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Abstract
The Sichuan–Yunnan area is one of the most seismically active regions in China. As 
ground-motion models form a key component of seismic hazard analysis, it is important 
to select (or develop) appropriate models for this area. The increasing number of digital 
ground-motion records of earthquakes in this area has allowed the development of local 
ground motion prediction equations (GMPEs). This study compares and, later, recom-
mends appropriate GMPEs for the Sichuan–Yunnan area. We first evaluate the inherent 
quality of local GMPEs, with respect to their underlying datasets, the variables used and 
their functional forms, to determine a set of candidate GMPEs. Then we investigate how 
well the predictions from the GMPEs match observations computed from strong-motion 
records of recent earthquakes in this area. The fit between predictions and observations 
varies significantly amongst the GMPEs. The results suggest that some recent local 
GMPEs would lead to biased ground-motion estimates due to limitations of their underly-
ing datasets and functional forms. Based on both evaluations of inherent quality and com-
patibility with observations, only one local GMPE is recommended. A comparison of the 
predictions from three widely-used non-local GMPEs indicates that ground motions in the 
Sichuan–Yunnan area appear more variable than those in other regions but that predictions 
from these non-local GMPEs are generally unbiased. We recommend use of a mixture of 
robust local and non-local GMPEs within seismic hazard analyses to capture the epistemic 
uncertainty in ground-motion prediction for this area.
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1 Introduction

The area comprising the provinces of Sichuan and Yunnan, which are located near the 
south-eastern boundary of the Tibetan plateau, is one of the most tectonically and seismi-
cally active regions in China. Since the beginning of the historical record (~ 800 C.E.), 
two massive earthquakes ( MS ≥ 8.0 ), the 1833 Songming earthquake in 1833 and the 2008 
Wenchuan (WC) earthquake, and approximately 40 large earthquakes ( 7.0 ≤ MS ≤ 7.9 ) 
have occurred in this area. More than 130 million people in the Sichuan–Yunnan area thus 
face high seismic hazard and, given the vulnerability of the structures in the area, high risk.

Ground-motion models (GMMs), including both empirical (i.e. those based on 
regression of observed ground motions) models and those derived using physics-based 
approaches, are a crucial component of seismic hazard analysis. Such models should cap-
ture “the centre, the body, and the range” (viz. the guidelines of the Senior Seismic Hazard 
Analysis Committee, SSHAC) of future earthquake ground motions either by using a suite 
of GMPEs or through a backbone approach (e.g., Douglas 2018). The most widely-used 
GMMs are ground motion prediction equations (GMPEs), which are generally derived 
through regression analysis of empirical data. In the following we use “GMM” to refer to a 
suite of GMPEs to capture the epistemic uncertainty in ground-motion prediction.

Due to a sparsity of digital ground-motion records from China, Hu and Zhang (1984) 
introduced the transform method in the 1980s to derive GMPEs for peak ground accelera-
tion (PGA) and response (pseudo) spectral accelerations (PSAs). This approach was widely 
used in China subsequently (e.g., Huo 1989; Wang et al. 2000; Yu 2002). The GMPEs most 
widely used for seismic hazard analysis of major engineering projects are still based on the 
transform method, like the models by Xiao (2011) and China Earthquake Administration 
(2019) (hereafter, CEA 2019). In this method, a reference area with abundant instrumen-
tal ground-motion records and macroseismic intensities (e.g., the western United States of 
America, USA) is chosen. Then separate GMPEs to predict PGA or PSA and macroseis-
mic intensities are derived for the reference area and a similar GMPE for macroseismic 
intensity for the target area (in our case, China). The assumption then made is that, for 
the same magnitude and distance, the same level of macroseismic intensity in both areas 
would correspond to the same level of PGA or PSA. This then allows a GMPE for PGA or 
PSA to be estimated for the target area by converting between macroseismic intensity and 
PGA or PSA. While the transform method has obvious imperfections, e.g., large intervals 
between intensity values, this method is commonly used. The method has highlighted that 
ground-motion characteristics vary amongst Chinese regions (Yu and Wang 2004, 2006; 
Zhao et al. 2009; Fan et al. 2011).

