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1. Introduction

Ever since the development of the capital asset pricing model (CAPM) in the mid-1960s, linear factor models
have played a significant role in many practical applications such as evaluating managed fund performance,
estimating cost of equity capital, estimating expected returns and the covariance matrix, and factor investing.
In recent years, a number of new factor models have been proposed including Fama and French (2015, 2018),
Hou, Xue, and Zhang (2015), Stambaugh and Yuan (2017), and Daniel, Hirshleifer, and Sun (2020) among others.
Given the increasing number of factor models, it becomes less clear which are best models to use in practical
applications such as those mentioned above.

Barillas and Shanken (2017) show that when it comes to comparing linear factor models, the choice of the
test assets is irrelevant for a number of different metrics. The important issue in relative model comparison tests
is how well the model prices factors not included in the model. Barillas and Shanken (2018) develop a Bayesian
approach for model comparison tests.! The Bayesian approach is useful as it can consider a large number of mod-
els, both nested and non-nested. The Bayesian approach evaluates factor models on the basis of their Marginal
Likelihoods (ML), from which the posterior probabilities of the models can be calculated.

Chib, Zeng, and Zhao (2020) provide a critique of the Barillas and Shanken (2018) approach and show that
their method of calculating ML is not appropriate.> Chib et al propose an alternative approach to calculating
ML that can be used for relative model comparison tests. The attraction of their approach is that the ML can be
solved analytically as relies on multivariate normality. Chib, Zhao, and Zhou (2023) use this approach to run a
Bayesian model scan for comparing models among a set of factors from the models of Fama and French (2018),
Hou, Xue, and Zhang (2015), Stambaugh and Yuan (2017), and Daniel, Hirshleifer, and Sun (2020) as these
models have performed well in empirical studies. We will term these models as traditional factor models. Chib
et al find that the best performing model is a seven-factor model, and that the four models mentioned above
perform poorly in the Bayesian model scan tests.
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We use the Bayesian model scan approach of Chib, Zeng, and Zhao (2020) and Chib, Zhao, and Zhou (2023)
to examine which are the best models that can be formed from a wide range of factors in UK. stock returns.
The factors that are included in the model scan come from the Fama and French (2018), Frazzini and Pedersen
(2014), Hou, Xue, and Zhang (2015), Stambaugh and Yuan (2017), and Daniel, Hirshleifer, and Sun (2020)
models. Our sample period is between July 1983 and December 2022. We use the first 60 observations of the
sample as a training sample as in Chib, Zhao, and Zhou (2023) to estimate the hyperparameters for the prior
distribution, and we use the remaining observations to conduct the model comparison tests.

There are three main findings in our study. First, we find that the best factor model across the whole sample
period is a five-factor model, including the Market, value (HML), profitability (RMW), momentum (MOM), and
financial (FIN) factors. However, the posterior probability of this model is low and is statistically indistinguish-
able from the next best six factor models. Second, the best model significantly outperforms the traditional factor
models using a number of metrics. Third, the best model performs poorly in pricing a set of anomaly portfolios.
Our study suggests that it is likely to be more useful in combining factor models in practical applications, e.g.
through Bayesian model averaging, rather than using a single factor model.

There are two main contributions of our study. First, we complement the Bayesian model scan studies of
Barillas and Shanken (2018), Chib, Zhao, and Zhou (2021, 2023) in US stock returns by conducting a Bayesian
model scan of factors in a different market. Studies by Harvey (2017, 2020), and Hou, Xue, and Zhang (2020)
highlight the importance of replication studies in Finance. Second, we also extend the prior evidence of asset
pricing studies in U.K. stock returns including Fletcher (1994, 2001, 2019), Clare, Smith, and Thomas (1997),
Antoniou, Garrett, and Priestley (1998), Gregory, Tharyan, and Christidis (2013), Michou and Zhou (2016), and
Foye (2018). We extend this literature by running the Bayesian model scan among a large number of factors,
comparing how well the best model performs relative to the traditional factor models, and conducting pricing
tests of a set of anomaly portfolios.

The paper is organized as follows. Section 2 presents the research method. Section 3 describes the data used
in my study. Section 4 reports the empirical results. The last section concludes.

2. Research method

Ross (1978), Harrison and Kreps (1979), and Hansen and Richard (1987) show that if the Law of One Price
(LOP) holds in financial markets, then a stochastic discount factor* (m; ; ;) exists such that:

E(mey1Xit+11Z)) = py fori=1,....N (1)

where Xj;t 1 is the payoft of asset i at time t 4 1, pj; is the cost of asset i at time t, Z; is the information set used
by investors at time t, and N is the number of primitive assets. If m¢ 4 ; > 0, then financial markets also satisfy
the No Arbitrage (NA) condition in financial markets (Cochrane 2005).” If the asset payoffs are excess returns,
and there is no conditioning information, then equation (1) implies that:

E(mgtirjr1) = 0 fori=1,.....,N (2)

where rj; 1 | is the excess return of asset i at time t + 1.
Most asset pricing models specify a candidate model for the stochastic discount factor (y;4 ). The most
popular models are linear factor models, where the candidate stochastic discount factor is given by:

Yer1 = @+ Bkt bifesn (3)

where a and by are the constant and slope coefficients in the stochastic discount factor, fi 4 1 are the values of
the factors at time t 4 1, and K is the number of factors in the model. The slope coefficient (by) tells us whether
factor k is important in pricing the primitive assets given the other factors in the model (Cochrane 2005). In this
study we only consider models with traded factors.

