
Generating multiparticle entangled states by self-organization of driven ultracold atoms
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We study a methodology for guiding the dynamical evolution of ultracold atomic motional degrees of freedom
towards multiparticle entangled Dicke-like states, via nonlinear self-organization under external driving. Two
examples of nonlinear many-body models are investigated. In the first model the external drive is a temporally
oscillating magnetic field, leading to self-organization by interatomic scattering. In the second model the drive is
a pump laser, leading to self-organization by photon-atom scattering in a ring cavity. We demonstrate highly
efficient generation of multiparticle entangled states of atomic motion and discuss prospective experimental
realizations of the models. Our results highlight the potential for using self-organization of atomic motion in
quantum technological applications.

The study of self-organization of ultracold atoms is a well-
established research direction, with many notable experimental
and theoretical results [1, 2]. Following the pioneering works
on self-organization of cold [3, 4] and ultracold [5, 6] atoms
coupled to a single longitudinal mode of a Fabry-Perot cavity,
the multimode aspects of optomechanical self-organization
in cold and ultracold atoms have recently started to generate
significant interest [7–26]. In parallel to the work on optome-
chanical self-organization, there has been great progress in
studying the atomic self-organization arising due to atom-atom
interactions being modulated by an external B-field [27–31].

Although the majority of these works have studied the
nonequilibrium phase diagrams in the mean field limit, where
quantum correlations can be neglected, a number of works
have shown that the quantum nature of light and matter can
play an important role for self-organization [6, 32–41].

Quantum correlated squeezed and entangled states can be
used for quantum enhanced measurements, which go beyond
classical metrology [42, 43]. In this context, squeezing and
entanglement of the internal atomic degrees of freedom [44–
53], but recently also the external ones [54–58], have been
recognized as attractive tools for metrological applications.

Here, we focus on external degrees of freedom and demon-
strate numerically the spontaneous generation of multiparticle
entangled (also called Dicke squeezed) states in the atomic
motion [52, 59–64], by transverse self-organization of an exter-
nally driven Bose-Einstein condensate (BEC). The mechanism
of this phenomenon is four-wave mixing [65–71] of zero-order
modes with the spontaneously generated transverse sidebands,
and we demonstrate the effect numerically for two different
models. In the first model, the self-organization arises due to an
external periodic modulation in interatomic scattering, driven
by a temporally oscillating B-field. In the second model, it
arises from laser driving in a ring cavity. A strong confinement
along the y and z axes allows us to restrict the analysis to 1D
structures in an elongated cloud.

Driving by B-field modulation. In the first model, shown in
Fig. 1a), a spatially homogeneous and temporally oscillating B-
field in the z-direction is modulated near a Feshbach resonance
of the atoms. The B-field sinusoidally modulates the atomic

FIG. 1. Nonlinear self-organization via four-wave mixing in a driven
elongated BEC. (a) The self-organization along the x axis can be
driven by applying a B-field B(t) oscillating near a Feshbach reso-
nance, leading to an oscillating scattering length a(t) [31]. (b) Ab-
sorption of a quantum of energy h̄ωmod leads here to a momentum-
conserving scattering of two atoms with zero transverse momentum
into modes with transverse momenta ±h̄k f , where k f =

√
mωmod/h̄.

(c) Transverse self-organization with spatial period Λc for laser
pumped atoms in a ring cavity (η - pump rate) with photon leakage
rate κ . (d) In this system, an atomic momentum sideband state with
transverse momentum ±h̄qc (qc = 2π/Λc) is excited by scattering of
an on-axis photon (blue) into a mode with transverse wavenumber
∓qc (red) and absorbing a quantum of energy h̄ωR. The momentum
is here conserved for the combined photon-atom processes.

s-wave scattering length with frequency ωmod and amplitude
amod , thus driving the pattern formation [31]. This four-wave
mixing process is described by the Hamiltonian:

HB = ih̄gmodb†
+b†

−b0b0 +H.c., (1)

where gmod = 2π h̄amod/mV , m is the atom mass, V is the vol-
ume of the condensate, and b0, b± are the bosonic momentum
annihilation operators for the transverse modes of momenta
0, ±h̄k f , where k f =

√
mωmod/h̄. The mechanism of pattern
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formation in this system is illustrated in Fig. 1b). When a pair
of atoms with zero transverse momenta absorbs a quantum of
energy h̄ωmod , they scatter into modes with opposite momenta
and kinetic energy h̄ωmod/2. This momentum conserving pro-
cess leads in the semiclassical picture to a formation of stripe
patterns in the atomic density.

The nonlinear Hamiltonian HB is a simple model for describ-
ing pattern formation in the quantum regime. Indeed, it can
readily be shown that HB describes the somewhat idealized
situation for which the excitation of higher order transverse
momentum modes is precluded (see below). A similar model
was initially studied in laser driven materials with cavity feed-
back, where the medium’s degrees of freedom were eliminated
and only the photonic modes were relevant [32–34].

Laser driving with ring cavity feedback. The second model
we study is based on laser driving of a BEC in a ring cavity, as
illustrated in Fig. 1c). This novel setup is inspired by earlier
theoretical [32–34, 72–74] and experimental [75, 76] work in
nonlinear optics. Here, in addition to the three atomic mo-
tional modes with annihilation operators b0, b± for transverse
momenta 0, ±h̄qc (with qc = 2π/Λc for the pattern length-
scale Λc), we have also the corresponding intracavity photonic
modes with annihilation operators a0, a±. In this system, a
continuous-wave (cw) laser of frequency ω drives the zero-
order cavity mode of frequency ω0 with pump rate η . Above
some critical pump level ηc, this leads to spontaneous genera-
tion of sideband modes with frequency ω ′

0, concurrently with
atomic momentum sideband modes. The effective Hamiltonian
of the problem is given by Hcav = H0 +H(1)

FWM +H(2)
FWM , with:

H0 =−h̄∆̄cn0 − h̄∆̄′
c(n++n−)

+h̄ωR(N++N−)+ ih̄η(a†
0 −a0),

(2)

and the four-wave mixing terms:

H(1)
FWM = h̄U0[(a

†
+b†

−+a†
−b†

+)a0b0 +H.c.]