More and more ground-motion records have been collected in China with improve-
ments in strong-motion networks since the early 2000s, especially in the Sichuan–Yun-
nan area. This increasing number of records facilitates the development of local GMPEs. 
Various GMPEs have been derived directly from local ground-motion records from the 
Sichuan–Yunnan area: Cui et al. (2012), Wang et al. (2013), Li et al. (2020) for PGA and 
PSAs and Fan et al. (2020) and Zhang et al. (2021) for peak ground velocity (PGV) and 
peak ground displacement. The development of these GMPEs does not just indicate great 
progress for regional seismic hazard analysis but also provides more choices of GMPEs 
for such analyses. Given the complex regional characteristics of ground motions, it is not 
evident that GMPEs derived using data from other regions (e.g., western USA) are well 
calibrated to the characteristics of a target region (here, Sichuan–Yunnan) in terms of its 
source and path properties (e.g., Bommer and Stafford 2020). Region-specific GMPEs 
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could show more consistency with the records from the target region than other models 
as long as the region-specific GMPEs satisfy the requirements of seismic hazard analysis 
(e.g., Mousavi et  al. 2012; Ghasemi and Allen 2022). Therefore, region-specific GMMs 
are generally recommended for a specific site/region as GMMs vary from region to region, 
because of differences in, e.g., source characteristics, path effects related to geometric 
spreading and anelastic attenuation (e.g., Cotton et al. 2006; Goulet et al. 2018; Weatherill 
et al. 2020).

To develop appropriate GMMs, GMPEs need to be evaluated against their potential per-
formance in predicting ground motions for the target area and requirements for probabil-
istic seismic hazard analyses (e.g., Bommer et al. 2010). For the purposes of site-specific, 
national or continental hazard analyses, candidate GMPEs have been evaluated in many 
studies, e.g., for the USA (e.g. Abrahamson et  al. 2008; Gregor et  al. 2022; McNamara 
et  al. 2019), for Australia (e.g. Ghasemi and Allen 2022), for Italy (e.g. Lanzano et  al. 
2020), for Europe and the Middle East (e.g. Stafford et al. 2008; Campbell and Bozorgnia 
2006; Campbell 2016) and globally (e.g. Stewart et al. 2015). Very few studies have under-
taken such an evaluation for China. Huang and Galasso (2019) compared the NGA-West2 
GMPEs and one local GMPE to local ground-motion records in the Sichuan province. 
Despite this study’s interesting finding that ground motions in this province are character-
ized by slower attenuation than modelled by the NGA-West2 GMPEs, this study was based 
on only a single local candidate GMPE and relatively few ground-motion records. The 
local GMPE (Huo 1989) used in their comparison was developed more than 30 years ago 
using the transform method, which does not correctly model recent ground-motion obser-
vations (Wang 2010). Besides, the ground-motion records used by Huang and Galasso 
(2019) came from only three recent strong earthquakes, which are not necessarily typical 
of ground motions in the Sichuan province, especially since relatively small and moderate 
earthquakes have caused significant damage in this area.

In this study, we evaluate GMPEs to recommend appropriate models for the 
Sichuan–Yunnan area. First, we compile all regional GMPEs derived from local instru-
mental ground-motion records. Second, these candidate GMPEs are evaluated based on 
their datasets, functional forms and independent variables, the methods used to derive the 
models, and the range of response periods considered. Next, we compare predictions from 
the candidate GMPEs to local ground-motion records by computing inter- and intra-event 
residuals (also known as between- and within-event residuals). Finally, we make some 
recommendations of appropriate GMPEs for use within seismic hazard analyses of the 
Sichuan–Yunnan area.

2  Determination of candidate GMPEs

We searched for all published GMMs developed for the Sichuan–Yunnan area and identi-
fied 14 candidate GMPEs. This excludes models derived for specific sites or from single 
earthquakes only. In addition, we have only considered GMPEs that have used data from a 
wide range of magnitudes because these have wider applicability. Therefore, those GMPEs 
that have used data from small and moderate earthquakes only are not included in our com-
parisons. This includes the GMPE of Jiang (2017).

Huo (1989), Yu and Wang (2006) and Lei et al. (2007) derived their GMPEs using the 
transform method. These models assume elliptic attenuation because isoseismal maps usu-
ally use elliptic contours to describe the effects of an earthquake. It is difficult, however, 
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to estimate the major axes of future earthquakes as the strikes of faults vary. This creates 
a difficulty and uncertainty when predicting ground motions for future events. Given the 
problems discussed above with the transform method and these difficulties with assuming 
elliptic attenuation, these GMPEs have been excluded from the following evaluation.

The GMPEs of Xiao (2011) and CEA (2019) are also derived using the transform 
method, although the ground-motion records of the WC earthquake were included during 
the regression analysis. In addition, they both assume elliptic attenuation, which makes 
them more difficult to use. As mentioned above, however, they are the most widely used 
GMPEs within seismic hazard analyses for major engineering projects in China. Because 
of this and despite the potential difficulties in applying them, the GMPEs of Xiao (2011) 
and CEA (2019) are considered in the later residual analysis.

