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ABSTRACT
Pounding between adjacent structures subjected to earthquake actions can 
cause significant damage. Due to the many uncertainties inherent to the 
seismic input and the impact phenomenon, a probabilistic assessment of the 
occurrence of seismic pounding and of its consequences on the structural 
performance is necessary. This work analyzes the problem of pounding by 
considering a single-degree-of-freedom benchmark system surrounded by 
rigid boundaries and subjected to a stochastic earthquake input. Although 
simplified, the model is representative of several realistic configurations, such 
as base-isolated systems surrounded by moat walls or bridge decks near the 
bridge abutments. The problem is cast in non-dimensional form and 
a parametric study is carried out to evaluate the influence of the identified 
non-dimensional input parameters on the statistics of the response. 
A probabilistic demand model is developed for the impact forces via non- 
linear regression, with the demand expressed as a function of the identified 
non-dimensional parameters. This model provides an estimate of median 
pounding force and of its dispersion given the seismic intensity of the input. 
Finally, global sensitivity analysis is used to rank the model parameters in 
terms of their influence on the system performance.
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1. Introduction

Seismic events can lead to dynamic pounding between adjacent structural and/or non-structural 
systems characterized by a different dynamic response and insufficient separation distance 
(Anagnostopoulos 1988; Maison and Kasai 1992). Pounding has been reported to affect wide ranges 
of systems, such as buildings, bridges, and components of nuclear power plants (Altieri et al. 2020; 
Kim et al. 2015; Masroor and Mosqueda 2012; Nagarajaiah and Sun 2001; Otsuka et al. 1996). Seismic 
pounding can produce a wide range of effects, from isolated local damage to global collapse in case of 
strong earthquakes (Bertero 1987).

Adjacent buildings located in densely populated areas are structures at high risk of pounding 
(Anagnostopoulos and Spiliopoulos 1992; Bertero 1987; Moehle and Mahin 1991; Penzien 1997), because 
they tend to be in contact or at a close distance between each other. Increasing differences in vibration 
periods are usually associated to increasing risk of pounding (Anagnostopoulos and Spiliopoulos 1992). In 
general, dynamic impacts between buildings can lead to significant structural response amplifications, 
causing relevant permanent deformations due to yielding or, in extreme cases, catastrophic collapse for the 
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weaker buildings (Jankowski 2008). Moreover, when important non-structural elements (e.g. equipment 
and elevators) are affected, seismic pounding can result in a suspension or reduction of the serviceability of 
buildings, thus affecting the recovery process after the seismic event (Jeng and Tzeng 2000). Indeed, non- 
structural components can amount to between 60% (in residential buildings) and 92% (in hospitals) of the 
total construction expenses (Zito et al. 2022). Seismic pounding can also occur between base-isolated 
buildings and the surrounding moat walls. This phenomenon can induce yielding in the superstructure 
and amplify the acceleration response at the different floors of the building, depending on the impact 
velocity, gap distance, and moat wall properties (Komodromos 2008; Masroor and Mosqueda 2012). 
Significant structural damage due to earthquake-induced impacts has also been observed in bridges, 
especially at expansion joints and abutments, e.g. after the San Fernando earthquake in 1971 (Zheng 
et al. 2015) and the 1995 Kobe earthquake (Otsuka et al. 1996). Pounding in bridges can cause local damage 
around the corners of the deck (e.g. spalling of the deck surface), differential settlements on the abutments, 
permanent vertical opening of the abutments, concentrated damage at bent caps, and even deck collapse 
(Chouw and Hao 2012; Otsuka et al. 1996). Seismic pounding in nuclear power plants has been also widely 
investigated. For example, Pellissetti et al. (2017) studied how plastic deformations, due to impacts between 
fuel assemblies at the space grid levels in a pressure vessel of a nuclear reactor, can affect the reliability of 
a safety shutdown for increasing seismic intensity levels.

A significant number of studies focused on the evaluation of the critical separation distance to limit 
the probability of impact between adjacent systems (Barbato and Tubaldi 2013; Lopez-Garcia and 
Soong 2009; Tubaldi, Barbato, and Ghazizadeh 2012; Tubaldi, Freddi, and Barbato 2016). However, 
the consequences of pounding were analyzed in fewer investigations, which were often limited to 
specific structural configurations, fixed excitation levels, and/or prescribed gaps (Anagnostopoulos  
1988; Bi, Hao, and Chouw 2010; Desroches and Muthukumar 2002; Pantelides and Ma 1998).