+ h̄U0[a
†
0(b

†
+a++b†

−a−)b0 +H.c.],
(3)

H(2)
FWM = h̄U0(a

†
+a−b†

−b++H.c.), (4)

where ∆̄c = ω −ω0 −NU0, ∆̄′
c = ω −ω ′

0 −NU0 are the ef-
fective pump detunings from the on-axis and sideband cavity
modes, respectively, n0 = a†

0a0, n± = a†
±a±, N0 = b†

0b0, N± =

b†
±b±, U0 = g2

0/∆a is the single atom light shift, ∆a = ω −ωa
is the laser-atom detuning, g0 is the atom-cavity coupling
strength, and h̄ωR = (h̄qc)

2/2m is the transverse recoil energy.
Following [5, 6], we here concentrate on the system dynamics
for ∆̄′

c < 0, where ω ′
0 (i.e. Λc) is tunable via Fourier filtering

of the intracavity light [77].
Generation of transverse sidebands via the four-wave mixing

terms of Hcav can be explained by the momentum conserving
processes illustrated in Fig. 1d). Two opposite atomic momen-
tum sidebands are created by the term a†

+a0b†
−b0 in H(1)

FWM by
scattering an on-axis photon into the +qc mode, which excites
an atomic state with transverse momentum −h̄qc, and the term
a†
−a0b†

+b0, which scatters an on-axis photon into the −qc mode
and excites an atomic state with transverse momentum h̄qc.

The spontaneously generated transverse lattice potential at-
tracts atoms towards the maxima of the light intensity for
U0 < 0, or their minima for U0 > 0. The ordering of atoms
in turn increases the light diffraction and thus also the depth
of the lattice, which turns into a runaway process when the
pump rate η is sufficiently strong to compensate for the kinetic
energy cost and dissipation.

Dicke squeezed states in transverse atomic momentum. Our
aim is to study the phenomenon of Dicke squeezing and the
associated multiparticle (many-atom) entanglement for the
Hamiltonians HB and Hcav. To this end we define the side-
band operators: δn = n+− n−, δN = N+−N−, along with:
Jx = (b†

+b−+b†
−b+)/2, Jy = (b†

+b−−b†
−b+)/2i, Jz = δN/2,

which are analogous to Schwinger’s angular momentum opera-
tors [78], with J2

e f f = J2
x + J2

y .
Dicke squeezed states for the transverse momentum side-

bands, depicted on the Bloch sphere in Fig. 2b), are character-
ized by a low 〈(∆Jz)

2〉, large 〈J2
e f f 〉 and 〈Jx〉= 〈Jy〉= 〈Jz〉= 0

[52, 60, 61, 63, 64]. For the two transverse modes, the criterion
for Dicke state multiparticle entanglement of identical atoms
is given by [64, 79]:

ξ 2
gen = (N −1)

〈(∆Jz)
2〉

〈J2
e f f 〉−N/2

< 1, (5)

where N = N0 +N++N− is the total number of atoms, taken
as constant in our simulations.

One can easily show that J2
e f f = N+N− + (N+ + N−)/2,

such that 〈J2
e f f 〉 = 〈N+N−〉+ 〈N+ + N−〉/2. For the max-

imally entangled state, we have 〈(∆Jz)
2〉 = 0 and 〈J2

e f f 〉 =
N(N +2)/4. In the atomic many-body basis, this maximally
multiparticle entangled state is the ideal Dicke state, for even
N given by |0〉0|N/2〉+|N/2〉−. An alternative measure of
Dicke squeezing at large 〈J2

e f f 〉, practical in the large N limit
since it scales in this ideal case as 1/(N +2), is the quantity
ξD = N[〈(∆Jz)

2〉+0.25]/〈J2
e f f 〉 [63].

Continuous translational symmetry of HB and Hcav. Both
HB and Hcav are symmetric to continuous translations along the
x axis, which leads to [δN,HB] = 0 and [δn+ δN,Hcav] = 0,
where 〈Jx〉 = 〈Jy〉 = 〈Jz〉 = 0 for both unitary evolution with
HB and dissipative evolution with Hcav [80]. The continuous
translational symmetry of HB and Hcav is preserved by the
density matrix during temporal evolution. These translationally
symmetric self-organized states are analogous to maximally
amplitude squeezed photonic states, for which the phase of the
electric field is undetermined [81, 82].

Simulations of unitary evolution under HB. We now dis-
cuss the solutions of the Schrödinger equation for HB. Due
to [Jz,HB] = 0, for a system starting in the state |N〉0|0〉+|0〉−,
all moments of Jz will be equal to zero at all t, leading to
ξ 2

gen = 0. This vanishing of the Jz moments arises from the fact
that the transverse sideband states are populated by the atom
momentum-conserving process, creating pairs of sideband ex-
citations.