Eight other Sichuan–Yunnan GMPEs derived using the standard method of regression 
on ground-motion data (and not the transform method) are considered more carefully in 
the following. These are the models of: Cui et al. (2006), Kang and Jin (2009), Cui et al. 
(2012), Wang et al. (2013), Zhang et al. (2013), Wen et al. (2018), Li et al. (2020), and 
Zhang et al. (2022). These eight GMPEs were developed for Sichuan and/or Yunnan using 
local ground-motion data. Most of them were published in peer-reviewed journals except 
Cui et al. (2012), which is a conference paper, and all of them have not yet been superseded 
by a new article by the same authors. Thus, none of models can be excluded by basic qual-
ity assurance criteria without looking deeper.

Following exclusion criteria suggested by Bommer et al. (2010) for GMPEs of shallow 
crustal earthquakes, the main elements used for the assessment of the GMPEs applicability 
are: the dataset used, the range of response periods, the functional form and the independ-
ent variables, the methods used to derive the coefficients, and the magnitude and distance 
ranges of applicability. These are discussed in turn in the following sections.

2.1  Dataset selection

All datasets used to derive these GMPEs consist of instrumental ground motions of earth-
quakes that occurred in the Sichuan–Yunnan area. Zhang et al. (2013) and Li et al. (2020) 
also used a small number of ground-motion records from global shallow crustal earth-
quakes. Each group of authors developed their own selection criteria for records, including 
considerations of the magnitude and distance ranges, the minimum and maximum number 
of records for each event, the numbers of components considered and how they were com-
bined, recording quality criteria and whether records from aftershocks were included.

Details are listed in Table 1. It is obvious that Cui et al. (2006) provides limited details 
on the dataset used. Kang and Jin (2009) did not provide sufficient information on their 
dataset either. In addition, they only used records from aftershocks of the WC earthquake 
(from 12th May to 10th June 2008). It is debatable if one specific earthquake sequence is 
sufficient to derive a widely applicable GMPE. The rest of the considered GMPEs were 
derived from records of moderate and strong earthquakes ( M ≥ 4.0 ), and the number of 
records from each earthquake should be sufficient for regression analysis.

In summary, all eight studies collated their own datasets of instrumental records and 
used them to derive GMPEs according to their own selection criteria, but the quality of the 
datasets varies considerably. Based on the characteristics of datasets discussed above, the 
GMPEs of Cui et al. (2006) and Kang and Jin (2009) would be excluded at the first step as 
it is likely that these models will be unreliable due to inadequacies of their datasets. In the 
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following only the six remaining models: Cui et al. (2012), Wang et al. (2013), Zhang et al. 
(2013), Wen et al. (2018), Li et al. (2020), and Zhang et al. (2022), are considered.

2.2  Function form and variables

As shown in Table 2, all the GMPEs use logarithmic functions, with magnitude, distance, 
site and style-of-faulting terms. The logarithmic form of GMPEs is justified as the distri-
bution of ground motion parameters has been shown to follow a lognormal distribution, 
except potentially for very high amplitude motions. The ground motion parameters (PGA, 
PGV, and 5%-damped PSA) are non-linear functions of magnitude and source-to-site dis-
tance. Neither epicentral distance, Repi , nor local magnitude, ML , are generally appropriate 
variables to predict ground motions of moderate and large earthquakes, particularly within 
the near-source region. Site-effect terms that are not in terms of the time-average shear-
wave velocity to 30m, VS30 , or another physical measurement would likely not be optimum 
either. This indicates that the GMPEs of Cui et al. (2012) and Wang et al. (2013) would be 
less suitable than others, which use appropriate magnitude and distance scales and even 
consider style-of-faulting effects in their functions.

2.3  Derivation method

Since all functional forms of GMPEs are logarithmic, it is important to choose a regression 
method that accounts for inter- and intra-event components of variability when deriving 
the coefficients of a GMPE (e.g. Douglas 2003). The intra-event effects include system-
atic bedrock or site-specific effects and path-specific effects, and the inter-event component 
contains systematic source-specific effects (Al Atik et al. 2010). Table 3 lists the methods 
used by their developers to derive the candidate GMPEs, for their residual analyses (if per-
formed) and to test the resulting GMPEs. Some of the developers calculated inter- and 
intra-event residuals. Most of the developers tested their GMPEs by comparing them with 
previous models and/or with observed ground-motion data, which adds credibility to the 
GMPEs.

For each of the candidate GMPEs, we evaluated the predicted PGA curves against 
distance. These curves exhibit similar and reasonable shapes, except the curves from 
the GMPE of Wen et al. (2018). As shown in Fig. 1a, as well as the very small values of 
PGA (in terms of an unknown unit), the curves are inappropriate because predictions for 
Mw = 5.0 are greater than those for Mw = 8 . Examining the coefficients carefully, it was 
noticed that the values of a

2
 and a

4
 (from Table 1 in Wen et al. 2018) were unusual with 

positive and negative values, respectively, when they would be expected to be negative 
and positive. To check for a simple clerical error, we switched the values for a

2
 and a

4
 , and 

then redrew the PGA curves for various magnitudes. Comparing these new curves with the 
original ones, the values of PGA in Fig. 1b are now much too high and the shapes of the 
curves are unusual. When examining the unit covariance matrix, Wen et al. (2018) them-
selves highlight that some of the coefficients of their GMPEs (including those related to 
the magnitude scaling) show strong trade-offs, which they relate to their data’s relatively 
narrow magnitude range and few near-source records. Therefore, the GMPE of Wen et al. 
(2018) is rejected from further comparisons.

