈ L1

G(Ω) such that X(n) ↓ X
}
,

L1∗

G (Ω) :=
{
X ∈ L0(Ω) : Ê[|X|] < +∞, X ∈ L1∗

G (Ω)
}
,

L1∗
∗
G (Ω) :=

{
X ∈ L0(Ω) : ∃X(n) ∈ L1∗

G (Ω) such that X(n) ↑ X
}
,

L
1∗
∗
G (Ω) :=

{
X ∈ L0(Ω) : Ê[|X|] < +∞, X ∈ L1∗

∗
G (Ω)

}
.

450

Then, we extend the G-conditional expectation on L1∗
∗
G (Ω). Directly, we have451

L1∗

G (Ω) ⊂ L1∗

G (Ω) ⊂ L1∗
∗
G (Ω) and L1∗

G (Ω) ⊂ L1∗
∗
G (Ω) ⊂ L1∗

∗
G (Ω).452

Lemma 7.3 ([15]). Suppose that {X(n)} ⊂ L
1∗
∗
G (Ω) is a series of non-decreasing453

random variables. Denote by X := limn→∞X(n). Then, we have quasi-surely454

limn→∞ Êt[X(n)] = Êt[X].455

Lemma 7.4. If X,Y ∈ L1
G(Ω), then X ∧ Y ∈ L1

G(Ω) (resp. X ∨ Y ∈ L1
G(Ω)).456

Proof. As X,Y ∈ L1
G(Ω), there exists {Xn} and {Yn} contained in Lip(Ω) such457
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that Ê[|X(n) − X|] → 0 and Ê[|Y (n) − Y |] → 0. For ϕ, ψ ∈ Cl,Lip(Ω), we have458

ϕ ∧ ψ = ϕ+ψ−|ϕ−ψ|
2 ∈ Cl,Lip(Ω). Thus, X(n) ∧ Y (n) ∈ Lip(Ω). So we derive Ê[|X ∧459

Y −X(n)∧Y (n)|] ≤ Ê[|X−X(n)|]+Ê[|Y −Y (n)|]→ 0, which implies X∧Y ∈ L1
G(Ω).460

The case that X ∨ Y ∈ L1
G(Ω) is analogous.461

Lemma 7.5. If X(n) ∈ L1
G(Ω) and X(n) converges to X, and there exists a ran-462

dom variable M such that Ê[|M |] < +∞ and X(n) ≥ M for any n > 0. Then,463

X ∈ L1∗
∗
G (Ω).464

Proof. For any m,n > 0, by Lemma 7.4, we obtain that infn≤k≤mX(k) ∈ L1
G(Ω).465

Then, from Definition 7.2, it follows that infk≥nX(k) ∈ L1∗

G (Ω). Also, by the466

fact that M ≤ infk≥nX(k) ≤ X(n), we have |infk≥nX(k)| ≤ |X(n)| + |M |.467

Thus, Ê[| infk≥nX(k)|] ≤ +∞ and infk≥nX(k) ∈ L1∗

G (Ω) using Definition 7.2. As468

X = limn→+∞ infk≥nX(k), we immediately obtain the conclusion using Definition469

7.2.470

Proof of Lemma 7.1. Set Y (n) := infk≥n Êt[X(k)]. Using the arguments analogous471

to those performed in Lemma 7.5, we get Y (n) ∈ L1∗

G (Ω). According to Lemma472

7.3, we obtain limn→∞ Êt[Y (n)] = Êt[limn→∞ Y (n)]. Because of Y (n) ≤ X(n), we473

derive Êt[Y (n)] ≤ Êt[X(n)] and limn→∞ Êt[Y (n)] ≤ limn→∞ Êt[X(n)], which implies474

Êt[limn→∞X(n)] ≤ limn→∞ Êt[X(n)] we expect.475

Now, we are in a position to prove the G-martingale convergence theorem step-476

by-step using the uppercrossing inequality.477

Definition 7.6. A random time τ : Ω → [0,+∞) is called an F-stopping time,478

if {τ ≤ t} ∈ Ft for every t ≥ 0.479

Definition 7.7. For a finite subset F ⊂ [0,+∞), the interval [α, β] and the

process M = {M(t)} with M(t) ∈ L1
G(Ω), we define the a series of F-stopping times

recursively by:

τ1(ω) = min {t ∈ F ;M(t;ω) ≤ α} , σj(ω) = min {t ∈ F ; t ≥ τj(ω), M(t;ω) ≥ β} ,
τj+1(ω) = min {t ∈ F ; t ≥ σj(ω), M(t;ω) ≤ α} .