The temporal evolution of 〈J2
e f f 〉 is plotted in Fig. 2c). The

〈J2
e f f 〉, which is a measure of the atomic self-organization,

Generating multiparticle entangled states by self-organization of driven ultracold atoms
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(a)
(b)

(c)

FIG. 2. Populating the sideband Dicke-like states by self-organization
via the Hamiltonian HB. (a) Scan of minimal ξD reached during
temporal evolution, denoted by ξ min

D (red dots), against the total atom
number N, with the Heisenberg limit of 1/(N + 2) denoted by the
dashed line. (b) The Dicke squeezed state forms a band around the
equator of the Bloch sphere, characterized by a large radius 〈J2

e f f 〉=
〈J2

x + J2
y 〉 and a vanishing variance of the spin distribution along the

z axis, 〈(∆Jz)
2〉. (c) For unitary evolution with HB, 〈(∆Jz)

2〉 = 0
(orange line), and 〈J2

e f f 〉 performs sloshing oscillations in time (blue
line), nearly reaching the limit value of N(N +2)/4 = 420 (dashed
line) at N = 40.

initially rises, and then starts to oscillate in time, indicating
sloshing dynamics, with continuous oscillations between the
bunched and nearly homogeneous structures in the self-ordered
atomic lattice (see also [6, 83]). During this time, the atoms
scatter in and out of the transverse sidebands by absorbing and
emitting energy quanta from and to the driving magnetic field.
The value of 〈J2

e f f 〉 oscillates with a large amplitude, nearly
reaching 0 at its trough and N(N +2)/4 at its peak. Such large
values of 〈J2

e f f 〉 lead to Dicke state entanglement very close to
the Heisenberg limit for the Hamiltonian HB.

Due to momentum conservation in the interatomic scattering
processes, the available Hilbert space for this initial condition
is significantly reduced, as states keep zero transverse atomic
momentum during unitary evolution, allowing for simulations
with relatively large N. Plotting the minimal ξD reached during
temporal evolution, denoted by ξ min

D , versus N, reveals that it
closely follows the Heisenberg limit of 1/(N +2) over nearly
three orders of magnitude, up to the maximum atom number
tractable by the computational resources available, see Fig.
2a).

Simulations of dissipative evolution under Hcav. We now
look at the full photon-atom dynamics for both the coherent
unitary evolution and for including the cavity photon decay in

(a) (b)

(c)

FIG. 3. Generating multiparticle entanglement in the Dicke-like
states via transverse self-organization for the Hamiltonian Hcav. The
irreversible dynamical evolution of (a) 〈(∆Jz)

2〉, (b) 〈J2
e f f 〉 for η

values of 45ωR (red, solid), 35ωR (green, dot-dashed) and 25ωR
(blue, dashed). (c) The η scan of ξ 2

m, given by the lowest ξ 2
gen reached

during temporal evolution, for the unitary case (purple, dots), and
κ = 5ωR (red, squares), κ = 15ωR (yellow, triangles). Crossing of
the dashed line (ξ 2

gen = 1) indicates the existence of many particle
entanglement [79]. The lines are guide to the eyes. Simulation
parameters: (a), (b) (∆̄c, ∆̄′

c, U0, κ) = (110, −45, 10, 5)ωR, and (c)
(∆̄c, ∆̄′

c, U0) = (110, −45, 10)ωR, with (a)-(c) N = 8.

the Lindblad master equation. Due to conservation of momen-
tum in the combined photon-atom four-wave mixing, we have
[δn+ δN,Hcav] = 0, but [Jz,Hcav] 6= 0. The Hilbert space is
in this problem considerably larger than for HB, which limits
the tractable atom number to N = 8 for the calculations of
full quantum dynamics. Parameter values for this case are
taken such that maximal Dicke squeezing is observed, and
experimentally accessible parameters are discussed in [80].

Due to [δn+δN,Hcav] = 0, the variance of 2Jz is equal to
the variance of δn for the unitarily evolving system. This
indicates that a reduction of ξD will benefit from lower δn
variances, which in general occur when 〈n0〉 and 〈n±〉 are
lower, e.g. at larger |∆̄c|, |∆̄′

c|, as long as 〈J2
e f f 〉 is large.

In Figs. 3a,b) we plot the temporal evolution of the relevant
atomic observables for varying the pump strength η in the case
with dissipation of photons out of the cavity. For the dissipative
case, the equality of δN and δn variances no longer holds and
the dissipation of photons out of the cavity makes 〈(∆Jz)

2〉
increase almost linearly with time, with the slope increasing
with the pump amplitude η . This indicates that there is still
some correlation between δN and δn even in the dissipative
case, i.e. the low δn variances obtained for lower η and 〈n±〉
will lead to lower δN variances.

The 〈J2
e f f 〉 initially increases and oscillates in time, again

indicating sloshing dynamics (see Fig. 2). Increasing the pump
η , both the growth rate and maximum value of 〈J2

e f f 〉 are
increased. The growth rate of 〈J2

e f f 〉 increases faster with dis-
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tance to threshold than the growth rate of 〈(∆Jz)
2〉, which, from

Eq. (5), leads to a decrease in ξ 2
gen for larger η . Increasing the

η values several times above the semiclassically calculated
threshold ηc = [−ωR(∆̄2

c + κ2)(∆̄′2
c + κ2)/(4NU2

0 ∆̄′
c)]

1/2 ≈
13ωR [80], the ξ 2

gen reaches values below 1, see Fig. 3c). The
lowest ξ 2

gen values for these results are ξ 2
gen = 0.03 for the uni-

tary and ξ 2
gen = 0.18 for the dissipative case. The maximal

η available for these simulations is limited by the size of the
numerically tractable Hilbert space.