When we evaluate linear factor models in terms of equation (2), we are unable to identify all the stochastic
discount factor coefficients in equation (3), and so must choose some normalization for the stochastic dis-
count factor. We choose the normalization followed by Chib and Zeng (2020) so that the expected value of
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the stochastic discount factor is set equal to 1, and equation (3)® becomes:

Yerr = 1= Siet “bicfaie (4)

where fg¢ 1 1 is the demeaned value of factor k at time t 4 1.

Dybvig and Ingersoll (1982) and Ferson and Jagannathan (1996) show that linear factor models imply an
equivalent expected return and beta relation. Cochrane (2005) and Ferson (2019) show that stochastic discount
factors, expected return/betas, and mean-variance frontiers are equivalent frameworks. Cochrane (2005) shows
that if the linear factor model in equation (4) satisfies the pricing restrictions in equation (2), then:

E (titp1) = Ze1 < Bikhk (5)

where Bix is the factor beta of asset i relative to factor k, and A is the factor risk premium of factor k. Define b
is a (K,1) vector of stochastic discount factor coefficients (by), A is a (K,1) vector of factor premiums (Ax), and
Vs is the (K,K) covariance matrix of the factors, Cochrane shows that:

b = fol)\ (6)

Barillas and Shanken (2017) show that for relative model comparison tests for traded linear factor models, the
choice of test assets is irrelevant for a number of metrics. Any linear factor model should be able to correctly
price the test assets, and any excluded factors from the model. When the union of all the factors in each model
is included in the investment universe, then the role of test assets drops out. To illustrate, consider two models
A and B with factors fa, and fg, and a set of test asset excess returns r. Using the maximum squared Sharpe
(1966) (Sh?) ratio to compare models, then for model A the metric is Sh?(fa,fg,r)-Sh?(f4), and for model B
Sh2(fa,fs,r)-Sh2(fg). Given the Sh%(f,fp,r) is fixed across models, then we can compare the relative performance
of the models using the Sh2(f) and Sh2(fg) measures alone. The better models are the ones with the highest
squared Sharpe performance.”

Chib and Zeng (2020) extend this test asset irrelevance arguments to the stochastic discount factor approach
in relative model comparison tests. Since equations (2) and (5) hold for linear factor models in the form of
equation (4), this implies that:

E(Fi+1) = A for factors included in the model,

and E(F*¢;1) = B for factors excluded from the model )

where f is a (L,K) matrix of factor betas, F; ; is the K factors included in the model, and Fx; 1, represents
the L factors excluded from the model. The restrictions of equation (7) can be cast into a regression framework,
where the excess returns of the factors included in the model are regressed on a constant, and the excess returns
of the excluded factors are regressed on the excess returns of the included factors in the model with the intercept
suppressed. The exclusion of the intercept® in the second regression imposes the zero pricing error restriction
on the excluded factors.

Barillas and Shanken (2018) derive a Bayesian model comparison test on the basis of Marginal Likelihoods
(ML) that can be used to compare the performance of a large number of traded factor models simultaneously.’
Chib, Zeng, and Zhao (2020) propose a framework that can be applied within the context of the regression
equations in (7).!° Chib and Zeng (2020), and Chib, Zeng, and Zhao (2020) start with a model that includes all
K+ L factors among the set of factor models being compared. They propose a prior distribution for the model
with all factors, and then the prior distribution can be derived for any model with a subset of the factors. The
log ML of a candidate model (my) is given by:

Log ML(mj) = log ML(F) + log ML(F*) (8)

Under multivariate normality, Chib et al. show that the log ML of each model can be solved analytically in
Proposition 5 of their paper.!!
Chib, Zhao, and Zhou (2023) apply the results of Chib, Zeng, and Zhao (2020) to evaluate model com-
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parison tests of all models formed from factors included in Fama and French (2018), Hou, Xue, and Zhang
(2015), Stambaugh and Yuan (2017), and Daniel, Hirshleifer, and Sun (2020).!? There are ] = 2K+% — 1 poten-
tial factor models that can be constructed by the model scan. The models can be compared using their posterior
probabilities, assuming that each factor model has an equal prior probability of 1/] as:

Posterior Probabilityj = ML/ EjzllMLj 9)

where ML, is the marginal likelihood of model j. The approach of Chib, Zhao, and Zhou (2023) uses a training
sample to estimate the hyperparameters for the prior distributions. Follow this we use the first 60 observations
of our sample period as the training sample. They point out that we can test whether models are statistically
indistinguishable from one another by using the difference in the log ML of two models. For example, if the
model with the highest posterior probability has a difference with the log ML of another model higher than
1.15, then according to the Jeffreys’s rule (Jeffreys 1961) the two models are significantly different.!®

Chib, Zhao, and Zhou (2023) also derive the posterior distribution of the various parameters in the regres-
sion framework, from which we can then derive the posterior distribution of the stochastic discount factor
coeficients in equation (6). Chib, Zhao, and Zhou (2023) also propose an approach to examine whether a given
factor model is able to correctly price excluded factors from the model.!* Define rj; ;1 as the excess return of
the excluded factor i at time t + 1. We run two regressions as follows:

K
fier = Y Pifies + €t (10)
k=1
K
Tipr = @i+ Y Pidier1 + it (11)
k=1

where ej; 1 are random error terms for asset i at time t + 1, Sjx are the factor beta of asset i relative to factor k,
and «; is the pricing error. When the factor model is able to price the excluded factor, then «; will equal zero.