And the minimum of an empty set is defined as +∞. Let UF (α, β;M(ω)) be the480

largest number j such that σj(ω) < +∞. For any general set I ⊂ [0,+∞), we define481

UI(α, β;M(ω)) = sup {UF (α, β;M(ω));F ⊆ I, F is finite} .482

Proposition 7.8 (Upcrossing Inequality, A Discrete Version, [19]). Assume483

that {−M(n) : n = 1, 2, · · · , N} is a G-supermartingale. If M(n) ∈ L1
G(Ωn), then we484

have Ê[U{1,2,··· ,N}(α, β;M(ω))] ≤ Ê[(M(N)−α)+]
β−α .485

Lemma 7.9 (Uppercrossing Inequality, A Continuous Version). Assume that486

{M(t) : t ∈ [0,+∞)} is a right- or left-continuous function and {−M(t) : t ∈ [0,+∞)}487

is a G-supermartingale. If M(t) ∈ L1
G(Ωt), then we have that, for any integer n > 0,488
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Ê[U[0,n](α, β;M(ω))] ≤ Ê[(M(n)−α)+]
β−α .489

Proof. Define Aj := ∪1≤k≤j{ni/k : i = 0, 1, · · · , k}. Then, the monotone490

convergence theorem (Theorem 2.8), together with Definition 7.6 and Proposition491

7.8, immediately yields: Ê
[
U[0,n]∩Q(α, β;M(ω))

]
= limj→+∞ Ê[UAj (α, β;M(ω))] ≤492

Ê[(M(n)−α)+]
β−α . Thus, for any sufficiently small ε > 0, as M is right- or left-continuous,493

Ê
[
U[0,n](α, β;M(ω))

]
≤ Ê

[
U[0,n]∩Q(α+ ε, β − ε;M(ω))

]
≤ Ê[(M(n)−α)+]

β−α−2ε , which vali-494

dates the conclusion as required due to the arbitrariness of ε’s selection.495

Proof of Proposition 3.1. From Lemma 7.9 and Proposition 2.8, it follows that496

Ê[U[0,+∞)(α, β;−M(ω))] = lim
n→+∞

Ê[U[0,n](α, β;−M(ω))] ≤ sup
n∈N

Ê[(−M(n)− α)+]

β − α
≤497

supt≥0 Ê[(−M)+(t)] + |α|
β − α

=
supt≥0 Ê[M−(t)] + |α|

β − α
≤

Ê[supt≥0M
−(t)] + |α|

β − α
< +∞.498

So U[0,+∞)(α, β;−M(ω)) < +∞ quasi-surely. Denote by Aα,β :=499 {
U[0,+∞)(α, β;−M(ω)) = +∞

}
. Since {ω : −M(t;ω) does not converge} ⊂500

∪α,β∈QAα,β , −M(t) converges quasi-surely to some −M(+∞). Here, M(+∞) can501

be +∞ or −∞. By the fact that M(t) ≥ inft≥0−M−(t) = − supt≥0M
−(t) and502

Lemma 7.5, we have M(+∞) ∈ L1∗
∗
G (Ω). And by Lemma 7.1, we further have503

Ê[|M(+∞)|]≤ lim
n→∞

Ê [|M(n)|] < 2Ê
[
sup
n∈N

M−(n)

]
+ lim
n→∞

Ê[M(n)]504

≤ 2Ê
[
sup
t≥0

M−(t)