Conclusion. Each of the two discussed models for producing
Dicke squeezed states has its relative advantages and disad-
vantages regarding prospective experimental implementations.
For HB, the squeezing appears more pronounced, and the sys-
tem is technically simpler. However, it can be shown that the
Hamiltonian HB is a good description of the atom-atom scat-
tering only when the medium is collisionally thin, such that
〈N0〉� 〈N±〉 [31]. Indeed, adding the higher order terms to HB
decreases the achieved value of multiparticle entanglement for
the first order sidebands, by increasing 〈(∆Jz)

2〉 and decreasing
〈J2

e f f 〉 [80]. In prospective experiments, this can however be
amended by postselecting the output state to the total number
of atoms in the first order sidebands [52, 64]. The maximum
value of 〈J2

e f f 〉 ≈ 4× 106, attained in the results of Fig. 2,
should thus not be achievable for the experiment of Ref. [31]
at N = 3982 atoms, although it is possible that the same value
of 〈J2

e f f 〉 may be reachable for a larger total number of atoms,
for the case when 〈N0〉 � 〈N±〉 is satisfied. Researching the
experimental protocols for realizing the Hamiltonian HB in
the 〈N±〉 � 〈N0〉 regime is a highly intriguing topic for future
theoretical and numerical work, given the extremely efficient
multiparticle entanglement generation shown in Fig. 2.

For the Hamiltonian Hcav, the excitation of higher order side-
bands is precluded for shallow self-organized optical lattices,
which is the case for the results shown in Fig. 3 [80]. However,
as the experimental system is more complex, there is a greater
number of potential noise sources. For instance, as discussed
in [33], if experimental imperfections break the x-axis transla-
tional symmetry of the system, e.g. via misalignment in the
optical setup, the variance of δn will be increased due to the
number-phase uncertainty relation for the photonic sidebands
[84], which may reduce the multiparticle entanglement in the
atomic momentum sidebands. Other potential drawbacks stem
from the limitations in the experimentally available parameter
space.

We note that steady state Dicke squeezing can be achieved
for both HB and Hcav by rapidly switching off the driving at
the moment of optimal squeezing, providing states for prospec-
tive metrology applications [80]. Details of the procedure for
using the generated states in quantum metrology, which would
rely on measuring the quantities 〈(∆Jz)

2〉 and 〈J2
e f f 〉 by quan-

tum non-demolition measurements of the atomic momentum
distribution [85], e.g. by time-of-flight imaging [60, 64], are
currently under investigation.

To summarize, we have theoretically studied and numeri-
cally demonstrated a method for generating momentum state

Dicke squeezing via nonlinear self-organization of ultracold
atoms driven by an external field. The four-wave mixing mech-
anism generating the quantum correlations between ultracold
atoms was studied in two distinct Hamiltonians, HB for which
the drive is an oscillating magnetic field, related to the exper-
iment of Ref. [31] and a novel model Hcav, where driving is
provided by a laser with ring cavity feedback. In both of the
considered systems, the quantum correlations appear in the
atomic motional states of a BEC, which are more robust to
noise from the environment as compared to internal atomic
degrees of freedom, used commonly in previous ultracold
atom based entanglement schemes [52]. Dicke squeezing near
the Heisenberg limit, achieved for the case of HB, highlights
the great potential of applying nonlinear self-organization in
emerging quantum technologies. Note that both HB and Hcav
have continuous symmetry, which is also the case for some
prominent recent models describing self-organization of ul-
tracold atoms [17, 23]. It may thus be possible to observe
multiparticle entanglement generation in experimental setups
of Refs. [17, 23], along with the setup of Ref. [31].
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[54] L. Salvi, N. Poli, V. Vuletić, and G. M. Tino, Phys. Rev. Lett.

120, 033601 (2018).
[55] K. Gietka, F. Mivehvar, and H. Ritsch, Phys. Rev. Lett. 122,

190801 (2019).
[56] A. Shankar, L. Salvi, M. L. Chiofalo, N. Poli, and M. J. Holland,

Quantum Science and Technology 4, 045010 (2019).
[57] F. Anders, A. Idel, P. Feldmann, D. Bondarenko, S. Loriani,

K. Lange, J. Peise, M. Gersemann, B. Meyer-Hoppe, S. Abend,
N. Gaaloul, C. Schubert, D. Schlippert, L. Santos, E. Rasel, and
C. Klempt, Phys. Rev. Lett. 127, 140402 (2021).

[58] G. P. Greve, C. Luo, B. Wu, and J. K. Thompson, Nature 610,
472 (2022).

[59] J. A. Dunningham, K. Burnett, and S. M. Barnett, Phys. Rev.
Lett. 89, 150401 (2002).

[60] B. Lücke, M. Scherer, J. Kruse, L. Pezze, F. Deuretzbacher,
P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos,
A. Smerzi, and C. Klempt, Science 334, 773 (2011).

[61] R. Bücker, J. Grond, S. Manz, T. Berrada, T. Betz, C. Koller,
U. Hohenester, T. Schumm, A. Perrin, and J. Schmiedmayer,
Nature Physics 7, 608 (2011).

[62] L.-M. Duan, Physical Review Letters 107, 180502 (2011).
[63] Z. Zhang and L. M. Duan, New Journal of Physics 16, 103037

(2014).
[64] B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth,

and C. Klempt, Physical Review Letters 112, 155304 (2014).
[65] L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S.

Julienne, J. Simsarian, K. Helmerson, S. Rolston, and W. D.
Phillips, Nature 398, 218 (1999).

[66] J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev. Lett. 89,
020401 (2002).

[67] N. Gemelke, E. Sarajlic, Y. Bidel, S. Hong, and S. Chu, Phys.
Rev. Lett. 95, 170404 (2005).