Therefore, there are five models left for the following comparison: Cui et  al. (2012), 
Wang et al. (2013), Zhang et al. (2013), Li et al. (2020) and Zhang et al. (2022).
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2.4  Range of response periods

GMMs should provide predictions for a wide range of response spectral periods (from 
0s, i.e., PGA, up to at least 2 s) (Bommer et al. 2010). According to the requirements 
of Chinese code for seismic design of buildings (MHUDPRC 2010), response spectral 
periods up to 6s are required from seismic hazard analyses. As shown in Fig. 2, all five 

Fig. 1  a Attenuation of PGA for magnitude 5.0, 6.0, 7.0 and 8.0 using the GMPE of Wen et al. (2018). b 
Using the published equation but switching the values of a

2
 and a

4

Fig. 2  Comparison of predicted response spectra from candidate GMPEs for various magnitudes and dis-
tances assuming rock site conditions, and assuming strike-slip faulting and a footwall site (if applicable)
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remaining GMPEs provide predictions from 0.0 to at least 6.0s, although the number 
of sampling points varies from model to model. For the GMPE of Cui et al. (2012), the 
sampling points are too spread out to enable smooth response spectra to be drawn, while 
the other four GMPEs generate smoother spectra. Most spectra show large variations at 
longer periods (beyond 6s), probably due to noise in the ground-motion data and a lim-
ited records being used at such periods. The GMPEs of Zhang et al. (2013) and Li et al. 
(2020) show unusual behaviour for smaller earthquakes. These unusual predictions were 
confirmed by comparing them against spectra shown in the original articles.

Despite the above-mentioned weaknesses of these GMPEs, all GMPEs predict sim-
ilar levels of ground motion for common response periods (Fig.  2). These equations 
appear to provide reasonable and similar predictions of PSA up to around 2 s. Overall, 
the GMPEs of Wang et al. (2013) and Zhang et al. (2022) provide better predictions for 
the whole period range, with the PSAs from Zhang et al. (2022) showing less variation 
with period than those from Wang et al. (2013).

2.5  Conclusions of this GMPE evaluation

Through looking at each aspect of the candidate GMPEs, we were able to understand 
the inherent quality of each GMPE in terms of their datasets, functional forms, inde-
pendent variables and the magnitude and distance ranges of their applicability. A sum-
mary of these findings are reported below.

• There is no detailed accessible list of records or the detailed characteristics of the 
database used by Cui et al. (2006) or Kang and Jin (2009), which makes it harder 
to assess the reliability and applicability of these GMPEs. Therefore, both these 
GMPEs were excluded before any detailed comparison was carried out.

• Cui et al. (2012) mainly used observational data from the mountainous area of the 
Sichuan–Yunnan area, and hence the GMPE from Cui et  al. (2012) may be appli-
cable for seismic hazard analysis in this area. The specific magnitude and distance 
ranges of applicability of this GMPE are also unknown. In addition, the GMPE’s use 
of epicentral distance means that it is likely unreliable in the near-source region of 
moderate and large earthquakes. Similarly, VS30 was not considered when modelling 
local site effects. Overall, this GMPE is not considered appropriate for most seismic 
hazard assessments.

• Wang et  al. (2013) did not consider VS30 for the site terms of their GMPE either. 
This GMPE also has a narrow magnitude range of applicability due to the data used 
(4.5 ≤ MS ≤ 6.5). In consequence, this GMPE is also not considered appropriate for 
most seismic hazard assessments.

• As stated in their article, the GMPE from Zhang et al. (2013) could be used to pre-
dict ground motions for earthquakes of magnitude equal to and greater than 5.0 
within a rupture distance of 200 km. The applicability of this model for moderate 
earthquakes is, however, doubtful as we do not obtain reasonable response spectra 
for earthquakes of magnitude 5 using this GMPE.

• According to the range of magnitude and distance indicated by Wen et  al. (2018), 
their GMPE is applicable for Mw > 4.0 and within a Joyner–Boore distance of 
around 200 km. The coefficients provided in this article, however, are likely incor-
rect because of the unusual ground-motion predictions they generate.
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• As discussed above, the GMPE of Li et al. (2020) could be appropriate for the predic-
tion of horizontal PGA and PSAs of strong (M > 6) earthquakes within a rupture dis-
tance of 200 km.