]
+ Ê[M(1)] <∞.505

Thus, M(+∞), finite quasi-surely, belongs to L
1∗
∗
G (Ω). Finally, by virtue of Lemma506

7.1, we have Êt[M(+∞)] ≤ limk→+∞ Êt[M(tk)] ≤M(t), which completes the proof.507

7.2. Proof of Proposition 4.6. From Propositions 4.5 and 4.3, it follows that508

V (x(t ∧ τN ), t ∧ τN ) = V (x0, 0) +

∫ t∧τN

0

Vt(x(s), s)ds509

+

∫ t∧τN

0

Vxi(x(s), s)f i(x(s), s)ds+

∫ t∧τN

0

Vxi(x(s), s)gij(x(s), s)dBj(s)510

+

∫ t∧τN

0

Vxk(x(s), s)hkij(x(s), s)d〈Bi, Bj〉(s)511

+

∫ t∧τN

0

1

2
Vxkxl(x(s), s)gki(x(s), s)glj(x(s), s)d〈Bi, Bj〉(s).512
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Set η = (κij) ∈ M1
G([0, T ]; Sm), where ηij = Vxk(hkij + hkji) + Vxkxlg

kiglj . Using513

Proposition 4.7 leads us to the calculations as follows:514

V (x(t ∧ τN ), t ∧ τN ) = V (x0, 0) +

∫ t∧τN

0

Vt(x(s), s)ds515

+

∫ t∧τN

0

Vxi(x(s), s)f i(x(s), s)ds+

∫ t∧τN

0

Vxi(x(s), s)gij(x(s), s)dBj(s)516

+

∫ t∧τN

0

1

2
κij(x(s), s)d〈Bi, Bj〉517

≤ V (x0, 0) +

∫ t∧τN

0

Vt(x(s), s)ds+

∫ t∧τN

0

G(η)ds518

+

∫ t∧τN

0

Vxi(x(s), s)f i(x(s), s)ds+

∫ t∧τN

0

Vxi(x(s), s)gij(x(s), s)dBj(s)519

= V (x0, 0) +

∫ t∧τN

0

LV (x(s), s)ds+

∫ t∧τN

0

Vxi(x(s), s)gij(x(s), s)dBj(s)520

≤ V (x0, 0) +

∫ +∞

0

γ(t)dt+

∫ t∧τN

0

Vxi(x(s), s)gij(x(s), s)dBj(s)521

Then, Ê[|V (x(t∧ τN ), t∧ τN )|] ≤ |V (x0, 0)|+
∫ +∞

0
γ(t)dt := K < +∞, which implies522

∞ > K ≥ Ê[|V (x(t ∧ τN ), t ∧ τN )|] ≥ Ê[µ(|x(t ∧ τN )|)] ≥523

≥ µ(N)c(τN ≤ t) ≥ µ(N)c(τ∞ ≤ t)(7.1)524

where µ(r) := inf |x|≥r,t≥0 V (x, t) and limr→+∞ µ(r) = +∞ because of the condition525

assumed in (4.2). Now, letting N → +∞ in (7.1) yields c(τ∞ ≤ t) = 0 for any t.526

Finally, further letting t→ +∞ gives c(τ∞ ≤ +∞) = 0, which completes the proof.527

7.3. Proof of Lemma 4.8. To prove Lemma 4.8, we first establish the inequal-528

ity as follows.529

Lemma 7.10. For Aij(t) ∈ M2
G[0, T ], denote by A(t) = (aij(t))d×m. Then, we530

have Ê
∣∣∣∫ T0 A(t) dB(t)

∣∣∣2 ≤ dγ̄ Ê
∫ T

0
|A(t)|2 dt.531

Proof. For simplicity of expression, we apply Einstein’s notations [6] in the following532

arguments and throughout if they are necessary. From Theorem 2.6 and Remark 2.5,533

it follows that534

Ê

∣∣∣∣∣
∫ T

0

A(t) dB(t)

∣∣∣∣∣
2

= Ê

(∫ T

0

aij(t) dBj(t)