[68] G. K. Campbell, J. Mun, M. Boyd, E. W. Streed, W. Ketterle,
and D. E. Pritchard, Phys. Rev. Lett. 96, 020406 (2006).

[69] A. Perrin, H. Chang, V. Krachmalnicoff, M. Schellekens, D. Bo-
iron, A. Aspect, and C. I. Westbrook, Phys. Rev. Lett. 99,
150405 (2007).

[70] R. G. Dall, L. J. Byron, A. G. Truscott, G. R. Dennis, M. T.
Johnsson, and J. J. Hope, Phys. Rev. A 79, 011601 (2009).

[71] J.-C. Jaskula, M. Bonneau, G. B. Partridge, V. Krachmalnicoff,
P. Deuar, K. V. Kheruntsyan, A. Aspect, D. Boiron, and C. I.
Westbrook, Phys. Rev. Lett. 105, 190402 (2010).

[72] L. A. Lugiato and R. Lefever, Physical Review Letters 58, 2209
(1987).

Generating multiparticle entangled states by self-organization of driven ultracold atoms



6

[73] L. A. Lugiato and C. Oldano, Physical Review A 37, 3896
(1988).

[74] E. Tesio, G. R. M. Robb, T. Ackemann, W. J. Firth, and G.-L.
Oppo, Physical Review A 86, 031801 (2012).

[75] T. Ackemann, S. Barland, J. R. Tredicce, M. Cara, S. Balle,
R. Jäger, M. Grabherr, M. Miller, and K. J. Ebeling, Optics
Letters 25, 814 (2000).

[76] A. Esteban-Martin, J. García, E. Roldán, V. B. Taranenko, G. J.
de Valcárcel, and C. O. Weiss, Physical Review A 69, 033816
(2004).

[77] S. J. Jensen, M. Schwab, and C. Denz, Physical Review Letters
81, 1614 (1998).

[78] J. Schwinger, On angular momentum, U.S. Atomic Energy Com-
mission Technical Report No. NYO-3071, 1952; Reprinted in
Quantum Theory of Angular Momentum, edited by L. Bieden-
harn and H. Van Dam (Academic Press, New York, 1965)..

[79] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, Phys. Rev. A
79, 042334 (2009).
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DERIVATION OF Hcav

The derivation of HB is given for 2D clouds in the Methods section of Ref. [S1], and can be readily simplified to the 1D case
(see also below). Hence, we provide here only the details of the derivation of Hcav. A cigar-shaped zero-temperature Bose-Einstein
condensate (BEC) is placed in an effectively plano-planar ring cavity of effective diffractive length L with one lossy and three
perfectly reflecting mirrors (κ - cavity photon decay rate), which is pumped by a coherent electric field with pump strength η at
frequency ω (see Fig. S1a) and section “Experimental design of the ring cavity setup" for details). A strong confinement along the
y and z axes allows to restrict the analysis to 1D structures. The pump drive excites on-axis running waves with spatial profile eik0z,
with the spontaneously generated sidebands having the profile eik0ze±iqcx, where k0 = 2π/λ0 is the cavity longitudinal mode (also
called the on-axis or zero-order mode) wavenumber, qc = 2π/Λc and Λc is the pattern lengthscale, tunable via Fourier filtering of
intracavity light [S2].

Following Refs. [S3–S5], we take the electric field modes as:

E(r) = a0eik0z +a+eik0zeiqcx +a−eik0ze−iqcx, (S1)

where a j are the photonic annihilation operators in the j-th mode. The atomic field operator is given by:

ψ(r) =
1√
V

(
b0 +b+eiqcx +b−e−iqcx) , (S2)

where b j is the bosonic annihilation operator of the j-th transverse atomic momentum mode. The effective many-body Hamiltonian
for the photons and atomic motional states can be derived from the Jaynes-Cummings model (see e.g. [S6–S8]). For two-level
atoms, using the dipole and rotating wave approximations in the low saturation (far-detuned) limit, we therefore have:

Hcav =− h̄∆cn0− h̄∆′c(n++n−)+ ih̄(ηa†
0−η∗a0)+

∫

V
d3rψ†(r)

[
p2

2m
+ h̄U0E†(r)E(r)

]
ψ(r), (S3)

where ∆c = ω −ω0, ∆′c = ω −ω ′0 are the pump detunings from the on-axis and sideband cavity modes, respectively, n0 =

a†
0a0, n± = a†

±a±, U0 = g2
0/∆a is the single atom light shift, ∆a = ω−ωa is the laser-atom detuning, and g0 is the atom-cavity

coupling strength. In writing Eq. (S3) we have neglected the random collisions between the atoms in the dilute BEC cloud, as
we are here interested on highlighting the consequences of light-matter interaction. The number of atoms is fixed and given by
N = N0 +N++N−, where N0 = b†

0b0, N± = b†
±b±.

We insert Eqs. (S1) and (S2) into Eq. (S3) for real-valued η and perform the integration over the BEC cloud volume V to get
the effective total Hamiltonian Hcav = H0 +H(1)

FWM +H(2)
FWM , where:

H0 =−h̄∆̄cn0− h̄∆̄′c(n++n−)+ h̄ωR(N++N−)+ ih̄η(a†
0−a0), (S4)

and the four wave mixing terms are:

H(1)
FWM = h̄U0[(a

†
+b†
−+a†

−b†
+)a0b0 +H.c.]+ h̄U0[a

†
0(b

†
+a++b†

−a−)b0 +H.c.], (S5)

H(2)
FWM = h̄U0(a

†
+a−b†

−b++H.c.), (S6)

where ∆̄c = ∆c−NU0, ∆̄′c = ∆′c−NU0, n = n0 +n++n− and h̄ωR = (h̄qc)
2/2m is the transverse recoil energy.