Another issue that has received scarce attention in the literature is the evaluation of the impact forces, 
despite their importance for assessing the potential damage due to collisions and the effectiveness of 
different pounding mitigation measures (Jankowski 2006; Vega, Del Rey, and Alarcon 2009; Yaghmaei- 
Sabegh and Jalali-Milani 2012). The available studies generally considered only the mean response under 
a reduced representative set of records of the seismic input. Therefore, they neglected the effect of the 
seismic input uncertainty and record-to-record variability on the response dispersion (Guo, Cui, and Li  
2012; Van Mier et al. 1991). Existing parametric studies focused only on a restricted number of engineering 
demand parameters, namely displacements and/or impact forces, without carrying out additional analyses 
in terms of acceleration, impact velocity, number of impacts or energy dissipated. However, the analysis of 
these response parameters can provide an in-depth understanding of the pounding phenomenon and of its 
effects on the structural performance. For instance, excessive floor accelerations resulting from pounding 
can lead to damage of acceleration-sensitive non-structural components in buildings. The number of 
impacts is relevant for systems and components sensitive to damage accumulation.

Based on the existing literature, pounding phenomena can be classified into two classes: (1) 
pounding between two adjacent flexible structures with out-of-phase vibrations, e.g. adjacent build-
ings, adjacent spans of bridges, and bridges decks impacting bent caps (Brown and Elshaer 2022); and 
(2) pounding of a flexible structure impacting a significantly stiffer (ideally rigid) system, e.g. 
seismically-isolated buildings impacting moat walls (Komodromos et al. 2007), and bridge decks 
impacting bridge abutments (Hao et al. 2013). In the former case, the most relevant issues are the 
determination of the probability of impact for a given gap, the calculation of the critical separation 
distance to achieve a desired reliability, or the estimation of the impact force, as they depend on the 
relative motion of the two adjacent dynamic systems (Brown and Elshaer 2022). In the latter case, the 
probability of impact and the critical separation distance are easier to calculate, as they depend on the 
motion of a single dynamic system. Thus, the most relevant issue becomes the characterization of the 
impact forces and the corresponding peak accelerations transmitted to the structure, both from 
a deterministic and a probabilistic viewpoint.

Crozet et al. (2018) carried out a global sensitivity analysis to investigate the most influential 
parameters (i.e. frequency ratio, mass ratio, and restitution coefficient) for the force and displacement 
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response of adjacent single-degree-of-freedom (SDOF) systems undergoing pounding when consider-
ing multiple constitutive models. The sensitivity indexes were derived for systems with relatively low 
frequency of vibration, below under 5 Hz, by employing a Kanai-Tajimi model (Kanai 1957; Tajimi  
1960) to describe the seismic input. This model is convenient for parametric studies, since it is 
characterized by only two parameters, but its use may lead to inaccurate results for systems with 
low vibration frequency (Li, Sun, and Ren 2008). Moreover, this sensitivity study was carried out only 
for the mean response, obtained considering five seismic inputs to limit computational efforts. The 
limited number of records did not allow to investigate the sensitivity of the response dispersion. Wu 
et al. (2019) studied the response of an oscillator impacting against a rigid wall with the aid of 
dimensional analysis. However, they investigated only the case of harmonic input excitation; therefore, 
the analysis of this problem under a more realistic description of the seismic input is needed to gain 
additional insight into the earthquake response of structural systems.

The present paper aims to advance the understanding of the performance of systems undergoing 
pounding and of the most influential parameters that control it. It focuses on the seismic pounding 
between a flexible and a rigid structure, which is a condition representative, e.g. of the pounding 
impact of seismically-isolated structures against moat walls or of bridge decks against lateral abut-
ments. A simplified structural system is considered, which consists of an SDOF linear elastic system 
surrounded by a rigid wall. The widely employed modified Kelvin – Voigt element is used to simulate 
the impact (Komodromos et al. 2007), whereas a stochastic model is adopted to describe the 
uncertainty in the seismic input intensity and characteristics (Atkinson and Silva 2000). More 
specifically, the performed analyses require a significant number of simulations under records with 
different intensity and frequency content. Stochastic methods can create a large number of records 
rapidly, helping to remove potential gaps and biases in empirical data. Jalayer and Beck (2008) provide 
an in-depth comparison between the two approaches for hazard and risk assessment.

The controlling non-dimensional parameters (representative of both seismic input and structural 
system) are derived via a dimensional analysis of the problem. A parametric analysis is performed to 
investigate how the statistics of the various response parameters of interest are affected by the non- 
dimensional input and system parameters. A probabilistic seismic demand model is derived for the 
pounding forces, through a nonlinear regression analysis that allows to account explicitly for the effect 
of the separation gap, the seismic input intensity, the system properties, and the impact stiffness. 
Finally, a global sensitivity analysis is conducted by computing the Sobol’s indexes (Sobol 1993) to 
investigate the influence of the non-dimensional input parameters on the median response of multiple 
non-dimensional structural responses of interest.