∫ T

0

aik(t) dBk(t)

)
535

= Ê
∫ T

0

aij(t)aik(t) d〈Bj , Bk〉(t) = Ê
∫ T

0

trace(A(t) d〈B〉(t)A>(t))536

≤ d · Ê
∫ T

0

λmax(A(t) d〈B〉(t)A>(t)) = d · Ê
∫ T

0

|A(t) d〈B〉(t)A>(t)|2537

= d · Ê
∫ T

0

|A(t)|22 d|〈B〉|2(t) ≤ dγ̄ · Ê
∫ T

0

|A(t)|22 dt ≤ dγ̄ · Ê
∫ T

0

|A(t)|2 dt.538
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The proof is therefore completed.539

Proof of Lemma 4.8. Now, we need to prove the lemma using con-540

tradiction. If this is not true, then there exists Q ∈ Q such that541

Q ({ω : lim inft→+∞ η(x(t;ω)) > 0}) > 0. Thus, there exists ε > 0 such that542

Q(Ω1) ≥ 2ε with Ω1 = {ω ∈ Ω0 : lim inft→+∞ η(x(t)) > 2ε} . Since Ω1 =543

∪+∞
n=1

(
Ω1 ∩

{
ω : supt≥0 |x(t;ω)| < n

})
, there exists a number N > 0 such that544

Q(Ω2) ≥ ε in which Ω2 = Ω1 ∩
{
ω : supt≥0 |x(t;ω)| < N

}
.545

Now, we define the F-stopping times as

σ1(ω) := inf{t : η(x(t;ω)) ≥ 2ε}, σ2i(ω) := inf{t : η(x(t;ω)) ≤ ε, t ≥ σ2i−1(ω)},
σ2i+1(ω) := inf{t : η(x(t;ω)) ≥ 2ε, t ≥ σ2i(ω)}, τN (ω) := inf{t : |x(t;ω)| ≥ N}.

For all ω ∈ Ω2, τN (ω) = +∞ and σi(ω) < +∞ for all i > 0 using the formula (4.3) and546

the definition of Ω1. By virtue of Proposition 4.3, M(t) =
∫ t∧τN

0
g(x(s), s)dB(s) is547

a Q-martingale for each Q ∈ Q. Hence, using Assumption 4.1, Lemma 7.10, Hölder’s548

inequality, and Doob’s martingale inequality in traditional stochastic analysis, we549

obtain that for each T > 0,550

EQ[1{τN∧σ2i−1<+∞} sup
0≤t≤T

|x(τN ∧ (σ2i−1 + t))− x(τN ∧ σ2i−1)|2]551

≤ 3EQ

1{τN∧σ2i−1<+∞} sup
0≤t≤T

∣∣∣∣∣
∫ τN∧(σ2i−1+t)

τN∧σ2i−1

f(x(s), s)ds

∣∣∣∣∣
2
552

+3EQ

1{τN∧σ2i−1<+∞} sup
0≤t≤T

∣∣∣∣∣
∫ τN∧(σ2i−1+t)

τN∧σ2i−1

g(x(s), s)dB(s)

∣∣∣∣∣
2
553

+3EQ

1{τN∧σ2i−1<+∞} sup
0≤t≤T

∣∣∣∣∣
∫ τN∧(σ2i−1+t)

τN∧σ2i−1

h(x(s), s)d〈B〉(s)

∣∣∣∣∣
2
554

≤ 3TEQ

[
1{τN∧σ2i−1<+∞} sup

0≤t≤T

∫ τN∧(σ2i−1+t)

τN∧σ2i−1

|f(x(s), s)|2ds

]
555

+12EQ

[
1{τN∧σ2i−1<+∞}

∣∣∣∣∣
∫ τN∧(σ2i−1+T )

τN∧σ2i−1

g(x(s), s)dB(s)

∣∣∣∣∣
]

556

+3T γ̄2m2EQ

[
1{τN∧σ2i−1<+∞} sup

0≤t≤T

∫ τN∧(σ2i−1+t)