Generation of transverse sidebands via the four wave mixing term a†
+a0b†

−b0 in H(1)
FWM can be explained by the momentum

conserving processes illustrated in Fig. 1d) of the main text. The a†
0(b

†
+a++b†

−a−)b0 term of H(1)
FWM scatters a photon with ±qc

into the on-axis mode and excites an atomic sideband with transverse momentum ±h̄qc. The H(2)
FWM describes the secondary

wave mixing process for stripe patterns, in which a scattering of a photon sideband with ±qc into the mode with ∓qc leads to a
transition of an atom from the state with transverse momentum ∓h̄qc into the state with transverse momentum ±h̄qc. This process
leads to saturation of the sideband mode population far above threshold [S9].

MEAN FIELD EVOLUTION EQUATIONS FOR Hcav

We first look at the temporal evolution of the field operators [S10]. The Heisenberg equation for an operator O(t) has the form:

dO
dt

=
i
h̄
[H,O]. (S7)
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while the nonunitary evolution, including the dissipation of photons from the cavity, can be described by the Lindblad-type
evolution via the equation:

dO
dt

=
i
h̄
[H,O]+κ ∑

j=0,±
(2a†

jOa j−a†
ja jO−Oa†

ja j). (S8)

We here use the ring cavity Hamiltonian H = Hcav = H0 +H(1)
FWM +H(2)

FWM , with the three parts given by:

H0 =−h̄∆̄cn0− h̄∆̄′c(n++n−)+ h̄ωR(N++N−)+ ih̄η(a†
0−a0), (S9)

H(1)
FWM = h̄U0[(a

†
+b†
−+a†

−b†
+)a0b0 +H.c.]+ h̄U0[a

†
0(b

†
+a++b†

−a−)b0 +H.c.], (S10)

H(2)
FWM = h̄U0(a

†
+a−b†

−b++H.c.), (S11)

and the commutation relations of the bosonic modes for photons and atoms: [a j,a
†
k ] = δ j,k, [a†

j ,a
†
k ] = [a j,ak] = 0, and [b j,b

†
k ] = δ j,k,

[b†
j ,b

†
k ] = [b j,bk] = 0, respectively, where j,k = 0,+,−. For the photonic modes, the Eq. (S8) now gives:

ȧ0 = (i∆̄c−κ)a0− iU0[(b
†
+a++b†

−a−)b0 +b†
0(a+b−+a−b+)]+η∗, (S12)

ȧ+ = (i∆̄′c−κ)a+− iU0[(b
†
−b0 +b†

0b+)a0 +a−b†
−b+], (S13)

ȧ− = (i∆̄′c−κ)a−− iU0[(b
†
+b0 +b†

0b−)a0 +a+b†
+b−], (S14)

while for the atomic momentum modes, the Eq. (S7) gives:

ḃ0 =−iU0[a
†
0(a+b−+a−b+)+(a†

+b++a†
−b−)a0)], (S15)

ḃ+ =−iωRb+− iU0[(a
†
−a0 +a†

0a+)b0 +a†
−a+b−], (S16)

ḃ− =−iωRb−− iU0[(a
†
+a0 +a†

0a−)b0 +a†
+a−b+]. (S17)

Taking now the expectation values of the right- and left-hand sides, writing 〈O1O2O3〉 → 〈O1〉〈O2〉〈O3〉, and using a j→ 〈a j〉=√
Nα j(t), b j→ 〈b j〉=

√
Nβ j(t), we get the mean field dynamical equations:

α̇0 = (i∆̄c−κ)α0− iu0[(β ∗+α++β ∗−α−)β0 +β ∗0 (α+β−+α−β+)]+ y∗, (S18)
α̇+ = (i∆̄′c−κ)α+− iu0[(β ∗−β0 +β ∗0 β+)α0 +α−β ∗−β+], (S19)
α̇− = (i∆̄′c−κ)α−− iu0[(β ∗+β0 +β ∗0 β−)α0 +α+β ∗+β−], (S20)

where u0 = NU0, y = η/
√

N, and

β̇0 =−iu0[α∗0 (α+β−+α−β+)+(α∗+β++α∗−β−)α0)], (S21)

β̇+ =−iωRβ+− iu0[(α∗−α0 +α∗0 α+)β0 +α∗−α+β−], (S22)

β̇− =−iωRβ−− iu0[(α∗+α0 +α∗0 α−)β0 +α∗+α−β+]. (S23)

MEAN FIELD THRESHOLD FOR Hcav

We now look at the steady state limit of the above mean field dynamical equations. Writing now α j(t)→ α j and β j(t)→ β j,
we get the equations:

0 = (i∆̄c−κ)α0− iu0[(β ∗+α++β ∗−α−)β0 +β ∗0 (α+β−+α−β+)]+ y∗, (S24)
0 = (i∆̄′c−κ)α+− iu0[(β ∗−β0 +β ∗0 β+)α0 +α−β ∗−β+], (S25)
0 = (i∆̄′c−κ)α−− iu0[(β ∗+β0 +β ∗0 β−)α0 +α+β ∗+β−], (S26)

and

0 = u0[α∗0 (α+β−+α−β+)+(α∗+β++α∗−β−)α0)], (S27)
0 = ωRβ++u0[(α∗−α0 +α∗0 α+)β0 +α∗−α+β−], (S28)
0 = ωRβ−+u0[(α∗+α0 +α∗0 α−)β0 +α∗+α−β+]. (S29)
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At threshold, we neglect all terms square or higher order in the sidebands. We choose a real-valued β0 =
√

