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ABSTRACT: The C-aryl-tetrahydropyran motif is prevalent in nature in
a number of natural products with biological activity; however, this
challenging architecture still requires novel synthetic approaches. We
demonstrate the application of a stereoselective Heck redox-relay
strategy for the synthesis of functionalized 2,6-trans-tetrahydropyrans
in excellent selectivity in a single step from an enantiopure
dihydropyranyl alcohol, proceeding through a novel exo-cyclic migration.
The strategy has also been applied to the total synthesis of a trans-epimer
of the natural product centrolobine in excellent yield and stereoselectivity.

Over the past decade, it has been shown that stereogenic
centers can be installed in positions remote from other

functionalities in acyclic alkenol systems with high stereo-
selectivity, via palladium-catalyzed Heck-type redox-relay
processes.1 Following the stereoselective formation of the
new C−C bond, the palladium catalyst migrates along the alkyl
chain toward the alcohol via successive syn-β-hydride
elimination/syn-migratory insertion steps, termed a “chain
walk”, terminating with an oxidative deprotonation step that
ultimately delivers the corresponding aldehyde or ketone
(Figure 1a).2 Since the seminal publication of this strategy by
Sigman and co-workers in 2012,3 the scope has been expanded
significantly for acyclic systems.1 In particular, the alkenylation
of acyclic O-aryl enol ethers via a Heck redox-relay strategy has
been demonstrated by both Sigman and Correia, using alkenyl
triflates and aryl diazonium salts, respectively (Figure 1b).4−6

Oxidative Heck redox-relay processes are also possible,
employing boronic acids instead of halides or pseudohalides.
Application of this approach to lactams (Figure 1c)7 results in
arylation α to the nitrogen atom, followed by partial migration
around the ring, furnishing the α,β-unsaturated lactam product.

Since 2009, the University of Strathclyde and GSK have
engaged in a collaborative M.Phil./Ph.D. program. This new
model of industry/academia partnership supports GSK
employees and new graduates to embark on research in a
broad range of scientific areas, from chemical biology to
process development.8 As part of this collaborative endeavor,
we were inspired to investigate whether the Heck redox-relay
strategy could be applied to 6-(hydroxymethyl)-2,3-dihydro-
pyranyl (DHP) alcohols (Figure 1d).

Requiring an ambitious and unprecedented exo-cyclic
migration process,9 this approach would represent a new and
complementary strategy for accessing 2,6-disubstituted tetra-
hydropyrans (THPs),10−14 which are C(sp3)-rich, biologically

relevant,15 and medicinally important motifs.16,17 Herein, we
disclose the successful realization of this novel approach.

We initiated our study with enantiomerically pure DHP-
alcohol, (R)-1 (>99:1 er), which is readily available from
racemic DHP-alcohol rac-1 via enzymatic resolution on a
multigram scale (Scheme 1).18 Pleasingly, reaction of (R)-1
with p-fluorophenylboronic acid, under conditions similar to
those previously reported for oxidative Heck redox-relay
reactions7 [Pd(MeCN)2(OTs)2, PyrOx ligand L0, Cu(OTf)2,
open to air],19 validated our proposed strategy, with formation
of the desired, product-derived, alcohol 3a as a single
diastereoisomer in 46% yield and 97:3 er.

Having identified preliminary conditions for the stereo-
selective C−C bond formation, we first chose to investigate
any potential substrate/catalyst match/mismatch effects in the
presence of a chiral ligand by observing the formation of the
desired aldehyde in reactions of (R)-1 and (S)-1 with PyrOx
ligands (S)-L1 and (R)-L1 using 19F NMR spectroscopy
(Figure 2).20 High yields of the desired trans-THP 2a
confirmed that (R)-1 and (S)-L1 are a matched pair, as are
(S)-1 and (R)-L1. For the mismatched catalyst/ligand pairs,
complete consumption of the starting material was observed,
while the aldehyde product was generated only in small
quantities (∼10%). It is suspected that under these conditions,
a nonligand controlled addition to the opposite face of the
alkene also occurs, resulting in products derived from partial
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migration. On this basis, a classical kinetic resolution, where
one enantiomer of starting material is converted into the
product and the other is left in enriched form, proved to be
challenging. While the product was observed in high
enantioselectivity, using rac-1, enantioenriched starting ma-
terial was not recovered.19