τN∧σ2i−1

|h(x(s), s)|2ds

]
557
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558

≤ 3T Ê

[
1{τN∧σ2i−1<+∞}

∫ τN∧(σ2i−1+T )

τN∧σ2i−1

|f(x(s), s)|2ds

]
559

+12dγ̄Ê

[
1{τN∧σ2i−1<+∞}

∫ τN∧(σ2i−1+T )

τN∧σ2i−1

|g(x(s), s)|2ds

]
560

+3T γ̄2m2Ê

[
1{τN∧σ2i−1<+∞}

∫ τN∧(σ2i−1+T )

τN∧σ2i−1

|h(x(s), s)|2ds

]
561

≤ 3K2
NT (T + 4dγ̄ + T γ̄2m2).562

As η is continuous, there exists a number δ > 0 such that, for every563

x,y ∈ B(N) and |x − y| ≤ δ, |η(x) − η(y)| < ε. We select suffi-564

ciently small T > 0 such that 3K2
NT (T + 4dγ̄ + T γ̄2m2)/δ2 < ε

2 . Thus, we565

have Q
(
1{τN∧σ2i−1<+∞} sup0≤t≤T |x(τN ∧ (σ2i−1 + t))− x(τN ∧ σ2i−1)| ≥ δ

)
≤566

3K2
NT (T + 4dγ̄ + T γ̄2m2)/δ2 < ε

2 . Hence, we have Q({σ2i−1 <567

+∞, τN = +∞} ∩ {sup0≤t≤T |x(σ2i−1 + t) − x(σ2i−1)| ≥ δ}) ≤568

ε
2 . By the definition and the property of Ω2, we conclude that569

Q
(
{σ2i−1 < +∞, τN = +∞} ∩

{
sup0≤t≤T |x(σ2i−1 + t)− x(σ2i−1)| < δ

})
≥ ε− ε

2 =570

ε
2 , which further implies that571

Q

(
{σ2i−1 < +∞, τN = +∞} ∩

{
sup

0≤t≤T
|η(x(σ2i−1 + t))− η(x(σ2i−1))| < ε

})
572

≥ Q
(
{σ2i−1 < +∞, τN = +∞} ∩

{
sup

0≤t≤T
|x(σ2i−1 + t)− x(σ2i−1)| < δ

})
≥ ε

2
.573

Define Ω̃i :=
{

sup0≤t≤T |η(x(σ2i−1 + t))− η(x(σ2i−1))| < ε
}
. Then, on Ω̃i∩{σ2i−1 <574

+∞}, we have σ2i−σ2i−1 ≥ T . By (4.4), if σ2i−1 < +∞, then σ2i < +∞ quasi-surely.575

Thus,576

+∞ > Ê
∫ +∞

0

η(x(t))dt ≥ EQ
∫ +∞

0

η(x(t))dt577

≥
+∞∑
i=1

EQ

[
1{τN=+∞,σ2i−1<+∞,σ2i<+∞}

∫ σ2i

σ2i−1

η(x(t))dt

]
578

≥ ε
+∞∑
i=1

EQ
[
1{τN=+∞,σ2i−1<+∞}(σ2i − σ2i−1)

]
579

≥ ε
+∞∑
i=1

EQ

[
1{τN=+∞,σ2i−1<+∞}∩Ω̃i

(σ2i − σ2i−1)
]

580

≥ εT
+∞∑
i=1

Q({τN = +∞, σ2i−1 < +∞} ∩ Ω̃i) ≥ εT
+∞∑
i=1

ε

2
= +∞,581

which indicates a contradiction. Consequently, we get limt→+∞ η(x(t)) = 0 quasi-582

surely.583
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7.4. Dynamic Stability in Example 5.2. Here, we validate the quasi-584

sure stability of the considered equations in Example 5.2. To this end, we set585

V (x) := |x|α for some given 0 < α < 1, which yields LV (x) = α|x|α−2〈x,f(x)〉 +586

