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1. Background and motivation
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Nonsolvent Induced Phase Separation (NIPS)

- Nanomaterial synthesis [1]

- Polymeric membranes [2]

- Pharmaceuticals (ibuprofen [3], paracetamol [4])

Gap in the fundamental understanding of
how mixing processes occur

In particular, we focus on modelling and
measuring antisolvent crystallisation, but can
extend framework to cooling crystallisation
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[1] International Journal of Pharmaceutics 2007, 342(1–2), 26–32. [2] Ind. Eng. Chem. Res. 2011, 50, 7, 3798–3817. 
[3] International Journal of Chemical Engineering and Applications 2013, 337–341. [4] Cryst. Eng. Comm. 2022, 24, 3122–3135.
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1. Background and motivation

[5] Graph created by D. McKechnie

• Undesired crystal properties (CSD, morphology)

• Downstream processing issues

• Differences in bioavailability

Current understanding: mixing process evolves
through black line (ideal)

Green line: Desired outcome still achieved

Blue area: Appearance of undesired crystal phase

Red line: The system liquid-liquid phase splits

[5] Accurate modelling of antisolvent/cooling, 
seeded/unseeded crystallisation

Aim
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• Chemical pot. gradient as the driving force

• Margules activity model

• Considers interphase free energy (𝛆𝟐𝛁𝟐𝐱𝐀)
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JA = −DABc · ∇xA
• Composition gradient as the driving force (∇xA)

• Assumes ideal behavior

• Cannot be applied to phase-changing systems

Fick’s second diffusion law

JA = −ĐABcA · ∇βμA

Cahn-Hilliard-like phase-field model

2. Model comparison

𝜕xA
𝜕t

+ ∇(𝐯xA) = DAB · ∇
2xA

𝜕xA
𝜕t

+ ∇(𝐯xA) = ∇ ĐAB · ∇xA + ∇ ĐABxA · ∇ A 1 − xA
2 − ε2∇2xA

AC-CH-KKS nucleation phase-field model [6]

𝐭 = 𝟏𝟔𝟓 𝐭 = 𝟑𝟓𝟕. 𝟓 𝐭 = 𝟓𝟓𝟎

Τ𝜕c 𝜕t = ∇ ΤM f, cc ∙ ∇μc ; μc = fα,c 1 − H + fβ,cH

Τ𝜕η 𝜕t = −L𝜇𝜂; μη = fβ − fα − cβ − cα fβ,cβ H +WfLand − κη

Mobilities

Interpolation function (H(η))

Barrier height for η double well

Penalty coefficient for the α-β interface
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[6] S. DeWitt, S. Rudraraju, D. Montiel, W.B. Andrews, and K. Thornton. PRISMS-PF: A general framework for 
phase-field modeling with a matrix-free finite element method. npj Computational Materials 6, 29 (2020). 
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3. Model summary

Diffusion (Maxwell-Stefan: ∇μA) [7]

Allen-Cahn dynamics

Cahn-Hilliard dynamics

+ C-H to incorporate a nucleation
model (in order to track c)

A model combining all of them should be able to track 
the system’s pathway throughout a crystallization process

4[7] Cryst. Growth Des. 2022, 22, 4, 2192–2207
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4. Cahn-Hilliard analysis
ε = 1, D = 1600 μm2/s (H2O-EtOH)

A/RT = 3

Effect of A

- 𝐀 > 𝟐𝐑𝐓: the free energy
favours having two phases

- 𝐀 < 𝟐𝐑𝐓 : a homogeneous final 
state is reached [9]

[8] J. E. Guyer, D. Wheeler & J. A. Warren, "FiPy: Partial Differential Equations with Python," Computing in Science & Engineering 11(3) pp. 6—15 (2009)
[9] Poling, Bruce E., John M. Prausnitz, and John P. O’Connell. 2001. Properties of Gases and Liquids. 5th ed. New York: McGraw-Hill Education.
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4. Allen-Cahn + Cahn-Hilliard + KKS

Composition evolution

• Light zone around the 

nuclei: supersaturation 

depletion in the area

Phase variable evolution

• Diffuse interphase 

within all nuclei

• No depletion zone – it is 

part of the liquid phase
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6[6] S. DeWitt, S. Rudraraju, D. Montiel, W.B. Andrews, and K. Thornton. PRISMS-PF: A general framework for 
phase-field modeling with a matrix-free finite element method. npj Computational Materials 6, 29 (2020). 
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5. Model validation framework

Raman & microfluidics:
obtain mixing maps

Modelling: development of a better nonideal
model, inform with experiments

Only one experiment
required for n components

Materials waste
minimised

Information-rich
output

Solvent + solute

Antisolvent

x

y
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5. Model validation

Glycine – Water system [8]; Fick’s law

The simulated map was coarsened through averaging to match the
dimensions of the experimental map

Final simulated map Final coarsened map

D = 877 µm2/s

- D: 920 µm2/s.

- Initial value: 500 µm2/s

- Method: Nelder-Mead

- Tolerance: 0.0001

Error < 5%

[8] Data collected by D. McKechnie
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6. Future work

- Calibration and preliminary measurements obtained

- Solving problems with the setup (Raman was broken
for a long time) – collect binary maps

- Differentiate between oiling out and nucleation within
the model – change in the free energy curves

- Add second equation for ternary system

- Add the temperature effect into the model
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