To test the hypothesis that the factor model prices the excluded factor, Chib, Zhao, and Zhou (2023) use the
difference in the log ML of the unrestricted regression (equation (11)), and the restricted regression (equation
(10)). If the difference in the log ML exceeds 1.15, then the factor model is not able to correctly price the excluded
factor. Chib, Zhao, and Zhou (2023) use a Bayesian Markov Chain Monte Carlo (MCMC) to estimate the two
regressions, and compute the log ML following Chib (1995). A normal-inverse gamma prior is assumed for
the regression coeflicients and the residual variance, which is estimated from the training sample (see Green-
berg 2013). A Gibbs sampler is used with a burn-in sample of 1000 trials and 10,000 usable trials. Chib et al
also propose an adjusted alpha where the posterior mean alpha is multiplied by the posterior probability of the
alternative hypothesis. We use the regressions in (10) and (11) to examine the pricing of excluded factors and
anomaly portfolios.

We also consider two out-of-sample performance tests following the approach of Chib, Zhao, and Zhou
(2023). The first test is based on the Bayesian predictive likelihood. We use 120 months as the out-of-sample
period. The training sample remains the same and we use the rest of the sample period as the in-sample period.
We use 10 different contiguous divisions of the sample data to estimate the predictive likelihood as the difference
in the log ML for the whole sample period minus the log ML using the in-sample period. We then calculate the
predictive likelihood for the factor models as the log average of the 10 predictive likelihoods.

The second test is based on the out-of-sample Sharpe (1966) performance of the tangency portfolio of each
factor model similar to Chib, Zhao, and Zhou (2023). The training sample is set to 60 months, and the ini-
tial estimation window is set to 240 months. We use the following steps. First, the posterior distribution of the
parameters are estimated using the training sample and estimation window using 10,000 simulation draws. Sec-
ond, we then calculate the predictive expected excess returns and covariance matrix of the factors in the model.
Third, given the predictive excess returns and covariance matrix, the optimal tangency portfolio of the factors
in the model can be calculated.!® Fourth, given the optimal weights the portfolio excess return of the tangency
portfolio is calculated in the next month. Steps 1-4 are repeated each month until the end of the sample period
using a recursive estimation window. Given the time-series of the out-of-sample portfolio excess returns, we
then calculate the Sharpe performance as the average excess return divided by the standard deviation.
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3. Data

Our focus in this study is on UK. factors. All of the data is collected from the London Share Price Database
(LSPD) run by London Business School, and Refinitiv Worldscope. The sample period is between July 1983
and December 2022. Full details on the formation of the factors is included in an online Appendix. We use the
monthly return on the one-month UK. Treasury Bill as the risk-free asset, which we collect from LSPD and
Refinitiv Datastream. When the factors are formed once each year, the annual revision takes place at the start of
July each year as is common in the literature.'6

The following factors are used;

1. Fama and French (1993, 2015, 2018) (FF3, FF5, FF6)

The factors are the excess returns on the market index, and zero-cost portfolios of the size (SMB), value (HML),
profitability (RMW), investment (CMA), and momentum (MOM) effects in stock returns. From these factors,
we get the single factor CAPM (Market), FF3 (Market, SMB, HML), FF5!7 (Market, SMB, HML, RMW, CMA),
and FF6 (Market, SMB, HML, RMW, CMA, MOM).

2. Hou, Xue, and Zhang (2015) (HXZ)

The factors are the zero-cost portfolios of the profitability (ROE), and investment (IA) effects in stock returns.
The HXZ model includes the Market, SMB!®, ROE, and IA factors.

3. Frazzini and Pedersen (2014)
Frazzini and Pedersen (2014) propose the Betting against Beta (BAB) factor.
4. Stambaugh and Yuan (2017) (SY)

The factors are the two mispricing factors termed Management (MGMT), and Performance (PERF). The SY
model includes the Market, SMB, MGMT, and PERF factors.

5. Daniel, Hirshleifer, and Sun (2020) (DHS)

Daniel, Hirshleifer, and Sun (2020) propose the behavioral financial (FIN) factor.

Table 1 reports summary statistics of the excess factor returns between July 1983 and December 2022. The
summary statistics include the average excess return (%), standard deviation (Std Dev), and the ¢-statistic of the
null hypothesis that the average excess factor returns are equal to zero.

Table 1 shows that all of the factors have significant positive average excess returns, except for the SMB and
ROE factors. The MOM, and BAB factors have the largest average excess returns at 0.760%, and 0.591% respec-
tively. The profitability factors (RMW, ROE) have different average excess returns, with only the RMW factor
having a significant positive mean excess return. The mispricing factors in the Daniel, Hirshleifer, and Sun
(2020), and Stambaugh and Yuan (2017) models have significant positive average excess returns. The CMA,
MOM, and FIN factors are the only factors with a t-statistic higher than 3, which is the cut-off ¢-statistic
recommended by Harvey, Liu, and Zhu (2016) to control for multiple testing.

