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Conclusion
• The model achieves a macro-average 

and weighted-average for F1-score 
greater than 85% and 93%, 
respectively.

• The model has distinguished the 
majority of classes very well however, 
further data is needed to allow more 
variety in training as there is a lack of 
data for some classes.

• This approach is not limited to the 
Technobis Crystalline and can be 
applied to any sensor capable of 
taking microscopic imaging of crystals.
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Motivation
• Implementing a data-driven approach that 

can automate the classification of different 
phases of high-throughput crystallisation 
processes can be a powerful tool to [1][2]:
 Predict the quality and consistency of 

the final pharmaceutical product
Optimise manufacturing processes
 Reduce waste

• Advanced analytical techniques and machine 
learning algorithms can be leveraged to 
extract relevant features on crystallisation 
outcomes from in-line images.
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Method
• Classifying crystallisation 

outcomes from in-line images.

• Deep learning model comprised 
of pre-trained ResNet-18 feature 
extractor and linear classifier.

• 10 classes are categorised using 
80% of images pair class for 
training and 20% for validation. 

• Augmentations (image rotation, 
contrast and brightness change) 
applied to increase diversity, 
improving generalisation. Regular
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Precision (%) Recall (%) F1-Score (%)

No object present 98.2 99.4 98.8

Impurity 84.9 72.6 78.3

Agglomerated crystals 99.2 94.8 96.9

Needle-like crystal 94.5 98.1 96.3

Elongated crystal 85.6 76.4 80.8

Platelet crystal 80.7 92.1 86.0

Regular crystal 95.9 98.4 97.1

Bubbles 100.0 16.7 28.6

Droplets 98.9 100.0 99.4

Too concentrated 96.6 95.8 96.2

Macro-average 93.5 84.4 85.8

Weighted-average 94.1 93.9 93.9
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