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Abstract

Background: Meningioma is the commonest primary brain tumour. Volumetric post-contrast magnetic resonance imaging (MRI)
is recognised as gold standard for delineation of meningioma volume but is hindered by manual processing times. We aimed to
investigate the utility of a model-based variational approach in segmenting meningioma.
Methods: A database of patients with a meningioma (2007–2015) was queried for patients with a contrast-enhanced volumetric
MRI, who had consented to a research tissue biobank. Manual segmentation by a neuroradiologist was performed and results
were compared to the mathematical model, using a battery of tests including the Sørensen–Dice coefficient (DICE) and JACCARD
index. A publicly available meningioma dataset (708 segmented T1 contrast-enhanced slices) was also used to test the reliability
of the model.
Results: 49 meningioma cases were included. The most common meningioma location was convexity (n = 15, 30.6%). The
mathematical model segmented all but one incidental meningioma, which failed due to the lack of contrast uptake. The median
meningioma volume by manual segmentation was 19.0 cm3 (IQR 4.9–31.2). The median meningioma volume using the
mathematical model was 16.9 cm3 (IQR 4.6–28.34). The mean DICE score was 0.90 (SD = 0.04). The mean JACCARD index was 0.82
(SD = 0.07). For the publicly available dataset, the mean DICE and JACCARD scores were 0.90 (SD = 0.06) and 0.82 (SD = 0.10),
respectively.
Conclusions: Segmentation of meningioma volume using the proposed mathematical model was possible with accurate results.
Application of this model on contrast-enhanced volumetric imaging may help reduce work burden on neuroradiologists with the
increasing number in meningioma diagnoses.
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Introduction

Imaging in the management of
intracranial meningioma

The extent of imaging follow-up a patient with meningioma
receives depends on clinical factors such as neurological
symptoms, the histological grade and the elapsed time since
initial diagnosis. Follow-up imaging strategies can range
from every 3 months for malignant meningioma to every few
years for incidental asymptomatic tumours.1,2 The amount of
MRI scanning for intracranial meningioma is increasing.3 A
comprehensive surveillance strategy of meningioma enables
patients and clinicians to optimise the timing of any treatment
intervention, particularly for incidental meningioma;4,5 ac-
curate assessment is important when interpreting follow-up
MRI for intracranial meningioma as growth can alter man-
agement. Additionally, prior studies have suggested that for
post-operative patients, tumour volume at follow-up can be
more influential at predicting recurrence than extent of re-
section. Despite this, there is scarce reporting of volumetric
rather than two-dimensional measurements.6

The slow adoption of volumetric MRI sequences is due to
marginally increased acquisition times, increased workload
for reporting radiologists and increased incidental findings.
The advantages of volumetric studies include increased lesion
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conspicuity (with more accurate delineation of tumour volume)
and co-registration techniques to allow direct comparison.7

The increasing trend in intracranial meningioma follow-
up therefore necessitates adjuncts for the reporting radiologist
to improve efficiency and accuracy when determining me-
ningioma growth.

Image segmentation

Image segmentation has been a widely studied topic in the
last few decades. Model-based methods, particularly of the
variational type, have proven to be effective and robust for a
wide range of clinical applications.8–10 These variational
methods use features (such as intensity and texture) directly
in the model and output a segmentation result based on
certain specified criteria (e.g. the model may encourage the
segmentation result to include regions with a high intensity
and penalise regions with a low intensity).

In recent years, deep learning methods have become the
dominant method of image segmentation.11–13 Deep learning
methods are data driven, requiring a large set of labelled data
(data with manual segmentation performed by an expert) in
order to train the networks. Typically, convolutional neural
networks are given a large database of images as input, and
by minimising a loss function, which encourages the output
of the network to be similar to the associated ground truth
segmentation, the neural network can be trained to perform
the task associated with the dataset. A clear disadvantage of
the deep learning approach for segmentation is that gathering
a labelled dataset large enough to produce good results is time
consuming and expensive to do. This motivates the desire to
make use of robust variational models which can be unsu-
pervised, and produce results without such large, labelled
datasets.