• Zhang et al. (2022) stated that their GMPE showed good performance for estimating 
PSAs from earthquakes with Mw 4.2–7.9 and rupture distances from 10 to 200 km, at 
sites with VS30 = 140–1130 m/s. The predicted response spectra shown here confirmed 
this good performance.

In conclusion, we assessed these eight candidate GMPEs by following the Bommer 
et al. (2010) exclusion criteria. As listed in Table 4, the GMPE from Zhang et al. (2022) 
is the only one that passes all Bommer et al.’s basic exclusion criteria. Wen et al. (2018) 
may pass if the correct coefficients were available. In addition, Li et al. (2020) could be an 
appropriate choice if the focus was only on calculating ground motions from earthquakes 
with M > 6.

3  Comparisons of GMPEs to local ground‑motion records

To further evaluate the performance of these models, we compared predictions from the 
five remaining GMPEs to local ground-motion data. Various studies have used goodness-
of-fit measures such as the mean and standard deviations of the residuals, log-likelihood 
and Euclidean distances to assess the match between observations and predictions for dif-
ferent regions (e.g. Scherbaum et  al. 2004, 2009; Kale and Akkar 2013; Mousavi et  al. 
2014). These measures capture the overall fit between the observations and predictions 
within a handful of values and hence they are useful data reduction methods, especially 
when ranking many GMPEs. We have decided not to rank the GMPEs based on these 
measures as we believe that presenting plots of observations and predictions, and graphs 
showing inter- and intra-event residuals (as well as computing the bias and standard devia-
tions, as well as best-fit trends, from these residuals) provides a more complete description 
of where the GMPEs fit the data. Our approach is similar to that taken by, for example, 
Scasserra et al. (2009) for Italy.

3.1  Database of ground‑motion records

All instrumental data used in this study are provided by the Strong Motion Observation 
Centre within the Institute of Engineering Mechanics of the China Earthquake Administra-
tion (hereafter SMOC). The official data that are available from SMOC start in 2007 and 
currently end in 2017. The database contains source parameters (epicentre locations, hypo-
central depths and magnitudes), station parameters (station locations and basic site condi-
tions) and ground-motion values (PGA and PSAs for various spectral periods). The records 
are from 946 earthquakes that occurred in the Sichuan–Yunnan area between January 2007 
and December 2017.

The magnitudes provided were either on the surface-wave or local scales, so to be con-
sistent with the magnitude scale used in most of the candidate GMPEs, moment magni-
tudes Mw were collected from the Global Centroid-Moment-Tensor (GCMT) catalogue 
when available or from the Mw-based earthquake catalogue for China compiled by Cheng 
et al. (2017). Based on three Chinese earthquake catalogues and three global Mw catalogues 
(GCMT, ISC-GEM and NEIC), Cheng et al. (2017) compared events with MS in Chinese 
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earthquake catalogues with Mw in global catalogues and then derived MS–Mw regression 
relationships using a constrained general orthogonal regression method. These relationships 
were used to estimate Mw for the earthquakes without an entry in the GCMT catalogue.

Considering the magnitude range of applicability of these GMPEs listed in Table 1, we 
selected ground-motion records from earthquakes of Mw ≥ 4.8. This leads to 3,279 records 
from 71 mainshocks of Mw 4.8–7.9. The locations of these earthquakes are shown in Fig. 3. 
The WC earthquake of 2008 generated a large sequence of aftershocks, including some 
strong earthquakes. Therefore, we have included those records in the following comparison 
(1,756 records from 58 aftershocks of the WC earthquake).

According to the focal mechanism solutions provided by published references, 26 earth-
quakes are strike-slip events, two earthquakes are normal-faulting events and two earth-
quakes are reverse-faulting events. Details can be found in the Electronic Supplement.

For the other earthquakes whose magnitudes are less than 5.0, focal mechanism solu-
tions cannot be obtained either from the Global CMT catalogue or from the literature. Nev-
ertheless, the tectonics of the Sichuan–Yunnan area can help assess the focal mechanisms 

Fig. 3  Map showing the epicentres of earthquakes used in the comparison and the locations of recording 
stations. The aftershocks of the WC earthquake are not plotted due to their large quantity. Light grey and 
light orange polygons indicate the Sichuan and Yunnan provinces, respectively
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of these small earthquakes. The Indian plate is colliding with the Eurasian plate and is 
moving towards the northeast, which forces the Tibetan plateau to continue to move in 
an east–south–southeast direction (Yin and Harrison 2000), whereas the relatively stable 
Huanan block resists the escaping movement of the plateau as a rigid barrier (Zhang et al. 
2010). As strain response, modern tectonics in the Sichuan–Yunnan area is dominated by 
movements of translation, rotation and uplift of secondary active blocks. These blocks are 
bounded by a series of strike–slip faults combining dip–slip components (Xu et al. 2003). 
Hence, the focal mechanisms of earthquakes occurred in the Sichuan–Yunnan area are dom-
inated by strike–slip faulting, with only a few normal-faulting and reverse-faulting events, 
which are distributed in the west and northeast of this area, respectively (Hu et al. 2017).