4. Empirical results

We begin our empirical analysis by running the model scan using all 12 factors. There are 4095 possible models,
and we assign an equal prior probability to each model. Table 2 reports the empirical results. Panel A of the Table
reports the results for the top 7 models in terms of the highest posterior probability. The panel includes the log
ML, posterior probability (Posterior prob) of each model, and the ratio of the posterior probability to the prior
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Table 1. Summary statistics of factors.

Mean Std Dev t-statistic

Market 0.438 425 2.2432
SMB 0.054 2974 0.394

HML 0.262 2.816 2.022°
RMW 0.212 2.134 2.166°
CMA 0.286 1.948 3.1932
MOM 0.76 3.235 5.1162
ROE —0.032 2.599 —0.264

1A 0.401 3.641 2.3962
BAB 0.591 5.705 2.2542
FIN 0.452 1.755 5.6072
MGMT 0.435 3.456 2.739°
PERF 0.432 4416 2.1292

Notes: The table reports summary statistics of factors between July 1983 and
December 2022. The summary statistics include the average excess returns
(%) and standard deviation (Std Dev) of the factors. The t-statistic column is
the t-statistic of the null hypothesis that the average excess factor returns are
equal to zero.

aSignificant at 5%.

Table 2. Model scan of 12 factors.

Panel A:

Best Models Log ML Posterior prob Postpriorratio
1 11069.14 0.073 300.917
2 11068.52 0.04 162.485
3 11068.5 0.039 159.682
4 11068.5 0.039 159.188
5 11068.31 0.032 131.492
6 11068.17 0.028 114.456
7 11068.02 0.024 98.952
Panel B: Log ML Posterior prob Postpriorratio
CAPM 11042.66 0 0

FF3 11038.42 0 0

FF5 11042.58 0 0

FF6 11058.39 0 0.006
HXZ 11039.6 0 0

SY 11048.42 0 0
Panel C:

Best Models Mkt,HML,RMW,MOM,FIN

1 Mkt,RMW,MOM,FIN,MGMT

2 Mkt,RMW,MOM,FIN

3 Mkt,SMB,HML,RMW,MOM,FIN

4 Mkt, MOM,FIN, MGMT

5 Mkt,HML,RMW,MOM,FIN,MGMT

6 Mkt,SMB,RMW,MOM,FIN

7 Mkt,HML,RMW,MOMFIN

Notes: The table reports the results of the Bayesian model scan of 12 factors in UK. stock returns. The sample
period is July 1983 and December 2022. The first 60 observations of the sample period is used for the train-
ing sample, and the model scan is then conducted on the remaining observations of the sample period.
Panel A reports the log marginal likelihood (Log ML), the posterior probability (Posterior prob), and the
ratio of posterior probability to prior probability (postpriorratio) for the top 7 models. Panel B includes the
log marginal likelihood, posterior probability, and the ratio of posterior probability to prior probability for
the traditional factor models. Panel C presents the identity of the factors in the top 7 models from the
Bayesian model scan.

probability (postpriorratio). Panel B of Table 2 reports the same information for the traditional factor models
as CAPM, FF3, FF5, FF6, HXZ, and SY. Panel C reports the identity of the factors in the top 7 models from the

model scan.
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Table 2 shows that the best factor model in the model scan is a five-factor model with a posterior probability of
0.073. The next six best models have a posterior probability that ranges between 0.024 and 0.040. The difference
in the log ML of the best model and the next six best models are all below 1.15 and so the models are statistically
indistinguishable from one another (Chib, Zhao, and Zhou 2023). The ratio of the posterior probability to prior
probability shows a substantial increase for the seven best models. The results in panel A of Table 2 differ from
Chib et al. They find that the top 3 models in US stock returns have a combined posterior probability of 0.3201.
After the top 3 models, there is a sharp drop in the posterior probabilities, and there are significant differences
between the top 3 models, and the remaining models. The difference in results might stem from the longer
sample period that Chib et al use or the use of a different market. A recent study by Pukthuanthong, Qiao, and
Wang (2023) find that the best factor model in international markets from the Bayesian model scan is country
specific.

Panel B of Table 2 shows that the traditional factor models perform poorly in the model scan. The posterior
probabilities of each model are essentially zero, and all of the models have a much lower posterior probability
than the prior probability assigned to each model. Likewise the best models significantly outperform the tradi-
tional factor models as the difference in the log ML between the models all exceed 1.15. The inferior performance
of the traditional factor models is consistent with Chib, Zhao, and Zhou (2023).

Panel C of Table 2 shows that the best factor model includes the Market, HML, RMW, MOM, and FIN factors.
The Market, MOM, and FIN factors are present in all of the top models. The key role of the Market factor in factor
models is consistent with Harvey and Liu (2021), Fletcher (2019), and Bryzgalova, Huang, and Julliard (2023).
The RMW factor is included in six of the top models. The HML, SMB, and MGMT factors are all included in at
least one of the top seven models.