2. Non-Dimensional Problem Parameters

2.1. Model Description

The system considered in this study is an SDOF model described by three parameters, i.e. the 
stiffness k, the damping constant c, and the mass m (Fig. 1). The analyzed structural model can be 
representative of impacts occurring between a base-isolated building with rigid superstructure and 
the surrounding moat wall, or the pounding between a bridge deck and the lateral abutments. In 
the first case, the SDOF stiffness k and damping constant c represent the isolation system 
equivalent linearized stiffness and damping properties, whereas m represents the superstructure 
mass. The use of equivalent linearized stiffness and damping properties is needed to account for 
the typically nonlinear behavior of seismic isolation systems. In the second case, k and c represent 
the substructure stiffness and damping properties, and m represents the deck mass. In addition, 
the considered SDOF model can provide a simplified approximation of the pounding behavior 
occurring between the fuel assemblies and the core shroud inside a nuclear reactor. In this last 
case, k describes the fuel rods stiffness, whereas c describes the damping properties of the spacer 
grid elements and m the total mass of multiple fuel assemblies. It is noted here that more complex 
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nonlinear and/or multi-degree-of-freedom models could be used to describe the pounding sys-
tems. However, these models require the characterization of a larger number of parameters, which 
complicate the interpretation of the results. These models are necessary to study the structural 
effects of pounding on the system of interest, which is outside the scope of this work. By contrast, 
a simple linear elastic SDOF model provides a concise presentation of the problem in terms of few 
non-dimensional parameters, sufficient to characterize the impact phenomenon and the impact 
force, which is the focus of this paper.

An appropriate dynamic impact model is needed to describe the pounding phenomenon. Among 
the several models available in the literature (Banerjee, Chanda, and Das 2017; Goldsmith 1960), this 
study adopts the one proposed by Komodromos et al. (2007), which represents an improved version of 
the well-known Kelvin-Voigt model because it avoids the generation of negative impact forces during 
the separation stage (Goldsmith 1960). Even though other models, e.g. the Hertz-damp models 
(Jankowski 2005), have been proved to simulate the contact force evolution more accurately in 
some situations, the Komodromos model is preferred in this study due to its simplicity and conve-
nience for dimensional analysis purposes (Zhai, Jiang, and Chen 2014).

According to the adopted impact model, the temporal evolution of the impact force,fp tð Þ, during 
the seismic action can be expressed as follows: 

fp tð Þ ¼ sign xð Þ � H δð Þ � kp � δ tð Þ þ cp � _δ tð Þ
D E

(1) 

where kp and cp are the impact stiffness and damping coefficient, respectively; δðtÞ ¼ jxðtÞj � Δ and 
_δ tð Þ ¼ _x tð Þ � sign x tð Þ½ � represent the interpenetration depth and relative velocity, respectively, in 
which signðÞ denotes the sign function and Δ is the gap between the system and the rigid wall; �h i
denotes the Macaulay brackets; and H½� represents the Heaviside step function. The impact stiffness 
kp depends on several uncertain/unknown quantities, e.g. the geometry of the impact surfaces and 
the material properties under impact loadings (Anagnostopoulos and Spiliopoulos 1992). In general, 
in the absence of relevant experimental data, the impact stiffness is assumed proportional to the axial 
stiffness of the colliding structures (Muthukumar and Desroches 2006). The impact damping 
coefficient is given by: 

cp ¼ 2�p �m �
ffiffiffiffiffi
kp

m

r

(2) 

where

Figure 1. Schematic description of the equivalent mechanical model.
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�p ¼
� ln εrð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 þ ln εrð Þ½ �
2

q (3) 

in which the parameter εr is the coefficient of restitution, which describes the energy dissipation 
during impact.

2.2. Non-Dimensionalisation of the Equation of Motion

The equation of motion for a SDOF systems subject to seismic excitation and undergoing pounding is: 

m � €x tð Þ þ c � _x tð Þ þ k � x tð Þ þ fp tð Þ ¼ � m � €ug tð Þ (4) 

where fp tð Þ is given by Eq. (1) and expresses the time-dependent impact force, €ug tð Þ is the input 
earthquake ground motion time history, and a superposed dot denotes differentiation with respect to 
time t. By substituting Eq. (1) into Eq. (4), and dividing the resulting equation by m, the equation of 
motion of the system becomes: 

€x tð Þ þ 2� � ω � _x tð Þ þ ω2 � x tð Þþ
þsign x tð Þ½ � � H x tð Þj j � Δð Þ � ω2

p � x tð Þj j � Δð Þ þ 2�p � ωp � sign x tð Þ½ � � _x tð Þ
D E

¼ � a0 � λ tð Þ (5) 

where ω ¼ 2π
T ¼

ffiffiffi
k
m

q

, � ¼ c
2m�ω, ωp ¼

ffiffiffi
kp
m

q

, and λ tð Þ denotes the ground motion history scaled by 
a parameter a0, with dimension of acceleration and synthetically describing the ground motion 
intensity.