G
((
k2(α− 1)α|x|α

)m
i,j=1

)
, where

(
k2(α− 1)α|x|α

)m
i,j=1

stands for an m×m matrix587

such that all elements are k2(α− 1)α|x|α. As c−1 := (−1)mi,j=1 is a non-positive sym-588

metric matrix with eigenvalues 0 and −m, we have c−1 < 0. Set 0 < α < 1+ L
k2c−1

< 1,589

we obtain that LV (x) = α|x|α−2〈x,f(x)〉+k2c−1(1−α)α|x|α ≤ α|x|α(L+k2c−1(1−590

α)). Set η(x) := α|x|α(L+ k2c−1(1− α)) < 0. Hence, in light of Proposition 4.6 and591

Theorem 4.10, if we could confirm a statement that the system in Example 5.2 does592

not reach 0 before it explodes, V (x) with α < 1 and along any trajectory apart from593

0 is differentiable to the second order, so that the quasi-sure convergence of x is guar-594

anteed to 0, the kernel of η. To make confirm the statement, we first introduce the595

following result.596

Proposition 7.11. Let M(t) =
∫ t

0
κij(s)d〈Bi, Bj〉(s) +

∫ t
0

2G(−η)ds, where η ∈597

M1
G([0, T ]; Sm). Then, we have M(t) ≥ 0 quasi-surely. Particularly, Ê[M(t)] ≥ 0.598

The proof of the above proposition is akin to the proof for Proposition 4.7, which599

is omitted here.600

Now, we make the final confirmation. We set τN := inf{t ≥ 0 : |x(t)| ≥ N} and601

ξε = inf{t ≥ 0 : |x(t)| ≤ ε} for ε,N > 0, and select V (x) = log |x|. Then, using the602

formula presented in Theorem 4.5 and Proposition 4.3, we get603

log |x(t ∧ τN ∧ ξε)| = log |x0|+
∫ t∧τN∧ξε

0

〈x(s), f(x(s))〉
|x|2

ds604

+
n∑
j=1

∫ t∧τN∧ξε

0

kdBj(s)−
n∑

i,j=1

∫ t∧τN∧ξε

0

1

2
k2〈Bi, Bj〉(s)605

Noticing the local Lipschitz property of f gives |〈x,f(x)〉| ≤ |x||f(x)| ≤ KN |x|2 on606

[0, τN ). Set c1 := G((1)mi,j=1) > 0. Then, by Proposition 7.11, we have Ê[log |x(t ∧607

τN ∧ ξε)| ≥ Ê[log |x0|] −
∫ t∧τN∧ξε

0
(KN + k2c1)ds] ≥ Ê[log |x0|] − (KN + k2c1)t. On608

the other hand, Ê[log |x(t ∧ τN ∧ ξε)|] ≤ c(ξε < t ∧ τN ) log ε + c(ξε ≥ t ∧ τN ) logN ≤609

c(ξε < t ∧ τN ) log ε + logN. Hence, we obtain Ê[log |x0|] − (KN + k2c1)t ≤ c(ξε <610

t ∧ τN ) log ε + logN. First, letting ε → 0 results in c(ξ0 < t ∧ τN ) = 0. Then, letting611

both t and N → +∞ yields c(ξ0 < τ∞) = 0, which confirms the above statement and612

finally completes the proof.613

7.5. Invariant Set Associated with Autonomous G-SDEs.614

Theorem 7.12. We consider the following autonomous G-SDEs:615

(7.2) dx(t) = f(x(t))dt+ g(x(t))dB(t) + h(x(t))d〈B〉(t),616

where f : Rd → Rd, g : Rd → Rd×m, h : Rd → Rd×m2

, and f(a) = g(a) = h(a) = 0.617
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Clearly, f , g and h are all globally Lipschitzian. Then, we have that, for all x0 6= a,618

c
(
{ω : ∃ t > 0, x(t, ω;x0) = a}

)
= 0, which indicates that the trajectory does not619

approach a quasi-surely in a finite time.620

Proof. We know that the G-SDEs (7.2) have a unique solution on MG[0, T ] for every621