Table 2 suggests that the best model in terms of posterior probability is a five-factor model. Chib, Zhao,
and Zhou (2023) also derive the posterior distribution of the factor premiums for a given factor model in equa-
tions (17) to (20) of their paper. We use 10,000 simulation draws for generating the posterior distribution of the
factor premiums, and the corresponding stochastic discount factor coefficients. Table 3 reports the summary
statistics of the posterior distribution of the factor premiums (panel A), and stochastic discount factor coef-
ficients (panel B) of the best model. The summary statistics include the mean, standard deviation (Std Dev),
median, and 2.5% and 97.5% percentiles of the posterior distribution.

Panel A of Table 3 shows that the MOM factor has the largest posterior mean factor premium at 0.770%,
followed by the FIN factor at 0.437%. It is only the RMW, MOM, and FIN factors which have significant positive

Table 3. Summary statistics of the posterior distribution of factor premiums and stochastic discount factor
coefficients of the best model risk factors.

Panel A:

Premiums Mean Std Dev Median 2.5% 97.5%
Market 0.382 0.196 0.381 —0.005 0.769
HML 0.162 0.144 0.161 —0.124 0.442
RMW 0.225 0.107 0.224 0.017 0.435
MOM 0.770 0.169 0.771 0.441 1.101
FIN 0.437 0.088 0.438 0.267 0.612
Panel B:

SDF Coefficients Mean Std Dev Median 2.5% 97.5%
Market 6.932 1.494 6.921 3.029 10.871
HML 6.564 2.604 6.516 —0.003 13.370
RMW 10.530 3.193 10.446 2.633 19.055
MOM 9.608 1.814 9.616 5.045 14.345
FIN 14.282 3.423 14.222 5.538 23.288

Notes: The table reports the summary statistics of the posterior distribution of the factors in the best model
from the Bayesian model scan of 12 factors in U.K. stock returns. The sample period is July 1983 and December
2022.The first 60 observations of the sample period is used for the training sample, and the model scan is then
conducted on the remaining observations of the sample period. Panel A reports the summary statistics of the
posterior distribution of the factor premiums (%), and panel B reports the summary statistics of the posterior
distribution of the stochastic discount factor coefficients. The summary statistics include the mean, standard
deviation (Std Dev), median, 2.5% and 97.5% percentiles using 10,000 simulation draws.
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factor premiums where the Bayesian credibility intervals do not straddle zero. In panel B of Table 3 all of the
stochastic discount factor coeflicients are significantly positive for each factor, except for the HML factor, using
the 95% Bayesian credibility intervals. This finding suggests that four of the five factors play an important role
in the stochastic discount factor in pricing assets given the other factors in the model (Cochrane 2005). The
Market factor plays an important role even where the corresponding factor premium is not significantly positive.
Cochrane points out that when the factors are correlated with each other, a significant positive factor premium
does not tell us whether the factor is useful in pricing other assets given the other factors in the model but looking
at the stochastic discount factor coefficients does.'”

To compare the best factor model in Table 2 to the traditional factor models in more detail, we estimate the
fitted stochastic discount factor values for each factor model using the posterior mean values of the correspond-
ing stochastic discount factor coefficients. Table 4 reports the summary statistics of the fitted stochastic discount
factor values for each model. The summary statistics include the standard deviation (Std Dev), minimum, maxi-
mum, and the proportion of fitted stochastic discount factor values below zero (Prop < 0). We do not report the
mean values as by construction they equal one. The final column reports the correlations between the traditional
factor models, and the best factor model.

Table 4 shows that the best factor model has the largest stochastic discount factor volatility across the factor
models, closely followed by the FF6 model. This finding suggests that the best factor model is more likely to
pass the Hansen and Jagannathan (1991) volatility bounds. The CAPM and FF3 stochastic discount factors have
the lowest volatility reflecting the inferior performance of these models. The best model, HXZ and FF6 models
have a tiny proportion of negative fitted stochastic discount factor values. This result suggests that the better
performance of the best factor model does not come at the expense of violating the NA restriction. This result
differs from Li, Xu, and Zhang (2010), and Wang and Zhang (2012) who find that multifactor models have better
pricing performance at the expense of a greater proportion of negative fitted stochastic discount factor values.?
The best factor model has the highest correlation with the FF6 stochastic discount factor due to the inclusion of
the HML, RMW, and MOM factors in the best model.

We next examine how well the best factor model, and the traditional factor models are able to correctly
price the excluded factors from the model. Chib, Zhao, and Zhou (2023) find that the traditional factor models
do a poor job in pricing the excluded factors in US stock returns, but the best factor model is able to price
the excluded factors. Table 5 reports the adjusted alphas (%) for the excluded factors relative to each model.
Highlighted in bold is where the difference in the log ML for the unrestricted regression (equation (11)), and
restricted regression (equation (10)) is greater than 1.15.

Table 5 shows that the best factor model does a good job pricing the excluded factors. None of the excluded
factors have significant alphas relative to the best model. All of the factors, except SMB, have tiny adjusted alphas.
In contrast, the traditional factor models have large significant mispricing in at least one of the excluded factors.
The CAPM and FF3 models have large significant positive adjusted alphas for most of the excluded factors. The

Table 4. Summary statistics of candidate stochastic discount factor models.