We propose to tackle the problem of meningioma seg-
mentation using a model-based variational approach. Unlike
deep learning methods, a variational model is run indepen-
dently on each image, and so the results can’t be influenced
by a potential selection bias in the training set. This study will
assess the reliability of such a model for meningioma
segmentation.

Methods

Patient selection and study design

A retrospectively maintained cohort of patients with an in-
tracranial meningioma was queried for the purpose of this
study (January 2007–December 2015). Patients who un-
derwent surgery and consented to the Liverpool Neurosci-
ence Biobank were eligible for inclusion and use of their
scans. Further inclusion criteria included the availability of a
preoperative volumetric post-contrast MRI. There were no
exclusion criteria applied with regards to meningioma lo-
cation and volume. A post-contrast volume T1-weighted
MRI sequence for each patient was processed using man-
ual segmentation, performed by a neuroradiologist, and semi-
automatic segmentation, using the proposed mathematical
model in this study. As this was a retrospective study, local
imaging was acquired on variety of both 1.5T and 3T MRI
scanners (parameters for the local scanner acquisitions are

available in Table 1). Additional data collected for each
patient included age at time of diagnosis, sex, meningioma
location (according to the International Consortium on
Meningioma),14 and meningioma grade and histological
sub-type, according to the 2016 World Health Organisa-
tion classification system.15 In addition, a public dataset
(https://www.kaggle.com/datasets/awsaf49/brain-tumor), which
contains 708 2D T1 contrast-enhanced slices of meningioma,
was used to validate the reliability of the proposed variational
approach model. The images in the dataset had an inplane
resolution of 512 × 512 with a pixel size of 0.49 × 0.49 mm2.
The slice thickness was 6 mm with a slice gap is 1 mm. Image
quality was to an acceptable diagnostic standard.

Manual segmentation

Manual segmentation for quantitative volumetric measure-
ments of meningioma was undertaken on isotropic 3D T1-
weighted post-gadolinium contrast-enhanced studies in the
axial plane using ITK-SNAP (https://www.itksnap.org/).16

Contours were drawn around the target lesion in each slice
using the polygon tool and/or the paintbrush tool. The lesions
were identified by extra-axial, dural-based mass lesions, most
of which demonstrated homogenous enhancement with some
internal flow voids due to vascularity. If the meningioma
made contact with critical structures, but did not invade or
surround the critical structure, segmentation did not include
these in the measurement. If there was radiological invasion/
involvement, then the enhancing component of the lesion
was included in the contours of the segmentation. This applied
to vascular structures, such as the superior sagittal, transverse,
sigmoid and cavernous sinuses or confluence of dural venous
sinuses. If cortical veins made contact with, but were not
surrounded by the lesions, then these were not included in the
volumetric measurement. Adjacent enhancing dural tails were
not included in measurement. Measurement of intraosseous
components or adjacent bony hyperostosis was not included.
The meningioma in the publicly available dataset were seg-
mented by the primary developer and appropriateness of this
segmentation was confirmed by a neuroradiologist.

Mathematical model

The mathematical segmentation method, proposed by Rob-
erts and Spencer,17 was used to segment meningioma in a
semi-automatic fashion. The method requires a user to
manually click on the region of interest in a few slices
throughout the volume (3–5 clicks). From the user-provided
marker points, an edge weighted geodesic distance was
calculated. This served as a distance constraint in order to
penalise objects away from the region of interest. The marker
points also allowed us to initialise the model close to the
minimum (though this is not strictly necessary, as the model
is globally convex). With the geodesic distance, we ran the
variational model to produce a segmentation result. A
summary is found in Figure 1, and in the following, we
discuss the details mathematically.

V � R
3 was denoted as the image domain and a given

image as z :V→R. We used the model in Roberts and
Spencer,17 which first involved calculating the geodesic
distance.18 A set of k marker points was defined by
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M ¼ fxi 2V : 1 ≤ i ≤ kg, indicating the position of the region
of interest. In this method, we only required 3� 4 clicks in
the whole volume, that is, k ≤ 4. Our method belonged to the
class of local and selective segmentation models that aimed to
segment one region of interest only. To calculate the geodesic
distance, we solved the Eikonal equation:

�
j=D0ðxÞj ¼ ϵþ βj=zðxÞj2, x2V
D0ðxÞ ¼ 0, x2M,

with the final geodesic distance being: DðxÞ ¼ D0ðxÞ
kD0ðxÞkL∞.