In consequence, we assume strike–slip faulting when evaluating the GMPEs for Mw less 
than 7.0. All PGAs and PSAs available at very large magnitudes are from the reverse-faulting 
WC earthquake of Mw 7.9 so the GMPEs are evaluated for reverse faulting for this event.

3.2  Distance parameters

Rupture distance ( Rrup ) needed to be estimated since it is the distance measure used in our 
candidate GMPEs. Although it is difficult to obtain the rupture geometries for all events in 
our database, it still is obtainable for the larger earthquakes along well-mapped faults.

Fig. 4  a Magnitude-distance distribution of records, b distribution with magnitude, and c distribution with 
Rrup
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Fig. 5  Plots of observations and predictions for PGAs and PSAs (1s) against rupture distance for various 
magnitudes. For consistency amongst models, we show predictions for rock site conditions. According to 
the range of applicability of each GMPE listed in Table 2, the predictions are shown up to 200km with solid 
lines and beyond 200km with dash-dotted lines. Both Cui2012_weighted and Cui2012_unweighted are 
from Cui et al. (2012) but have different coefficients (this is the same for Zhang2013_FP and Zhang2013_
FN)
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We identified 30 earthquakes with sufficient information from which we could estimate 
rupture geometries (Electronic Supplement). For these earthquakes, estimates of Rrup for 
all stations were obtained using the estimated rupture geometries and the Fault-to-Station 
Distance program (Boore 2019). For the other 41 earthquakes with Mw less than 5 for 
which rupture geometries could not be identified, hypocentral distance ( Rhypo ) was used as 
a proxy distance measure. Most observations from earthquakes of Mw ≤ 5 are recorded at 
30–200 km from the rupture plane (Fig. 4a). Due to the likely small size of these ruptures 
(less than 5 × 5 km) the effect of this assumption will be negligible.

Figure 4c shows the number of records against Rrup . For all events, most records are 
in the distance range 30–300 km. For large earthquakes, and particularly the Mw 7.9 WC 
earthquake, records are also available from 300 to 1000 km. There are a large number of 
records from aftershocks of the WC earthquake, most of which are located at 30–200 km 
away [the magnitudes of these aftershocks are smaller than 6.2 and mainly range from 4.8 
to 5.6].

3.3  Comparisons of GMPEs to local records

Zhang et al. (2013), Li et al. (2020) and Zhang et al. (2022) included terms to model the 
effect of different styles of faulting. For the strike-slip faulting events, the style-of-fault-
ing term fflt = 0 . Cui et al. (2012) and Wang et al. (2013) did not include style-of-faulting 
terms. These three GMPEs (Zhang et al. 2013, 2022; Li et al. 2020) also included hanging-
wall terms. The hanging wall effect can sometimes be observed in the near-source area 
( R ≤ 40 km ) at short spectral periods (e.g., Abrahamson and Somerville 1996). In the 
Sichuan–Yunnan area, most faults have strike-slip mechanisms with high dip angles. In 
addition, most records are located more than 30km from the rupture plane (Fig.  4c), so 
hanging-wall effects would likely be minimal in the vast majority of cases. Hence, we did 
not use the hanging-wall terms. All GMPEs used VS30 in their site-effect term except that 
by Wang et al. (2013). Average VS30 of 553 m/s and 353 m/s (Yu et al. 2016) are assumed 
for rock and soil sites, respectively.

We plotted the predicted values from the candidate GMPEs (Cui et al. 2012; Wang et al. 
2013; Zhang et al. 2013, 2022; Li et al. 2020) and observed values for PGA and PSA (1 s) 
against rupture distance ( Rrup ) for various magnitudes. We used a magnitude bin of ±0.2 
around the central value to group the observations for each magnitude interval. For PGAs 
from all considered magnitudes, there is a good match between predictions and observa-
tions from rock stations at all distances, especially from 30 to 200 km (Fig. 5). Overall, the 
predictions of PGAs fit the observations from soil stations as well, especially for Mw = 5.0, 
5.5 and 6.0. Furthermore, the plots for the WC aftershocks show the same pattern. For 
Mw = 6.5, the predictions for PGA are slightly lower than the observations from soil sta-
tions but this is based on limited records.