Std Dev Minimum Maximum Prop (y < 0) Correlation

Best 0.464 —0.646 3.058 0.017

CAPM 0.098 0.734 1.623 0 0.308
FF3 0.104 0.604 1.557 0 0.331
FF5 0.243 0.057 1.923 0 0.576
FF6 0.412 —0.578 2978 0.008 0.873
HXZ 0.231 —0.536 2 0.006 0.202
SY 0.293 0.187 2.259 0 0.38

Notes: The table reports the summary statistics of the fitted stochastic discount factor values of the best factor model
from the Bayesian model scan, and for the traditional factor models. The fitted values are estimated using the pos-
terior mean of the stochastic discount factor coefficients. The sample period is July 1983 and December 2022. The
first 60 observations of the sample period is used for the training sample, and the model scan is then conducted on
the remaining observations of the sample period. The summary statistics include the standard deviation (Std Dev),
the minimum, maximum, and the proportion (Prop y < 0) of fitted values that are below zero. The final column
includes the correlations between fitted values of the traditional factor models, and the best model. The posterior
distribution of the stochastic discount factor coefficients is estimated from 10,000 draws.
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Table 5. Adjusted alphas of excluded factors.

Best CAPM FF3 FF5 FF6 HXZ SY
SMB 0.183 0.002
HML 0.006 0.003 0.027
RMW 0.242 0.327 0.22 0.027
CMA 0.012 0.241 0.248 0.01 0.023
MOM 0.826 0.896 0911 0.842 0.743
ROE —0.002 —0.003 —0.002 —0.01
IA 0.01 0.246 0.193 0.007 0.016 0.029
BAB 0.013 0.017 0.048 0.067 —0.005 0.042 0.005
FIN 0.49 0.46 0.385 0352 0.459 0433
MGMT 0.046 0.493 0.448 0.079 0.12 0.282
PERF 0.031 0.637 0717 0.479 0.03 0.608

Notes: The table reports the adjusted alphas (%) for the excluded factors relative to the best factor model in the model scan, and relative to the
traditional factor models. The sample period is July 1983 and December 2022. The first 60 observations of the sample period is used for the
training sample and the remaining observations of the sample is used to estimate the posterior distribution of the alphas. A Gibbs sampler is
used with a burn-in sample of 1000 trials and 10,000 simulation trials are used to estimate the posterior distribution of the regression coefficients.
Highlighted in bold are where the difference in log marginal likelihoods of the unrestricted and restricted regressions is larger than 1.15.

FF5, HXZ, and SY models have massive adjusted alphas on the MOM factor. All three models are also unable
to price the FIN factor. The FIN factor is the only factor that the FF6 model is not able to correctly price. The
results in Table 5 are consistent with Chib, Zhao, and Zhou (2023).

We next examine how well the best factor model and the traditional factor models are able to price a set of
test assets. We use 34 anomaly portfolios as our set of test assets>! using a subset of the characteristics used by
Chib et al. (2023)?2 (see also Kozak, Nagel, and Santosh 2020).2% Table 6 reports the empirical results. Panel A
reports the mean absolute adjusted alpha (%), and the number of significant alphas for each factor model. Panel
B reports the adjusted alphas (%) of the anomaly portfolios relative to the best model, and FF6 and SY models.
Highlighted in bold are where the difference in log ML of the unrestricted and restricted regressions exceeds
1.15.

Panel A of Table 6 shows that the best factor model and the traditional factor models are unable to correctly
price a number of anomaly portfolios. The number of significant alphas range between 12 (SY), and 16 (Best).
The mean absolute adjusted alphas are similar across models ranging between 0.217% (FF5) and 0.256% (FF3).
In this set of test assets, the best factor model is not able to outperform the traditional factor models.

Panel B of Table 6 shows that the majority of the significant alphas on the anomaly portfolios are negative. All
three models are not able to price Asset Growth, Cash Productivity, Cash/Price, Growth in CAPEX, CAPEX and
Inventory, 1-month Reversal, Size, Sales Growth, and Sales/Market Value. The 1-month Reversal has the largest
mispricing with adjusted alphas of —1.653% (Best), —1.586% (FF6), and —1.453% (SY). The SY model is able
to correctly price the Beta, BM, Cash/Total Assets, and Net Operating Assets anomaly portfolios that the Best
and FF6 models cannot. The best and FF6 models can price the Momentum and Long-Term Reversals anomaly
portfolio that the Best and SY models cannot.

Table 6 shows the best factor model does not outperform the traditional factor models in pricing the anomaly
portfolios. A recent study by Chib et al. (2023) find that their best model from a model scan in a much larger
set of factors has much better pricing performance than the FF6 model in characteristic portfolios of stocks,
exchange-traded funds, and individual US stocks. They find that their best model is unable to correctly price
24 anomaly portfolios out of 125 but does not examine the pricing performance of the traditional models. The
better performance of the best models in these studies might stem from the higher posterior probabilities that
these models have in US stock returns. Our final set of tests examines the out-of-sample performance of the
best factor model, and traditional factor models using the predictive likelihood and Sharpe performance. Table
7 reports the log mean predictive likelihood and annualized Sharpe performance for the best model and the
traditional factor models.