With the Eikonal equation solved, we achieved seg-
mentation by minimising the following energy:

EðuÞ¼
Z
V

gðj=zjÞj=ujdxþλ
Z
V

ðf1ðzÞ� f2ðzÞÞudþθ
Z
V

Dudx,

where gðsÞ ¼ 1
1þιs2 is an edge detector, f1ðzÞ ¼ ðz� c1Þ2, and

f2ðzÞ ¼

8>><
>>:

1þ z� c1
γ1

, c1 � γ1 ≤ z ≤ c1,

1� z� c1
γ2

, c1 ≤ z ≤ c1 þ γ2,

0, else,

where γ1 and γ2 are defined as in Roberts and Spencer.
17 The

final segmentation result was denoted as the set
Σ ¼ fx2V : uðxÞ> 0:5g.

Statistical analysis

Data are presented as number (%), median (interquartile
range [IQR]) or mean (standard deviation [SD]) as appro-
priate. The segmentation results were compared using

standard metrics including the Sørensen–Dice coefficient
(DICE), JACCARD index, volumetric similarity (VS) co-
efficient and Haussdorff distance (HD).19 Both DICE and
JACCARD scores range between 0 (where no overlap be-
tween compared segmentation results occurs) and 1 (where
the two segmentation results are an exact match). VS rep-
resents how similar the volumes of the segmented outputs
are, not influenced by the overlap. This also ranges from 0 to
1, the latter being an identical volumetric match. HD de-
scribes the largest distance from one volume to the nearest
point in the other. The ideal result of HD is a score of 0, as the
voxels of the two segmentation results would be in the same
place. Bland–Altman plots were constructed to visualise the
differences between the volumetric measurements.

Results

Study participants

Forty-nine patients were included. Their median age at di-
agnosis was 54 years (IQR 45–62). Forty-one were female
(83.7%). All patients had a solitary meningioma in the fol-
lowing locations: convexity (n = 15, 30.6%), sphenoid wing
(n = 9, 18.4%), anterior midline (n = 9, 18.4%), posterior
fossa - lateral and posterior (n = 6, 12.2%), parafalcine (n = 5,
10.2%), parasagittal (n = 3, 6.1%) and tentorial (n = 2, 4.1%).
Forty-four meningioma were WHO grade 1 (89.8%) and 5
were WHO grade 2 (10.2%). Patient details are summarised
in Table 2.

Volume calculations

All but one tumour could be segmented using the mathe-
matical model. A patient with a convexity meningioma (case
5, Figure 2) could not have their meningioma segmented due

Table 1. Parameters for the scanner acquisitions.

Scanner Field strength(T) Sequence TR (ms) TE (ms) TIR (ms) Slice thickness(mm) Slice gap

GE 3.0 FSPGR 8.132 3.164 450 1.4 no gap
Philips 3.0 SENSE 9 1.366 n/a 1 no gap
GE 1.5 FSPGR 10.516 4.208 450 1.4 no gap

Figure 1. A schematic representation of the model-based variational approach to meningioma segmentation.
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Table 2. Characteristics of the 49 patients included in the study.

Age (median, IQR) 54 (45–62)

Sex (N, %) Female 41 (83.7)
Male 8 (16.3)

Meningioma location (N, %) Convexity 15 (30.6)
Sphenoid wing 9 (18.4)
Anterior midline 9 (18.4)
Posterior fossa - lateral and posterior 6 (12.2)
Parafalcine 5 (10.2)
Parasagittal 3 (6.1)
Tentorial 2 (4.1)

WHO grade (N, %) 1 44 (89.8)
2 5 (10.2)