By introducing the dimensionless time τ ¼ t � ω (i.e. time multiplied by the circular frequency of 
the system, corresponding to 2πtimes the number of cycles of the system) and the dimensionless 
displacement ψ τð Þ ¼ ω2��x τð Þ

a0 
(i.e. the ratio of the system’s displacement and the seismic input intensity 

normalized by ω2), and by dividing Eq. (5) by a0, the non-dimensional form of the equation of motion 
is obtained as: 

ψ00 τð Þ þ 2� � ψ0 τð Þ þ ψ τð Þþ

þ sign ψ τð Þ½ � � H 1 � αðτÞð Þ � �2
ωp
� ψ τð Þj j � �Δ½ � þ 2�p�ωp � sign ψ τð Þ½ � � ψ0 τð Þ

D E
¼ � �λ τð Þ

(6) 

where �ωp ¼
ωp
ω ¼

ffiffiffi
kp
k

q

(i.e. the dimensionless ratio between the stiffness of the pounding element and 
the overall stiffness of the structure), αðτÞ ¼ Δ

j�x τð Þj (i.e. the ratio between the separation gap and the 

system displacement response), and �Δ ¼
ω2Δ
a0 

denotes the dimensionless gap (Vega, Del Rey, and 
Alarcon 2009), which is given by the ratio between the reference gap distance and the seismic input 
intensity normalized by ω2 (similar to the non-dimensional displacement). The quote symbol �0
denotes differentiation with respect to the dimensionless time τ, and the overlined quantities �x τð Þ
and �λ τð Þ denote the new functional expressions of the corresponding quantities x tð Þ and λ tð Þwithout 
overline, respectively, when dimensionless time is used.

It is noteworthy that the dimensionless displacement and velocity responses (ψ and ψ0), as well as 
their derived quantities (e.g. impact forces), depend also on the vibration period of the system through 
�λ τð Þ. In fact, by changing T, also the shape of �λ τð Þ changes for any given seismic record. This implicit 
dependence of the dimensionless response on T has been explained in other studies carrying out the 
non-dimensional analysis of similar systems (Tubaldi, Freddi, and Barbato 2016). Thus, the system 
performance is controlled by the system’s natural period T and the following non-dimensional 
parameters: �;�ωp;�p;�Δ. Typical values of � for ordinary structures are in the range between 2% 
and 5% (see e.g. Bernal et al. 2015), whereas for isolated system are in the range between 15% and 30%. 
A wide range of �ωp values have been employed in the literature, as different authors have proposed 
different approaches for the definition of this parameter. For example, Crozet et al. (2018) 
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recommended �ωp values higher than 100, in order to ensure that the penetration depth during the 
impact is negligible. However, existing studies (e.g. Crozet et al. 2018; Wu et al. 2019) have shown that 
the impact stiffness mainly affects the penetration displacements and peak accelerations, whereas 
other response quantities of interest are not very sensitive to this parameter.

The coefficient of restitution εr (and thus �p) can also assume different values in the range between 0 
(perfectly plastic impact) and 1 (perfectly elastic impact), depending on the problem considered, although in 
many previous studies, it has been simply assumed as fixed (e.g. it was assumed equal to 0.7 in Komodromos 
et al. 2007). The values that can be assumed by the normalized gap �Δ depend on the choice of the intensity 
measure a0. For example, if the pseudo-spectral acceleration Sa T; �ð Þ calculated at the fundamental period 
of the system for the damping ratio � is considered, �Δ can be interpreted as the ratio between the gap and 
the maximum displacement demand in the system when its displacement is not constrained by adjacent 
structures. Thus, for values of �Δ larger than or equal to 1 pounding does not occur.

The next section presents the results of an extensive parametric study that was performed to 
investigate the influence of the identified non-dimensional input parameters on the performance of 
the system. In particular, the following dimensionless output parameters are considered: (1) non- 
dimensional impact force �fp , (2) non-dimensional absolute acceleration �a, (3) numbers of impacts 
per seismic event np, (4) non-dimensional impact dissipated energy �E, and (5) non-dimensional 
impact velocity �v.

The quantities �a and �v are computed by normalizing the maximum absolute acceleration and 
impact velocity measured during the entire earthquake time history with respect to a0 and ω � a0, 

respectively, i.e. �a ¼
max

t
€x tð Þþ€xg tð Þj j

a0 
and �v ¼

max
t

_x tð Þj j

m�a0
. Thus, �a and �v represent the amplification 

factor of the absolute accelerations and velocities due to pounding. �fp is obtained by dividing the 

maximum pounding force during the seismic event by m � a0, i.e. �fp ¼
max

t
fp tð Þj j

m�a0
; whereas the energy 

dissipated through the impacts during a given seismic event is computed as: 

�E ¼

P

j
Epj

Ei
¼

P

j

ðtje

tji

cp � _δ tð Þ � dδ tð Þ

�

ðtf

0
m � _x tð Þ � €ug tð Þ � dt

(7) 

where Epj represents the energy dissipated by the j-th impact in the time interval [tji,tje] during which 
δ tð Þ � 0; and Ei represents the relative input energy introduced into the system by the seismic event 
during its entire duration tf .