For period 1s, the predictions from GMPEs show wider fluctuation, and the smaller 
magnitudes ( Mw = 5.0, 5.5 and 6.0) show wider dispersion amongst GMPEs. The pre-
dictions generally match the observations from both rock and soil stations well. For 
Mw = 6.5 and 8.0, some predictions are slightly lower than the observations from soil 

Fig. 6  Variation of inter-event residuals against magnitude for PGA, PSA (0.1 s) and PSA (1 s). Black solid 
lines are linear fits, and the black dash lines indicate the 95% confidence intervals. Only the weighted model 
of Cui et al. (2012) and the FN model of Zhang et al. (2013) are presented here as their variants show simi-
lar results

▸
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stations but most under-predictions happen for records from more than 200km. For 
the WC aftershocks, more observations are under-predicted and the observations are 
marginally lower than those from mainshocks for the same magnitude. This finding is 
consistent with previous studies (e.g., Douglas and Halldórsson 2010).

The inter- and intra-event residuals are computed using the algorithm of Abraham-
son and Youngs (1992). The residual analysis is restricted to the data from within 
Rrup = 300 km, which is the farthest distance considered in most seismic hazard analy-
ses. This means 2,469 records (70 events) are included.

The magnitude scaling is tested by plotting inter-event residuals against magnitude. 
The results in Fig.  6 indicate mixed findings with respect to the misfit between the 
magnitude-scaling of the candidate GMPEs and local observations. The inter-event 
(tau) standard deviations range from 0.5 to 0.7, which are larger than commonly-
observed values of about 0.3–0.5 (e.g., Douglas and Edwards 2016). The results sug-
gest that ground motions from earthquakes in the Sichuan–Yunnan area are more vari-
able than those in other regions.

To clearly understand the variation of inter-event residuals with magnitude, we 
derived linear best-fit lines from the residuals. The slope of the line, namely the trend, 
indicates a mismatch in the magnitude-scaling of the model and the data. The residuals 
from Cui et al. (2012) show strong trends against magnitude for PSA at 1s, while for 
PGA and PSA at 0.1 s the trends are less clear. The relatively low means of the inter-
event residuals (biases) and the weak trends in the inter-event residuals with respect 
to magnitude show that this model can predict PGA and PSA (0.1 s) better than PSA 
(1  s). Wang et  al. (2013) has high bias for PGA and PSA (0.1  s), suggesting a large 
misfit between predictions and observations, while the model could generate good pre-
dictions for PSA (1  s). The trends for Wang et  al. (2013) are weak for all presented 
periods, especially at 0.1 s. Zhang et al. (2013) also shows better predictions for PSA 
(1 s), as indicated by lower bias and weaker trends for this response period. For PGA 
and PSA (0.1 s), however, the misfit between predictions and observations are obvious 
as the biases are high. For Li et al. (2020), there is a weak trend for PGA but the trends 
for PSA (0.1 s) and PSA (1 s) are extremely strong. Zhang et al. (2022) shows better 
behaviour for PGA and PSA (1 s) than for PSA (0.1 s), but compared to other models, 
it provides relatively good predictions for PGA and PSA at both 0.1 s and 1 s. There 
are trends for PGA, PSA (0.1 s) and PSA (1 s) but all of them are slight and show the 
same overall pattern.

As shown in Fig. 6, most GMPEs produced better predictions for earthquakes with 
magnitude between 5.5 and 6.5 but the predictions from Cui et al. (2012) and Zhang 
et al. (2022) show a clear misfit at Mw = 6.6 (the Lushan earthquake in 2013), with the 
inter-event residual for this event being much greater than zero for these two GMPEs. 
However, it is hard to conclude whether any of the GMPEs can provide good predic-
tions for all strong earthquakes due to the limited records from this magnitude range.

The distance scaling is tested by examining the intra-event residuals versus Rrup . As 
shown in Fig. 7, all models generally indicate small biases and trends in terms of their 
distance scaling for PGA. Most models indicate weak trends for PSA at 0.1 s and 1 s 
as well. Wang et al. (2013) and Zhang et al. (2013) show trends for PSA (0.1 s) and 

Fig. 7  Variation of intra-event residuals against rupture distance for PGA, PSA (0.1 s) and PSA (1 s). Black 
solid lines are linear fits, and black dash lines indicate the 95% confidence intervals. Green and red circles 
indicate records from soil and rock stations, respectively
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Fig. 8  Variation of inter-event residuals against magnitude for PGA, PSA (0.1 s) and PSA (1 s) for three 
global and one Chinese GMPE. Black solid lines are linear fits, and the black dash lines indicate its 95% 
confidence intervals. CEA (2019) is updated from Xiao (2011) so it shares the same functional form and 
the coefficients for response periods from 0 to 1.2 s with Xiao (2011). Due to all periods considered in our 
analysis being less than 1.2 s, we only present the results for Xiao (2011) for the major axis, although pre-
dictions for the minor axis are similar
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Fig. 9  Variation of intra-event residuals against rupture distance for PGA, PSA (0.1 s) and PSA (1 s) for 
three global and one Chinese GMPE. Black solid lines are linear fits, and black dash lines indicate its 95% 
confidence intervals. Green and red circles indicate records from soil and rock stations, respectively
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Cui et al. (2012) shows a relatively stronger trend for PSA (1 s). Overall, Zhang et al. 
(2022) shows a good performance against distance that for all considered spectral peri-
ods. The weak trends mainly occur at distances beyond 200 km, which is beyond this 
model’s reported range of applicability. The results also indicate that all models show 
weaker trends for PGA and short periods than longer periods.