Histopathological subtype (N, %) Meningothelial 17 (34.7)
Fibrous 7 (14.3)
Transitional 6 (12.2)
Psammomatous 5 (10.2)
Atypical 5 (10.2)
Angiomatous 2 (10.2)
Lymphaplasmacyte-rich 1 (2)
Microcytic 1 (2)
Secretory 1 (2)
Not specified 4 (8.2)

Figure 2. Examples of 5 meningioma from the first dataset with their segmentation results using the mathematical model. Each panel
represents a meningioma. The meningioma in the last panel could not be segmented due to the lack of contrast uptake.
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to lack of uptake of contrast by the tumour. For the remaining
cases, the median meningioma volume by manual segmen-
tation was 19.0 cm3 (IQR 4.9–31.2). The median meningi-
oma volume using the mathematical model was 16.9 cm3

(IQR 4.6–28.4).

Segmentation comparisons

The mean DICE and JACCARD scores were 0.90 (SD =
0.04) and 0.82 (SD = 0.07), respectively. The mean VS was
0.94 (SD = 0.04). The mean HD was 11.4 (SD = 23.6). The
Bland–Altman plot (Figure 3) demonstrates the spread of
differences in meningioma volumes. For 46 cases, the dif-
ference was between the 95% confidence interval (CI) (�7.6
to 3). Three cases fell outside of the 95% CI. Only 2D slices
were available for the public dataset; therefore, volumetric
calculations were not possible. However, mean DICE,
JACCARD and HD scores were 0.90 (SD = 0.06), 0.82 (SD =
0.10) and 6.08 (SD = 4.6), respectively. The time taken to
manually segment a meningioma by a neuroradiologist
ranged from 5 to 15 min. The segmentation by the mathe-
matical model required 3–5 clicks in different slices
throughout the meningioma volume. This was performed in
less than a minute across all cases.

Discussion

In this study, we have demonstrated the use of a robust
variational model for meningioma segmentation. The vari-
ational model presents several advantages over manual
segmentation: namely, the computation time and the time
taken for the user to interact with the algorithm. The vari-
ational model only needs two to four user clicks throughout a
handful of slices in the image, whereas the manual model
requires careful supervision by a user throughout the process.
We have demonstrated that the variational model can produce
an output which is as similar in segmentation and volume
measurement to manual segmentation proving that clinically
relevant information can be drawn from the variational model

to be used in practice in a more efficient manner. To the
authors’ knowledge, this mathematical segmentation model
has not been used for meningioma segmentation on imaging
previously.

Comparison to other segmentation models

Comparison of meningioma segmentation algorithms is
challenging as there is no common public database with an
established evaluation metric available. The widely used
Multimodal Brain Tumor Segmentation Challenge dataset,20

though stimulating many works in brain tumour segmenta-
tion, contains only gliomas and not meningiomas.

Early work segmenting brain tumours include the work by
Kaus et al.,21 who segmented the region of interest on spoiled
gradient recalled images by using atlas-based methods and
registration, followed by simple operations such as mor-
phological operations and region growing methods as post-
processing. The algorithm developed was based mainly on
glioma (6 meningioma and 14 glioma patients), making it
less applicable to patients with meningioma. Another work
by Hsieh et al. used both T1 and T2-weighted MR images to
segment the meningioma region automatically,22 using fuzzy
c-means clustering, followed by region growing and mor-
phological operation (dilation and erosion) to refine the
border of the tumour. Their method produces satisfactory
results on simple images but struggled where noticeable
edema was present. This was likely due to the need for T2-
weighted imaging which is more sensitive for detection of
edema and therefore may have confounded accurate con-
touring of the tumour. Our method required T1 imaging only,
and therefore, we did not observe this to be an issue.