1−|β+|2−|β−|2 ≈ 1
and find the homogeneous field amplitude of the on-axis mode to be

α0 =
y∗√

∆̄2
c +κ2

eiarctan(∆̄c/κ). (S30)

One can then easily calculate that in this approximation:

β± =− u0

ωR
(α∗±α0 +α∓α∗0 ). (S31)

Inserting this relation in the equations for the fields, we get:

0 = (i∆̄′c−κ)α++2i
u2

0
ωR

(α+α∗0 +α∗−α0)α0, (S32)

0 = (i∆̄′c−κ)α−+2i
u2

0
ωR

(α∗+α0 +α−α∗0 )α0. (S33)

By inserting the complex conjugate of

α+α∗0 +α∗−α0 =−
(i∆̄′c−κ)

2i u2
0

ωR

α+

α0
(S34)

into the second equation of the above, we get:

α− =
i∆̄′c +κ
i∆̄′c−κ

α0α∗+
α∗0

. (S35)

As the sidebands have equal amplitudes, we can write:

α± = Aeiχ± , β± = Beiε± . (S36)

From (S31), we then get that at threshold ε̄ = ε++ε−= 0, while Eq. (S35) gives χ̄ = χ++χ−= 2[arctan(∆̄c/κ)+arctan(∆̄′c/κ)−
argy]. Inserting the complex conjugate of Eq. (S35) into the Eq. (S32), we get for the critical intracavity field:

|αc
0 |2 =−

ωR(∆̄′2c +κ2)

4u2
0∆̄′c

(S37)

which gives the threshold for the real-valued critical input electric field amplitude yc:

y2
c =−

ωR(∆̄2
c +κ2)(∆̄′2c +κ2)

4u2
0∆̄′c

, (S38)

which leads to

ηc =

√
−ωR(∆̄2

c +κ2)(∆̄′2c +κ2)

4NU2
0 ∆̄′c

. (S39)

The structure of the expression (S39) for ηc bears similarity to the threshold for the transversely pumped single mode cavity,
given by

√
−ωR(∆̄2

c +κ2)/(2N∆̄c) [S11].
We now numerically investigate the system dynamics in the mean-field limit of the dissipative evolution for the Hamiltonian

Hcav. In Fig. S1b) we plot the square root of the diffracted photon number |αS
±| = (〈n±〉S/N)1/2 and the transverse atomic

sideband population |β S
±| = (〈N±〉S/N)1/2 vs. the pump η . For the results in Fig. S1b), the equations (S18)-(S23) are solved

numerically and the steady state values are plotted for different η’s. In the inset we plot the temporal evolution of the roll patterns
in the atomic density, given by n(x, t) = |β0(t)+β+(t)exp(iqcx)+β−(t)exp(−iqcx)|2, and in the electric field intensity, given by
I(x, t) = |α0(t)+α+(t)exp(iqcx)+α−(t)exp(−iqcx)|2, normalized to the steady state |αS

0 |2, denoted by I0.
The mean field patterns appear for the pump rate η > ηc. The initial sharp increase in the transverse excitations, seen in Fig.

S1b) for η & ηc, gives way to saturation for larger η’s. In the inset we plot the temporal evolution of the semiclassical stripe
patterns in the atomic density n(x, t) and the electric field intensity I(x, t), normalized to the steady state |αS

0 |2, denoted by I0.
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(a) (b)

FIG. S1. (a) Schematics of the proposed experimental setup for observing Dicke state entanglement via self-organization of ultracold atoms
in a laser pumped ring cavity. The ultracold BEC gas, strongly confined along the y and z axes, is placed in a ring cavity with linewidth κ ,
which is pumped by coherent on-axis light with drive amplitude η (blue arrow). Effective cavity length L can be controlled by adjustment
of intracavity lenses (light blue) around the afocal telescopic condition, while pattern lengthscale Λc is tuned via Fourier filtering (FF) of the
photonic sidebands (red arrows). (b) Mean-field transverse optomechanical self-ordering in a leaky ring cavity. The square root of the steady
state diffracted photon number |αS

±| (orange) and transverse atomic sideband population |β S
±| (blue) for varying the input beam pump rate η

(see text). Inset: temporal evolution of the semiclassical stripe patterns in the atomic density n(x, t) (upper) and the normalized electric field
I(x, t)/I0 (lower) at η = 1.2ηc (see text). Simulation parameters: N = 104 and (∆̄c, ∆̄′c, U0, κ) = (8.8, −10, 1.2×10−4, 10)ωR, with h̄ = 1.

The system starts with α0(0) = α±(0) = 0, with α0(t) rising rapidly on the scale 1/κ , which is not detectable on the plot since
the t range is too large. This homogeneous state becomes unstable after around 10/ωR, a time determined by the initial fluctuations
in the atomic density, which were made artificially small in the plots shown (note that the steady state in this self-organizing mean
field model is the same for all reasonable values of initial fluctuations). Before reaching the steady state, the |α±(t)| and |β±(t)|
oscillate at a frequency of a few ωR. This oscillation of the sideband populations is a signature of the sloshing dynamics, i.e. the
continuous oscillation between the bunched and homogeneous atomic structure in the optical lattice (studied e.g. in [S12, S13]).
The stripes in n(x, t) and I(x, t) are complementary, which is a consequence of the optical dipole potential repulsing the atoms
away from the intensity peaks for U0 > 0 [S14, S15].