In order to illustrate the benefits of the non-dimensional formulation, two different systems are 
analyzed, which share the same fundamental period (T ¼ 0:45s), damping ratio (� ¼ 0:05), �ωp values, 
�p values, and �Δ values, but are characterized by different gap (Δ2 ¼ 2Δ1) and are subjected to a seismic 
input with different intensity values (a02 ¼ 2a01). Figure 2 shows that the responses of the two systems 
are identical if the non-dimensional parameters are considered, thus demonstrating the benefits of the 
non-dimensional formulation in terms of reduction of parameters to be varied in the parametric study.

3. Parametric Study: Results and Discussion

In order to perform the proposed parametric study, a set of 100 ground motion samples is 
generated by sampling the random variables representing the earthquake input model described 
in Appendix A (Atkinson and Silva 2000). In particular, Latin Hypercube Sampling (LHS) 
(Mckay, Beckman, and Conover 1979) is used to explore efficiently the domain of variation of 
the input parameters. The adopted seismic model is a point-source model, in which each ground 
motion sample is characterized by a different intensity, frequency content, and duration. 
Alternative seismic models or suites of historical ground motion records could also be used to 
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characterize the seismic demand of the system under investigation without affecting the meth-
odology presented in this study. The effects of record intensity are considered indirectly via non- 
dimensionalisation, since the earthquake input and the response parameters of interest are 
normalized by dividing them by a0. The effects of record-to-record variability are considered 
by computing the median and the dispersion (i.e. lognormal standard deviation) of the values of 
the monitored response parameters obtained for the 100 ground motion samples. The intensity 
measure a0 adopted in this work is Sa T; �ð Þ.

Table 1 reports the values of the input parameters Γ ¼ ½�Δ;�ωp ;T� considered for the parametric 
study. The values used for �ωp and T cover the realistic ranges that these two parameters can assume for 
practical engineering applications. The effects of the dimensionless gap �Δ are considered only for values 
smaller than one, which correspond to cases when pounding occurs. It is noted here that changes in the 
dimensionless gap can be interpreted in two ways: (1) as changes in the gap for a fixed ground motion 
intensity, which is of interest when determining the critical separation distance for a given design earth-
quake; or (2) as scaling of the ground motion for a given gap, which is of interest, e.g. when performing an 
incremental dynamic analysis for a given system. All analyses assume constant values for the damping 
factor (� = 0.05, which is typically recommended by seismic design codes) and coefficient of restitution 

Figure 2. Comparison of displacement and impact force over time for dimensional and non-dimensional systems with proportional 
gap Δ and seismic intensity a0.

Table 1. Input values used for the parametric study.

Parameters Values

�Δ 0.1 0.2 0.5 0.67 0.71 0.77 0.83 0.91 0.99
�ωp 5 10 50 100 500
T [s] 0.1 0.5 1 2 4
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εr ¼ 0:65ð Þ. The choice of employing only one value of εr (and thus a single value for �pÞ is motivated by 
the fact that this parameter does not significantly affect the response, as observed in other studies (Crozet 
et al. 2018) and confirmed by the global sensitivity analysis whose results are presented in the final section 
of this paper. For each combination of the input parameter values, the corresponding median output 

vector, Φ ¼ ½�
_

fp ;�
_

a;�
_

v;�
_

E; n
_

p�, and dispersion, β ¼ ½βfp
; βa; βv; βE; βn�, are computed. The Matlab 

function ODE23, based on the Bogacki – Shampine method (Bogacki and Shampine 1989), is employed 
here to solve the equation of motion by using an adaptive time-step.

Due to space constraint, only select subsets of the parametric study’s results are illustrated in 
Figs. 3–8 (i.e. median values for all considered output parameters and dispersion of the 
dimensionless pounding force). In general, it is observed that the median values of the ampli-
fication factors �

_

fp ; �
_

a, and �
_

v show a very similar trend of variation with T and �Δ (Figs. 3–5). 

The similarity between �
_

fp and �
_

a is expected, because these two parameters coincide for 

systems without damping. The values of �
_

fp , �
_

a, and �
_

v increase for increasing T, while their 
variation with �Δ depends on the value assumed by �ωp . For �ωp > 10, all three amplification 
factors increase with �Δ increasing from 0 to approximately 0.5 and decrease with �Δ increasing 
from approximately 0.5 to 1. A similar trend is observed also for �ωp � 10 and low T values 
(depending on the �ωp values), whereas for �ωp � 10 and higher T values, the three amplifica-

tion factors decrease for increasing �Δ. The maximum values of the amplification factors �
_

fp and 

�
_

a increase almost linearly with �ωp , and can assume very large values, as high as 1750 and 
1250, respectively, in the case of very large ratios of impact stiffness and system stiffness 

�ωp � 500
� �

. The amplification factor �
_

v is not significantly affected by �ωp .