Variational approaches have also been considered in the
literature. The variational approach by Urien et al. is based on
the convex relaxed version of the Chan–Vese model.23,24 The
segmentation model assumes 4-phases, performed on
contrast-enhanced T1-weighted MR images. In addition, the
model itself contains a spatially adaptive parameter which
depends on a corresponding positron emission tomography

Figure 3. A Bland–Altman plot representing the difference in meningioma volumes by the two segmentation methods. The dotted line
represents the average difference in meningioma volume. The dashed lines represent the 95% confidence intervals.
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(PET) scan. The motivation behind including a PET scan was
that the higher the intensity value of a pixel in the PET, the
more likely that pixel is tumour, and thus, using this infor-
mation in the segmentation model on the T1 image can
supplement and aid the segmentation of the meningioma.
Despite this, the authors quoted a relatively low accuracy
score. Moreover, PETscanning is not routinely performed for
meningioma patients, adding doubt to the applicability of this
in clinical practice.

In recent years, deep learning techniques have been
generally more popular. One such set of work is by Laukamp
et al.,25,26 who used the DeepMedic network architecture
using a multimodal dataset (T1, T1 with contrast, T2 and
FLAIR) including 126 meningioma patients. Satisfactory
results were produced; however, a large amount of pre-
processing is necessary, such as atlas registration and skull
stripping, which were not features of the model utilised in this
study.

Bouget et al. proposed a deep learning method using
standard network architectures and simple preprocessing
tricks to speed performance up on a large dataset containing
698 contrast-enhanced T1-weighted MRI volumes.27 In
follow-up work,28 they use the same dataset utilising at-
tention gated mechanisms on top of standard U-Net archi-
tectures. They quote an average DICE score of 0.82 and claim
a near perfect detection of meningioma greater than 3 cm3.
For meningioma smaller than 3 cm3, their method is sus-
ceptible to failing to detect them. This is likely the result of a
bias in the training set (lack of small meningiomas in the
data), as well as limitations in the number of voxels to
compute features from in the network. Conversely, we did not
observe a performance bias towards smaller or larger tumours
in our model.

Another recent work by Chen et al. uses a U-Net like
architecture to segment tumour images,29 but also uses a
further network to assign a grade to each tumour. A DICE
score of 0.87 is quoted for the 3D network on 18 low grade
meningioma, proving to be an effective method. However,
the authors note that their model failed to segment the tumour
section where: the tumour was adjacent to the thickening of
the dura mater, located in the anterior skull base, or had
certain high-grade meningioma features such as necrosis. The
number of each case fulfilling these criteria were not provided
and so the number of patients with a successful segmentation
could not be estimated. Like the limitations in the study by
Bouget et al., these were likely due to a lack of training data
for these particular cases, demonstrating a flaw of the deep
learning approaches.

Clinical utility, study limitations and future work

Active monitoring of an incidental meningioma is the
recommended management choice.1 Sustained growth is the
most common indication for intervention in these cases.2

The National Cancer Institute recommends the use of
volumetric imaging to monitor tumours like meningioma;7

however, this is limited by the time taken to perform manual
segmentation by neuroradiologists. The variational model
employed in this study demonstrated accurate delineation of
meningioma volume. There were several limitations.
Firstly, the study sample size was relatively small; however,

it included a variety of meningioma locations and volumes.
Secondly, one patient (4.5%) had a microcystic meningi-
oma, and these do not take up gadolinium contrast, which
limited the use of the model. Cystic changes or necrosis
within a meningioma impede contrast uptake, and occurs in
approximately 10% of patients.30 For these cases, it may be
that segmentation improves with the use of distance con-
straints inputting ‘antimarkers’ – clicks which the user
inputs to indicate the background, and selecting more tu-
mour areas within the slides. Additionally, the fidelity term
in such models dictates which pixel intensity to segment.
The fidelity in the used model looked for a particular in-
tensity (based on the user input) and segmented similarly
coloured pixels. By developing a new fidelity term, for
inhomogeneous regions of interest, the model could be
adjusted to consider average pixel intensity in a small
neighbourhood around each pixel individually, which is
more sophisticated. Third, despite validating the model in a
large publicly available dataset, the metrics that could be
examined revolved around overlap (DICE and JACCARD)
and not volumetric similarity; the reason being availability
of 2D slices only. Validation, of both overlap and volumetric
metrics, in a larger dataset is required.

Conclusion

Meningioma segmentation using a model-based variational
approach is possible with accurate results. Results on me-
ningioma show successful segmentation in most cases.
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