Table 7 shows that the best factor model outperforms the traditional factor models in both out-of-sample
tests. The best factor model has the highest predictive likelihood across models. The differences in the log pre-
dictive likelihoods of the best model to the other models all exceed 1.15. Among the traditional factor models,
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Table 6. Adjusted alphas of anomaly portfolios.

Panel A Best CAPM FF3 FF5 FF6 HXZ SY
|Alpha| 0.245 0.253 0.256 0.217 0.228 0.229 0.228
N Sig 16 15 15 14 15 14 12
Panel B Best FF6 SY
Accruals —0.066 —0.018 —0.045
Asset growth —0.455 —0.447 —0.549
Beta 0.343 0.162 0.006
BM 04 0.471 0.314
Cash/Total assets 0.352 0.268 0.064
Cash/Debt 0.002 —0.004 —0.001
Cash productivity —-0.514 —0.558 —0.484
Cash/Price 0.644 0.643 0.541
Changes in outstanding shares 0.016 —0.005 —0.019
Dividend yield 0.025 0.034 0
Earnings/Price 0.004 0.001 0.006
Gross profitability 0.054 0.043 0.075
Growth in CAPEX —0.225 —0.25 —0.268
Idiosyncratic volatility 0.443 0.165 0.043
CAPEX and inventory —0.532 —0.557 —-0.595
Leverage 0.197 0.265 0.167
% Change in total liabilities —-0.192 —0.269 —0.272
Momentum 0.005 0.023 0.66
1-month reversal —1.653 —1.586 —1.453
Size —0.61 —0.544 —0.527
Operating profitability 0.001 0.017 0.015
% change in gross margin-% change in sales —0.007 —0.001 —0.004
ROE —0.002 —0.002 —0.01
Sales/Cash —0.219 —0.091 —0.01
Sales/Inventory 0.039 0.08 0.06
Sales growth —0.401 —0.448 -0.519
Sales/market value 0.272 0.331 0519
Asset turnover 0.001 0.004 0.02
Gross margin 0.1 0.057 0.029
Net operating assets —0.387 —0.322 —0.056
Investment/Capital 0.008 —0.006 —0.049
Momentum-reversal —0.03 —0.005 —0.063
Long-term reversals —0.123 —0.071 —0.326
Seasonality —0.003 —0.002 0.001

Notes: The table reports the pricing tests using 34 anomaly portfolios. The sample period is July 1983 and December 2022. The first 60 observations
of the sample period is used for the training sample and the remaining observations of the sample is used to estimate the posterior distribution
of the alphas. A Gibbs sampler is used with a burn-in sample of 1000 trials and 10,000 simulation trials are used to estimate the posterior
distribution of the regression coefficients. Panel A reports the average absolute adjusted (%) (|alpha|), and the number of significant alphas (N
sig) for each model. Panel B reports the adjusted alphas (%) of 34 anomaly portfolios relative to the best factor model in the model scan, and
relative to the FF6 and SY models. Highlighted in bold are where the difference in log marginal likelihoods of the unrestricted and restricted
regressions is larger than 1.15.

the FF6 model has the highest predictive likelihood. The best model also has the largest annualized Sharpe per-
formance at 1.355, which is considerably higher than the traditional models. The SY and FF6 have the next
highest annualized Sharpe performance at 1.078 and 0.922, respectively.

The results in Tables 2-7 show that although the best factor model outperforms the traditional factor models
in a number of tests, it does perform poorly in pricing the anomaly portfolios. Likewise, the top seven factor
models in the model scan are statistically indistinguishable from one another. Related empirical evidence in
Bayesian model scan studies such as Barillas and Shanken (2018, 2022), Chib and Zeng (2020), Chib, Zhao,
and Zhou (2023), and Chib et al. (2023) highlight that the best factor model varies between the different studies.
Pukthuanthong, Qiao, and Wang (2023) highlight the best factor models across international markets varies
considerably. These studies suggest that the Bayesian model scan studies are sensitive to time period chosen,
factors used, and financial market studied. Given this, it suggests the importance of combining factor models in
practical applications along the lines of Bayesian model averaging, of which examples are the recent studies by
Avramov et al. (2023) and Bryzgalova, Huang, and Julliard (2023).
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Table 7. Out-of-sample tests.

Predictive Likelihood Sharpe
Best 3406.89 1.355
CAPM 3391.19 0.431
FF3 3390.55 —0.051
FF5 3391.76 0.777
FF6 3402.29 0.922
HXZ 3389.57 0.636
SY 3392.67 1.078

Notes: The table reports out-of-sample tests of the best
factor model from the Bayesian model scan and tradi-
tional factor models. The sample period is July 1983 and
December 2022. The first 60 observations of the sample
period is used for the training sample. The first test is the
predictive likelihood. The out-of-sample period is set to
120 months. Using 10 contiguous divisions of the sam-
ple period, the predictive likelihood is calculated and the
log of the average predictive likelihood is reported. The
second test is the out-of-sample Sharpe performance of
the optimal tangency portfolio of each model. The opti-
mal weights are estimated each month using a recursive
estimation window, where the initial window is set to
240 months. The predictive expected excess returns and
covariance matrix are estimated using 10,000 simula-
tion draws from the posterior distribution of the factor
premiums and factor covariance matrix.