3.4  Comparisons with another widely used and recommended GMPEs

We have also compared worldwide GMPEs to local ground-motion records. For active 
shallow crustal regions, three empirical models, AB2010 (Akkar and Bommer 2010), 
CY2008 (Chiou and Youngs 2008), and Zhao2006 (Zhao et al. 2006), were recommended 
for the Global Earthquake Model by Stewart et al. (2015). Chiou and Youngs (2008) has 
been updated to Chiou and Youngs (2014) during the NGA-West2 project. The new version 
is also recognized as an adaptable GMPE for active crustal regions (Bommer and Stafford 
2020). Therefore, we adopted CY2014 (Chiou and Youngs 2014) rather than 2008 version. 
In addition, as the most widely used GMPEs in China, Xiao (2011) and CEA (2019) were 
also included in the comparison.

The results in Fig. 8 indicate low bias and no strong trends in the plots for inter-event 
residuals, which suggests that the three worldwide GMPEs and the two widely-used Chi-
nese GMPEs provide good predictions for the local data, particularly for PGA and PSA 
(0.1 s). The inter-event (tau) standard deviation remains large. The bias for PSA (1.0 s) and 
trends are slightly higher but still better than most of the local GMPEs.

The plot of intra-event residuals against distance shown in Fig. 9 indicates that the three 
worldwide GMPEs display slight trends with respect to their distance attenuation for PGA 
and PSA at 0.1 s and 1.0 s. The two Chinese GMPEs show strong trends, especially for 
PSA (1.0 s), which are worse than those observed for the local GMPEs.

Perhaps surprisingly, the worldwide GMPEs present better compatibility to the local 
data than the local GMPEs. The NGA-West2 model (CY2014) shows the best prediction in 
terms of magnitude and distance scaling and overall ground-motion levels.

The results also suggest that the source characteristics of earthquakes in the 
Sichuan–Yunnan area are more variable than in other regions because of the larger inter-
event standard deviations. This could be explained by the complicated tectonic characteris-
tics, which may also have led to the seismic hazard of this area being underestimated by the 
Chinese zonation map. The results indicate that using only local GMPEs may not be appro-
priate when estimating the seismic hazard of this area. The combined use of local mod-
els and robust global models within a GMM, potentially composed of equally-weighted 
predictions from the Zhang et al. (2022), Akkar and Bommer (2010), Chiou and Youngs 
(2014), Zhao et al. (2006) and CEA (2019) GMPEs, would be more appropriate.

4  Conclusions and recommendations

In this article, we evaluated local GMPEs for the Sichuan–Yunnan area based on their 
characteristics as well as by comparing them with local ground-motion data. From the 
local GMPEs, that by Zhang et al. (2022) is considered the best for the area. Several 
reasons support this conclusion: a good and accessible dataset, a standard functional 
form than captures the main magnitude- and distance-scaling effects, and a good match 
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to the local ground-motion data. Our results also indicate that the distance attenuation 
of Zhang et  al. (2022) matches the observations better than the widely-used GMPEs 
in China by Xiao (2011) and CEA (2019). Therefore, we recommend the Zhang et al. 
(2022) GMPE for use within seismic hazard analyses for engineering projects.

Although the rapidly increasing number of seismic stations in China enables the devel-
opment of local GMPEs, some new local GMPEs suffer from problems, such as poor 
dataset selection, insufficient consideration of site effects and unusual functional forms. 
In addition, due to the relatively short recording history, the datasets used to derive the 
GMPEs does not cover the entire magnitude range of interest for seismic hazard analyses, 
especially at large magnitudes (M > 6.5). Hence, the local GMPEs for the Sichuan–Yunnan 
area, and potentially also for the whole of China, could be improved in several ways. For 
example, rather than deriving completely new models, local GMPEs could be developed by 
adjusting robust GMPEs from elsewhere. Based on our analysis using local ground-motion 
data, global GMPEs generally show  better performance than local models. The results 
also suggest that improved estimates of VS30 for seismic stations could help to decrease 
the uncertainty associated with ground-motion prediction. Finally, the results suggest that 
earthquake ground motions in the Sichuan–Yunnan area are more variable than those in 
other active crustal regions.
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