Figure 3. Median dimensionless pounding force vs. T , 
Q

Δ and �ωp .
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Figure 4. Median dimensionless maximum acceleration vs. T , 
Q

Δ and �ωp .

Figure 5. Median dimensionless maximum impact velocity vs. T , 
Q

Δ and �ωp .
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Figure 6. Median number of impacts vs. T , 
Q

Δ and �ωp .

Figure 7. Median dimensionless dissipated energy vs. T , 
Q

Δ and �ωp .
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The median value of the number of impacts, n_p, is generally little sensitive to changes in �Δ, �ωp , 
and T, except for small values of �Δ(< 0.3) and T (<0.4s), for which it increases significantly (Fig. 6). 

The median value of the dimensionless dissipated energy, �
_

E, increases for decreasing �Δ and 
increasing T, whereas its sensitivity to �ωp is generally small (Fig. 6).

The parameter βfp
, which describes the dispersion of the normalized impact forces, increases 

significantly for increasing values of the period T, changes with �Δ without following a clear trend, 
and is not very sensitive to �ωp . The maximum values are generally attained for high values of T (>2s) 
and �Δ (>0.5), with values of the order of 0.6 to 1. The other dispersion parameters (βa,βv,βnp

, and βE) 
are not graphically reported here due to space limitations, but present similar trends as those shown by 
βfp

. They are mainly sensitive to �Δ, with maximum values reached for �Δ > 0:7; whereas only βa 

results to be more sensitive to �ωp , with maximum values achieved for �ωp > 50:

4. Probabilistic Seismic Demand Model for Pounding Forces

The results of the previous parametric study can be used to build a probabilistic seismic 
demand model for estimating the pounding forces corresponding to the system in Fig. 1. The 
model is developed in non-dimensional form through nonlinear regression, assuming 

Γ ¼ ½�Δ;�ωp ;T� and Ω ¼ ½�
_

fp ; βfp
� as the input and output vectors, respectively.

The predicted median dimensionless impact force �
_

fp is given by the following equation: 

�̂fp Γð Þ ¼ I � e� b 1=�Δ� 1ð Þ � e� c 1=�Δ� 1ð Þ
h i

Tð Þ� �ωp

� �
� ε (8) 

Figure 8. Logarithmic standard deviation of the dimensionless pounding forces vs. T , �Δ and �ωp .
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where ε is the error due to the lack of fit, I represents an indicator function equal to 1 when impacts 
occur (i.e. for 0<�Δ < 1Þ and 0 otherwise (i.e. for �Δ � 1Þ, gðTÞ ¼ g1 � T þ g2 and 
pð�ωpÞ ¼ p1 ��ωp þ p2 are linear functions depending on T and �ωp , respectively.

Similarly, the following regression model is proposed to estimate βfp 
as a function of Γ: 

βfp
Γð Þ ¼ hð�ΔÞ � qð�ωpÞ � wðTÞ � εβ (9) 

where hð�ΔÞ ¼ h1 ��Δ þ h2 and qð�ωpÞ ¼ q1 ��ωp þ q2 are linear functions depending on �Δ and 
�ωp ; respectively, while wðTÞ ¼ w1 � T2 þ w2 � T þ w3 is a quadratic function of T, and εβ is the error 
due to the lack of fit.

The constant coefficients in Eqs. (8) and (9) are identified by minimizing the sum of squares of all 
the residuals through the Levenberg-Marquardt optimization algorithm (Moré 1978). The fitted 
parameters of both regression models are reported in Table 2. The proposed model represents an 
improvement of the model previously proposed in Altieri et al. (2018), based on a larger seismic 
dataset (100 samples) that results in a more accurate and robust regression, especially for the 
βfp

parameter.
Figures 9 and 10 compare the values of �̂fp and βfp

obtained from the parametric study (i.e. direct 
simulation of the system response) and the regression model for �ωp = 50 and �ωp = 100. A good 

Table 2. Regression’s coefficients and R2 values for the pounding force statistics’ regression models.

R2 a b c g1 g2 p1 p2

�̂fp �Δ;�ωp ; T
� �

0.989 19.800 0.039 7.205 0.283 0.615 −0.037 0.053

R2 h1 h2 q1 q2 w1 w2 w3

βfp
�Δ;�ωp ; T
� �

0.841 −0.015 0.001 0.523 0.001 −25.118 −41.458 6.001

Figure 9. Comparison between �̂fp estimates from parametric study and regression model for �ωp =50 and �ωp =100.
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agreement is observed for the values of �̂fp given by Eqs. (8) with respect to all investigated parameter 
combinations, as demonstrated by the high value of the coefficient of determination R2 = 0.989. 
A similarly good agreement is also observed between the estimates of the dispersion βfp 

obtained via 
the parametric study and the regression model corresponding to Eqs. (9) with R2 = 0.841.