5. Conclusions

We use the Bayesian model scan approach of Chib, Zeng, and Zhao (2020) and Chib, Zhao, and Zhou (2023)
to examine model comparison tests among a set of UK. factors. We examine how well the best model from the
model scan performs relative to traditional factor models based on the CAPM, Fama and French (1993, 2015,
2018), Hou, Xue, and Zhang (2015), and Stambaugh and Yuan (2017). There are three main findings in our
study.

First, we find that the best factor model during the whole sample period is a five-factor model, which includes
the Market, HML, RMW, MOM, and FIN factors. However, the posterior probability is small at 0.073, and the
performance of the best model is statistically indistinguishable from the next best six factor models in terms
of posterior probability. All of the factors in the best model, except the HML factor, have significant positive
stochastic discount factor coefficients and so play an important role in the stochastic discount factor given the
other factors in the model. The finding that the top models are statistically indistinguishable and have relative low
probabilities suggesting that it might be better to combine models in practical applications rather than simply
using a single model.

Second, the best factor model significantly outperforms the traditional factor models along a number of
dimensions. The posterior probabilities of the traditional factor models are essentially zero, and the best model
has a much higher significant log ML than the traditional models. The best model does a better job pricing
the excluded factors. The best model also outperforms in out-of-sample tests providing both higher predictive
likelihood and higher Sharpe performance. This finding is consistent with Chib, Zhao, and Zhou (2023).

Third, the best model struggles to correctly price a number of anomaly portfolios. Out of 34 anomaly port-
folios, there are 16 significant alphas for the best model, and the adjusted posterior mean alphas are substantial.
The best model also does not outperform the traditional factor models in pricing the anomaly portfolios. This
finding suggests that even using the best factor model from a model scan can still perform poorly in pricing test
assets.

Our empirical results suggest in terms of practical applications that it might be better to combine factor
models rather than use a single model. One application could be in the area of optimal portfolio choice. Our
analysis has used the Bayesian model scan under the multivariate normal distribution of Chib, Zeng, and Zhao
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(2020), and Chib, Zhao, and Zhou (2023). The analysis could be extended to use the multivariate t distribution
along the lines of Chib and Zeng (2020). Another interesting extension to our study would be to look at impact
how the factors are formed such as in Ehansi and Linnainmaa (2021), or a wider range of factors as in Chib et al.
(2023). A final topic is looking at whether the best factor model changes with using more recent data following
Chib, Zhao, and Zhou (2021). We leave these issues to future research.

Notes

1.

See Fama and French (2018), and Barillas et al. (2020) for alternative approaches for relative model comparison tests.

2. See the response by Barillas and Shanken (2022).

10.
11.

12.
13.

14.

15.
16.

17.

18.
19.
20.
21.
22.

23.

. Chib, Zhao, and Zhou (2023) also consider the benefits of adding principal components (formed from anomalies that the best

model cannot price), and find that three principal components are included in the best model.

. See Cochrane (2005) and Ferson (2019) for reviews of the stochastic discount factor approach to asset pricing.
. The stochastic discount factor will only be unique if markets are complete.
. See Cochrane (2005) for more details. Burnside (2016) examines the impact of different normalization methods in linear factor

models in this situation.

. Ferson, Siegel, and Wang (2022) extend these arguments in the presence of conditioning information.
. If the intercept was included it would capture the Jensen (1968) alpha of the excluded factors. The Jensen alpha is identical to

the stochastic discount factor alpha in this setup as E (yi+1) = 1. See Ferson (2019).

. Alternative Bayesian model comparison tests have been developed using the expected return/beta framework of Avramov et al.

(2023).

See Bryzgalova, Huang, and Julliard (2023) for an alternative approach.

Chib and Zeng (2020) develop model comparison tests under the multivariate t distribution, which requires the use of Bayesian
Markov Chain Monte Carlo simulation methods.

Chib, Zhao, and Zhou (2023) use the same size factor across all models.

Chib, Zhao, and Zhou (2023) point out that using 1.15 is equivalent to an odds ratio of 3.15 to 1. Alternative values of the
difference between the log ML of two models can be set by selecting different odds ratio.

The same approach can be used to examine whether a given factor model correctly prices a set of test assets, which we use later
in the paper.

We rescale the weights to sum to 1 as in Chib, Zhao, and Zhou (2023).

An alternative approach is used by Gregory, Tharyan, and Christidis (2013) where the factors are formed at the beginning of
October each year. Given that we use accounting information from the prior calendar year, we stick with the July revision date.
Foye (2018) finds that both the Fama and French (1993; 2015) models perform poorly in UK. stock returns. Foye also finds that
using gross profitability to form the RMW factor performs better than alternative measures of profitability such as operating
profitability used by Fama and French (2015).

Chib, Zhao, and Zhou (2023) use the same SMB factor across models in their study.

Kan, Robotti, and Shanken (2013) make a similar point in cross-sectional regression asset pricing tests.

See also Gospodinov, Kan, and Robotti (2016).

Details on how the anomaly portfolios are formed are detailed in the online Appendix.

The characteristics selected by Chib, Zhao, and Zhou (2023) are a subset of the characteristics used in Green, Hand, and Zhang
(2017).

We thank one of the reviewers for suggesting an examination of this issue.
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