We next undertook an optimization study to probe all
components of the reaction process (Table 1). No improve-
ment in yield was observed when a control reaction was
performed under an oxygen atmosphere (entry 2). Two

equivalents of boronic acid proved to be optimal, with 1 equiv
leading to a decreased yield due to competing side reactions
(homocoupling, protodeborylation, and phenol formation,
entry 1 vs entry 3) and 3 equiv delivering no further increase
in yield (entry 4). Control reactions in the absence of
palladium and copper or in the absence of palladium only
(entry 5 or 6, respectively) confirmed that the palladium(II)
species is the active metal catalyst. In the absence of copper(II)
triflate, only the rate of the reaction was reduced, but a
comparable yield was attained after 24 h compared to standard
conditions (entry 7). The exclusion of oxygen or removal of
molecular sieves from the reaction led to significantly
diminished solution yields, reaching only 9−11% after 24 h
(entries 8 and 9).21 Conversely, the addition of 1 equiv of
water had a positive influence on the reaction (entry 10),
increasing the yield to 76%.

With this water additive, the palladium:PyrOx (S)-
L1:copper loading could be successfully reduced to 4:6:2
(mole percent) while maintaining the excellent yield (entries
11 and 12). Progressing with the lowest catalyst loading (entry
12), 2,6-trans-THP derivative 2a was subsequently reduced
with sodium borohydride, for ease of isolation, to give the
corresponding alcohol, 3a, in 59% yield, >99:1 er, and >20:1
dr. Further screening studies determined that palladium(II)
acetate was another viable precatalyst for this transformation,
furnishing 3a in 70% yield and 99:1 er.19

While two systems that could deliver the desired product in
excellent stereoselectivity and comparable yields had been
identified, the substrate scope with respect to boronic acid was
investigated using the lower catalyst loading of Pd-
(MeCN)2(OTs)2 with a practical industrial application in
mind. Using this strategy, it proved to be possible to selectively
generate both enantiomers of the 2,6-trans-THP-alcohol
product, 3a and ent-3a, in comparable yield stereoselectively,

Figure 1. Heck redox-relay processes and a proposed strategy for
accessing 2,6-disubstituted tetrahydropyrans.

Scheme 1. Heck Redox-Relay Reaction on a Dihydropyranyl
Alcohol

Figure 2. Match/mismatch data with enantiopure DHP-alcohol and
PyrOx L1. Conditions: 2 equiv of p-FC6H4B(OH)2, 10 mol %
Pd(MeCN)2(OTs)2, 15 mol % PyrOx (S)- or (R)-L1, 4 mol %
Cu(OTf)2, DMF (0.1 M), 3 Å MS, air, room temperature.

Table 1. Investigation of the Reaction Parametersa

entry deviation from the standard conditions yield (%)b erc

1 none 67 >99:1
2 oxygen atmosphere 50 −
3 1 equiv of boronic acid 26 −
4 3 equiv of boronic acid 64 −
5 no Pd, no Cu(OTf)2 0 −
6 no Pd, 10 mol % Cu(OTf)2 0 −
7 no Cu(OTf)2 63 −
8 nitrogen atmosphere 9 −
9 no MS 11 −
10 1 equiv of water 76 99:1
11e 6:10:3 Pd:PyrOx:Cu mole ratio 80 (56d) 99:1
12e 4:6:2 Pd:PyrOx:Cu mole ratio 77 (59d) >99:1
13e 10:15:4 Pd(OAc)2:PyrOx:Cu mole ratio 84 (70d) 99:1
aConditions: 2 equiv of boronic acid, 10 mol % Pd(MeCN)2(OTs)2,
15 mol % PyrOx L1, 4 mol % Cu(OTf)2, no water, 3 Å molecular
sieves, air, unless otherwise stated. bThe 24 h solution yield of 2a
determined by 19F{1H} NMR. cEnantiomeric ratio determined
following reduction of aldehyde 2a to the corresponding alcohol,
3a. dIsolated yield following reduction of aldehyde 2a to the
corresponding alcohol, 3a. eWith 1 equiv of water.
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by using the correct combination of DHP-alcohol 1 and PyrOx
L1 (Scheme 2).