It is noteworthy that using the proposed regression formulae, the estimates of the median value of 
the pounding force and of its dispersion can be easily obtained for each desired intensity level. The 
median pounding force for an intensity level IM = im is given as f̂p ¼ m � im � �̂fp , whereas the 
dispersion coincides with βfp

. By introducing an assumption on the distribution of the pounding 
force fp, e.g. assuming lognormality of (Baker 2015), it is also possible to estimate the pounding force’s 
conditional probability of exceedance Pðfp � fpi jIM ¼ imÞ for given IM = im. However, the develop-
ment and evaluation of this model is outside the scope of this paper.

5. Global Sensitivity Analysis

A global sensitivity analysis (Patelli, Pradlwarter, and Schuëller 2010) is carried out to further 
investigate how the various input non-dimensional parameters (i.e. �Δ, �ωp , and the coefficient of 
restitution εr) affect the performance parameters of interest. The first and total sensitivity indexes are 
computed with respect to several response parameters in addition to the impact forces. A similar 
analysis was carried out in Crozet et al. (2018), but considering a different structural system and 
a limited set of ground motions for describing record-to-record variability effects. In this study, the 
seismic dataset employed is extended to na ¼ 10 accelerograms, in order to obtain more accurate 
estimates of the response.

The median values of the response parameters of interest are considered as output variables in the 
global sensitivity analysis. The sensitivity indices are computed for different values of the vibration 
period T. All input parameters are described by uniform distributions, with upper and lower bounds 

Figure 10. Comparison between βfp 
estimates from parametric study and regression model for �ωp =50 and �ωp =100.
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equal to 0.1 and 0.99, respectively, for �Δ; equal to 5 and 500, respectively, for �ωp ; and equal to 0 and 
1, respectively, for εr.

The algorithm presented by Saltelli et al. (2008) is adopted here to compute the first and total 
Sobol’ sensitivity indexes. The global sensitivity analysis is based on a decomposition of the 
variance of each output parameter resulting from variations of the input parameters in the 
range of interest. A total of ðNinp þ 2Þ � n structural analyses are required for each structural 
system, where Ninp ¼ 3 represents the number of inputs, and n indicates the number of input 
parameter samples employed to compute the indexes for each input. LHS is employed for the 
samples generation, with n = 1500. The five values of T nT ¼ 5ð Þ listed in Table 1 are considered 
for the sensitivity analysis, for a total of ðNinp þ 2Þ � n � na � nT ¼ 375; 000 structural samples. The 
OpenCossan Matlab toolbox (Patelli 2016; Patelli et al. 2018) is used to perform the global 
sensitivity analysis.

The results of the global sensitivity analysis are qualitatively consistent with those of the parametric 
study. They confirm that the impact forces (Fig. 11) and the maximum accelerations (Fig. 12) are 
influenced primarily by the frequency ratio �ωp , with only a minor dependency on �Δ. This result 
highlights the importance of accurate estimates of the pounding impact stiffness on the estimation of the 
impact forces and maximum accelerations produces by seismic pounding. The sensitivity indexes 
associated with the impact velocity (Fig. 13), the number of impacts (Fig. 14), and the energy dissipated 
(Fig. 15), clearly identify the dimensionless gap �Δ as the most important input parameter, whereas the 
effect of �ωp is almost negligible. As already observed in the literature for a different structural system 

Figure 11. First (left) and total (right) sensitivity indexes with associated standard deviations for.

Figure 12. First (left) and total (right) sensitivity indexes with associated standard deviations for �
_

a.
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(Crozet et al. 2018), the coefficient of restitution, εr, has a low influence on all the considered outputs, 

with the exception of the median of the normalized dissipated energy �
_

E. This result justifies the 
consideration of a constant value of εr in the parametric study presented in the previous section. It also 
suggests that pounding mitigation measures aimed at reducing the impact coefficient of restitution can 

Figure 13. First (left) and total (right) sensitivity indexes with associated standard deviations for �
_

v .

Figure 14. First (left) and total (right) sensitivity indexes with associated standard deviations for n
_

p.

Figure 15. First (left) and total (right) sensitivity indexes with associated standard deviations for �
_

E .
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be expected to be less effective than those aimed at reducing the impact stiffness. The influence of the 
vibration period T on the sensitivity indexes is also very small. Finally, the total indexes are comparable 
with the first order indexes, which indicates that input parameters’ interaction has a small effect on the 
output variance.

6. Conclusions

This paper provides a comprehensive analysis of the probabilistic performance of single-degree-of- 
freedom systems subjected to seismic actions and undergoing impacts with a rigid wall. The presented 
simplified system can represent different structural configurations commonly encountered in engi-
neering practice. The analysis is based on a rigorous non-dimensionalization of the equations of 
motion, in conjunction with the Komodromos dynamic impact model and a synthetic seismic ground 
motion model for stochastic sampling of the input time histories.