T > 0 according to [36]. First, we need to perform the proof for the situation of a = 0.622

Now set A := {ω : x(t, ω) = 0 for some t ∈ [0,+∞)}. If c(A) > 0, then there exists a623

number T > 0 such that c(AT ) > 0 where AT := {ω : x(t, ω) = 0 for some t ∈ [0, T ]},624

which is due to the fact that A = ∪+∞
T=1AT . Next, introduce the stopping time625

τε := inf{t ∈ [0,+∞) : |x(t, ω)| ≤ ε}. Set V (x) := 1/|x| = (|x|2)−
1
2 . Then, we626

perform the calculations using G-Itô’s formula, obtaining that627

V (x(T ∧ τε)) = V (x0) +

∫ T∧τε

0

Vxi(x(s))f i(x(s))ds628

+

∫ T∧τε

0

Vxi(x(s))gij(x(s))dBj(s) +

∫ T∧τε

0

1

2
κij(x(s))d〈Bi, Bj〉(s)629

= V (x0)−
∫ T∧τε

0

〈x(s), f(x(s))〉
|x|3

ds−
∫ T∧τε

0

xi(s)g
ij(x(s))

|x|3
dBj(s)630

+

∫ T∧τε

0

[
− gµi(x(s))gµj(x(s))

2|x|3
+

3

2|x|5
xµxvg

µi(x(s))gνj(x(s))631

−xvh
vij(x(s))

|x|3

]
d〈Bi, Bj〉(s) ≤ V (x0) +

∫ T∧τε

0

[
|f(x)|
|x|2

+
dγ̄|g(x)|2

2|x|3
+

3γ̄|g(x)|2

2|x|3
632

+
|h(x)|γ̄
|x|2

]
ds+

∫ T∧τε

0

Vxi(x(s))gij(x(s))dBj(s),633

where κij = Vxk(hkij + hkji) + Vxkxlg
kiglj and Einstein’s notations are applied here.634

Let ρ(x) := |f(x)|
|x| + (d+3)γ̄|g(x)|2

2|x|2 + |h(x)|γ̄
|x| . Then, there exists a number K > 0 such635

that ρ(x) ≤ K < +∞ because f , g and h are globally Lipschitzian as mentioned636

above. Hence, it follows that637

V (x(T ∧ τε)) ≤ V (x0) +

∫ T∧τε

0

V (x(s))ρ(x(s))ds+

∫ T∧τε

0

Vxi(x(s))gij(x(s))dBj(s)638

= V (x0) +

∫ T

0

V (x(s))ρ(x(s))1[0,τε]ds+

∫ T

0

Vxi(x(s))gij(x(s))1[0,τε]dBj(s)639

≤ V (x0) +K

∫ T

0

V (x(s))1[0,τε]ds+

∫ T

0

Vxi(x(s))gij(x(s))1[0,τε]dBj(s),640

which implies that Ê[V (x(T ∧ τε))] ≤ Ê[V (x0)] +KÊ
∫ T

0
V (x(s))1[0,τε]ds641

≤ Ê[V (x0)] + K
∫ T

0
Ê[V (x(s ∧ τε))]ds. Now, using Gronwall’s inequality, we have642

Ê
[

1
|x(T∧τε)|

]
≤ Ê[V (x0)]eKT . From the definition of τε and also from the continuity643

of x(t), it follows that |x(T ∧ τε)| = ε on AT . Thus, c(AT ) = εÊ
[

1
|x(T∧τε)|1AT

]
≤644
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εÊ[V (x0)]eKT , which is valid for every ε > 0. Therefore, we immediately obtain645

c(AT ) = 0, which is a contradiction.646

For the general situation of a, we set y(t) := x(t)−a. Then, y(t) satisfies the G-647