An X-ray crystal structure of ferrocenoyl-functionalized 3a
confirmed the absolute stereochemistry.19 The use of other
fluorophenylboronic acid isomers proved to be less successful
under the optimized reaction conditions.19 All substrates
maintained excellent stereoselectivites throughout. Methoxy-,
hydroxy-, benzyloxy-, naphthyl-, and alkyl-substituted boronic
acids proved to be successful (3c-i). In addition to fluorine, p-
chlorophenylboronic acid was well tolerated (3j); however,
yields with p-bromo phenylboronic acid (3n) were significantly
reduced, likely due to the propensity of the bromine to
undergo reactions with palladium.

Use of p-(trifluoromethyl)phenylboronic acid initially led to
the formation of a trace of the aldehyde product. However,
when the alternative palladium(II) acetate conditions with
higher catalyst loading were employed, an increase in product
formation was observed (3k). This strategy was also applied to
improve the yield of the more electron-deficient systems (3k,
3m, and 3o); however, p-nitrophenyl- and pyrimidylboronic

acids were unreactive under these conditions. Heteroaromatic
boronic acids were tolerated (3o and 3p), although the use of
2-furanylboronic acid resulted in a slight erosion of
enantioselectivity (3o).

Finally, we sought to demonstrate our developed method-
ology in the synthesis of centrolobine, a natural product that
has been found to exhibit antibacterial and antifungal
properties.22 Both cis-enantiomers of centrolobine have been
isolated, and a number of total syntheses of these naturally
occurring stereoisomers have been reported.23 Given these
efforts, interest has shifted toward the unnatural diaster-
eomers,24 which could be used to develop structure−activity
relationships of these cores. More specifically, given that
Colobert’s synthesis of the cis-isomer of centrolobine utilized a
cis-isomer of 2c as a key intermediate,23a,b we proposed that a
trans-isomer of centrolobine could be accessed in short order
using our developed methodology to more rapidly access this
key 2,6-disubstituted THP motif.

To this end, application of our Heck redox-relay conditions
to (S)-DHP-alcohol 1 and 4-(methoxy)phenylboronic acid
gave ent-2c in 60% yield (Scheme 3). Then, following the

approach of Colobert,23a,b Wittig reaction of ent-2c using
phosphonium salt 4 afforded alkene 5 in 72% yield. Exposure
of 5 to 3.5 mol % Pd/Al2O3 in the presence of H2 resulted in
concomitant reduction of the alkene and benzyl deprotection,
to afford the (3S,7S)-trans-isomer of centrolobine 6 in 68%
yield. Given the literature precedent for the ready epimeriza-
tion of the C-aryl glycoside bond from trans to cis in
intermediates of type 5,24d this approach could be used to
rapidly access all four stereoisomers of centrolobine.

In summary, we have applied an oxidative Heck redox-relay
strategy to the synthesis of C-aryl-containing 2,6-trans-
tetrahydropyrans, from enantiopure dihydropyranyl alcohols.
Using (R)- or (S)-DHP-alcohol 1, a range of 2,6-trans-
tetrahydropyrans, bearing diverse functionality, were generated
under mild conditions in excellent stereoselectivity. This motif
also provides a synthetic handle for further functionalization,
enabling facile access to a diverse set of substrates from a
simple building block. We also demonstrated the utility of this
approach via the concise synthesis of a trans-isomer of the
natural product centrolobine.

This approach represents a valuable addition to the redox-
relay oxidative Heck toolkit, and the novel exo-cyclic migration
underpinning this sequence opens up the potential for similar
redox-relay chemistry on broader heterocyclic systems.

Scheme 2. Arylboronic Acid Substrate Scope

aAverage of two runs. bConditions: 2 equiv of p-FC6H4B(OH)2, 10
mol % Pd(OAc)2, 15 mol % PyrOx L1, 4 mol % Cu(OTf)2, 1 equiv of
water, DMF (0.1 M), 3 Å MS, air, room temperature, 24 h; then
NaBH4, MeOH, 0 °C, 3 h. cStarting from (S)-DHP-1 using PyrOx
(R)-L1.

Scheme 3. Total Synthesis of trans-Centrolobine
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