An extensive parametric study conducted on the non-dimensional model shows that seismic 
pounding can result in significant amplifications of the response of the system in terms of absolute 
accelerations and impact forces. The findings emphasize the crucial role of impact stiffness in 
governing the amplifications induced by seismic pounding, as these amplifications significantly 
increase for increasing values of the normalized impact stiffness. By contract, the influence of the 
system period on these amplifications is comparatively less pronounced, i.e. relatively smaller 
amplifications of the pounding forces and absolute accelerations are observed for increasing values 
of the system period. The variation of impact forces and accelerations with the dimensionless gap 
unveils a more intricate behavior, driven by the natural period of the system and the impact 
stiffness. The coefficient of restitution is observed to have a minor impact on the estimated 
responses, suggesting its limited influence in the context of seismic pounding. It is also observed 
that impact velocity, number of impacts, and impact dissipated energy have a generally small 
sensitivity to the impact stiffness. The dispersion parameter for the impact forces significantly 
increases for increasing natural period, changes with the separation gap without following a clear 
trend, and is not very sensitive to the impact stiffness. Similar trends are observed for the 
dispersion parameters of other response quantities. It is concluded that the impact stiffness is 
a key model parameter that requires an accurate estimate and/or calibration to describe the 
seismic pounding phenomenon, and that pounding mitigation measures should seek to reduce 
the impact stiffness rather than the coefficient of restitution. However, the limited influence of the 
coefficient of restitution needs to be further investigated in order to assess if this conclusion 
remains valid also for more complex structural systems and/or different material properties.

The parametric study results are used to develop a regression model for the estimation of the 
median value of the pounding force and of its dispersion corresponding to different input 
parameter combinations. Moreover, considering non-dimensional parameters in the development 
of the regression model allows to obtain estimates of the response statistics at any intensity levels, 
based on a single expression for the median normalized force and its dispersion. This model can 
be useful for estimating the unconditional risk of exceedance of the pounding forces in the system 
due to any potential threatening earthquake.

The results of the global sensitivity analysis are qualitatively consistent with those of the parametric 
study. In particular, impact forces and maximum absolute accelerations are influenced primarily by 
the impact stiffness and present a small dependency on the separation gap. By contrast, the impact 
velocity, the number of impacts, and the dissipated energy depend mostly on the dimensionless gap 
and are minimally affected by the impact stiffness. The coefficient of restitution has always a small 
influence on all response quantities, except for the median of the normalized dissipated energy.

Further research in this area could focus on exploring additional factors that may influence the 
pounding phenomenon, such as soil-structure interaction, non-linear behavior, and mitigation stra-
tegies, to enhance structural resilience and safety.
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Appendix. Seismic Model

This study employs the Atkinson and Silva ground motion model (Atkinson and Silva 2000) in conjunction with the 
stochastic point source method of Boore (2003) for the generation of earthquake ground motion time history samples. 
The seismological parameters that define the adopted stochastic model are the moment magnitude, Mw, and the 
epicentral (source-to-site) distance, R, which are modelled as random variables. The magnitude follows a truncated 
Gutenberg-Richter probability density function (PDF) that is defined as: 

fMðmsÞ ¼
β � e� β�ðmw � mw;0Þ

1 � e� β�ðmw;max � mw;0Þ
(10) 

This study assumes mw,0 = 5, mw,max = 8, and β= 2.303 (Au and Beck 2003), which provide a Gutenberg-Richter PDF 
that is consistent with the California seismicity. The source-to-site distance is modelled according to the following 
PDF: 

fRðrÞ ¼
2r

rmax
if 0 � r � rmax

0 otherwise

�

(11) 

which implies a source producing random earthquakes with a uniform distribution over a circle centred around the site 
with a radius rmax = 50 km (Au and Beck 2003), outside which the seismic effects are considered negligible. The site- 
dependent mean annual frequency of occurrence for the seismic events,v0, is assumed here equal to 0.25 year−1.

The record-to-record variability for a given combination of Mw and R is modelled by generating the seismic 
signal from a Gaussian white-noise process. The generated white-noise is modulated by an envelope function, 
eðtÞ, and the resulting signal zðtÞ ¼ eðtÞ � wnðtÞ is subject to a Fourier transformation to obtain the normalized 
signal �zðf Þ in the frequency domain. The synthetic ground motion record is finally computed through an 
inverse Fourier transformation of the signal �zðf Þ � εmod � Aðf Þ, where Aðf Þ denotes the radiation spectrum. 
Following (Jalayer and Beck 2008), a random amplification factor, εmod, is introduced to amplify the radiation 
spectra. This factor is assumed to be lognormally distributed with parameters λ ¼ μlog εmodð Þ ¼ 0 and 
� ¼ σlog εmodð Þ ¼ 0:5. Both the radiation spectrum and the time-envelope function depend on the values of Mw 

and R, i.e., they change from record sample to record sample. Figure A1 shows the radiation spectra and 
envelope functions for different values of mw and r = 20 km.

Figure A1. Radiation Fourier spectra (left) and the time-envelope functions (right) for r = 20 km and different M values.
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