SDEs: dy(t) = f(y(t) +a)dt+g(y(t) +a)dB(t) +h(y(t) +a)d〈B〉(t). Consequently,648

we know that y(t) never approaches 0 quasi-surely, i.e., x(t) never approaches a649

quasi-surely. Therefore, the proof is complete.650

7.6. Numerical evidences. Here, we describe the numerical scheme that we651

use for partially illustrating the analytical results obtained in the main text. Actu-652

ally, we do not provide a complete simulation for the solutions of G-SDEs but only653

simulate the corresponding SDEs under a group of probability measures. A rigor-654

ous and complete scheme for simulating the solution of G-SDEs still awaits further655

investigations.656

To this end, we first suppose W (t) to be a standard m-dimensional Brownian657

motion on the probability space (Ω,B(Ω), P ). Also suppose that Θ is a bounded,658

closed and convex subset of Rm×m, where Θ = [σ, σ] for m = 1. In addition, Q̃ :=659 {
Pθ ∈ M : Pθ is the law of process

∫ t
0
θ(s)dW (s) for ∀ t ≥ 0,θ ∈ A Θ

0,∞

}
⊂ Q,660

where A Θ
0,∞ denotes the collection of all Θ-valued F adapted function in [0,+∞).661

According to Remark 15 in Ref. [15], the capacity satisfies c(A) = supQ∈Q̃ P [A] for662

any A ∈ B(Ω), so we can check whether an event is correct quasi-surely on the663

probability measures space Q̃. Thus, we make our numerical simulations on a finite664

subset of Q̃ repeatedly as follows and use the case where 〈Bi, Bj〉 = 0 for each i 6= j665

and all Bi are identically distributed.666

For the time interval [0, T ], we introduce a uniform time partition 0 = t0 < t1 <667

· · · < tN = T with ∆t := tn+1 − tn = T/N . We use the following Euler-Maruyama668

scheme, as proposed in [33], to investigate the solution of the SDEs correspondingly669

from the G-SDEs in (4.1):670

(7.3)

X(n+ 1) = X(n) + f(X(n), tn)∆t+ g(X(n), tn)∆B(tn) + h(X(n), tn)∆〈B〉(tn)671

with X(0) = x0 and n = 0, 1, · · · , N − 1. Here, ∆Bi(tn) ∼ N (0, σ2
i,n∆t) and672

∆〈Bi〉(tn) = σ2
i,n∆t with σi,n ∈ [σ, σ] and i = 0, 1, · · · ,m.673

In order to investigate the dynamics of the corresponding SDEs on the probability674

measures space Q̃, the covariance {σi,n}1≤i≤m,1≤n≤N should be taken from all the675

element of the set [σ, σ]m×N . To do this numerically, we introduce a uniform interval676

partition σ = σ0 < σ1 < · · · < σk = σ with ∆σ = σi+1 − σi = (σ − σ)/k. Denote677

by Σjl := {σi|j ≤ i ≤ l}, where 1 ≤ j ≤ l ≤ k. For any given tuple (j, l), we choose678

an element (µin)1≤i≤m,1≤n≤N ∈ Σm×Njl , set σi,n = µin for all 1 ≤ i ≤ m, 1 ≤ n ≤ N ,679

and then approximate the dynamics of the SDEs correspondingly from (4.1) using the680

scheme specified in (7.3), which enables us to numerically produce a large number of681
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simulating trials.682

In Figure 1, we show the numerical results, respectively, for Examples 5.1-5.3.683

Fig. 1. (a)The dynamics of log|x| change with t for a group of SDEs correspondingly from

the G-SDEs in Example 5.1. Here, simulated are the 400 trials using the settings, σ2 = 3.5,

σ2 = 4. (b)The dynamics of |x| change with t for a group of SDEs correspondingly from the G-

SDEs in Example 5.2. Here, simulated are the 400 trials using the settings: σ2 = 40, σ2 = 50,

σ = 10, ρ = 10, β = 8/3, and k = 5. (c)The dynamics of |x| change with t for a group of SDEs

correspondingly from the G-SDEs in Example 5.3. Here, simulated are the 400 trials using the

settings: σ2 = 40 and σ2 = 50.
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