CONTINUOUS TRANSLATIONAL SYMMETRY OF HB AND Hcav

We start by writing again the operators for the photon and atomic momentum sidebands, which have the form δn = n+−n−,
δN = N+−N−, with n± = a†

±a± and N± = b†
±b±. The Hamiltonian HB is symmetric to translations by a real-valued distance

parameter d along the x axis, which transforms the wavefunction as ψ(x)→ψ(x+d), meaning it is symmetric under simultaneous
transformations: b0→ b0, b±→ e±idk f b±. The generator of this symmetry is the x component of the atomic momentum operator,
in the many-body formalism given simply by px = h̄k f δN. The corresponding translation operation is performed by the unitary
operator TB(d) = eid px/h̄. This continuous symmetry of HB leads to:

T †
B (d)HBTB(d) = HB → [δN,HB] = 0. (S40)

Note that the same conclusion can be reached from the opposite direction, by explicitly calculating [δN,HB] = 0 and finding the
corresponding unitary symmetry operator. By using the Baker-Campbell-Hausdorff formula and the commutator [δN,b±] =∓b±,
it can then be readily shown that T †

B (d)b±TB(d) = e±idk f b±.
The Hamiltonian Hcav is also symmetric to continuous translations by d along the x axis, which transforms the wavefunction

and the electric field as ψ(x)→ ψ(x+ d), E(x)→ E(x+ d), meaning it is symmetric under simultaneous transformations:
a0→ a0, a±→ e±iqcda±, b0→ b0, b±→ e±iqcdb±. The generator of this symmetry is the x component of the combined photonic
and atomic momentum operator, given by Px = h̄qc(δn+ δN). The corresponding translation operation is performed by the
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unitary operator Tcav(d) = eidPx/h̄. This continuous symmetry of Hcav leads to:

T †
cav(d)HcavTcav(d) = Hcav → [δn+δN,Hcav] = 0. (S41)

Again, the same conclusion can be reached from the opposite direction, by explicitly calculating [δn+ δN,Hcav] = 0 and
finding the corresponding unitary symmetry operator. Following the same procedure as above, it can readily be shown that now
T †

cav(d)a±Tcav(d) = e±idqca± and T †
cav(d)b±Tcav(d) = e±idqc b±.

To illustrate the meaning of preservation of translational symmetry during temporal evolution, we calculate the atomic spatial
probability distribution 〈ψ†(x)ψ(x)〉 for V = 1 as:

〈ψ†(x)ψ(x)〉= 〈N0〉+ 〈N+〉+ 〈N−〉+ 〈b†
0b++b†

−b0〉eikx + 〈b†
0b−+b†

+b0〉e−ikx + 〈b†
−b+〉e2ikx + 〈b†

+b−〉e−2ikx, (S42)

where k = k f for HB and k = qc for Hcav. It can readily be shown that for a translationally invariant density matrix ρ(t) =
T †(d)ρ(t)T (d), the inhomogeneous terms of Eq. (S42) vanish (see below), and 〈ψ†(x)ψ(x)〉 = N, in contrast to the results
for the semiclassical (mean-field) framework shown in Fig. S1. Such situation where atomic spatial probability distribution is
homogeneous, even though self-organization takes place, occurs because of the Heisenberg uncertainty relation for position and
momentum measurements. This means that, as the atoms are in a continuously translationally invariant state, a pattern realization
with any displacement from x = 0 (i.e. pattern phase) is equally probable.

Performing a measurement of the atomic position will collapse the system onto a state with an undetermined (i.e. one with
maximum variance in) total momentum, which means the inhomogeneous terms of Eq. (S42) will be nonzero. The spatial
probability distribution will then be sinusoidal, with a fixed spatial phase of the patterns. As the measured states have undetermined
atomic positions, the measurement of the atomic distributions should yield random values of the pattern phases. This was indeed
seen in the experiments of Ref. [S1], where pattern realizations with random pattern phases (displacements) and orientations, in a
2D system, were reported.

We note that the above described translationally invariant states are analogous to the maximally amplitude squeezed photonic
states, for which the phase of the electric field is undetermined [S16]. Similar conclusions were previously also reached for the
photonic self-organized patterns, as reported in [S4].

In ultracold atom experiments, the two most common complementary measurements of density (position) and momentum
distributions of atoms in a cloud are near-field microscopy and time-of-flight imaging, respectively. To efficiently generate
multiparticle entangled states, the experiments should gather information by measuring the momentum distribution via quantum
nondemolition measurements [S17], and completely avoid measuring the density distribution, as done e.g. in the experiment of
Ref. [S18].

VANISHING OF 〈J〉 DURING DYNAMICAL EVOLUTION

It can readily be shown that the expectation value of the total (vector) “angular momentum" operator of the atomic momentum
sidebands vanishes, i.e. 〈J〉= 0, for both unitary evolution under HB, along with unitary and dissipative evolution under Hcav.
To do this, we first write the atomic momentum ladder operators J± = b†

±b∓, where the Jx, Jy are now Jx = (J++ J−)/2, Jy =
(J+− J−)/2i.

For HB, in our simulations the system evolves from the initial state |ψ0〉= |N〉0|0〉+|0〉− to the state |ψ(t)〉, by unitary evolution
|ψ(t)〉 = UB(t)|ψ0〉, where UB(t) = e−iHBt/h̄. The expectation values of J± at time t are thus given by 〈J±〉 = 〈ψ(t)|J±|ψ(t)〉.
Now, the temporal evolution of the state |ψ0〉 via HB leaves the state |ψ(t)〉 on a part of the Hilbert space spanned by states
with zero transverse momentum, since HB conserves the transverse momentum. In contrast, the operators J± act to transfer the
state |ψ(t)〉 to an orthogonal part of the Hilbert space, since they increase/decrease the transverse momentum by 2h̄k f . The
orthogonality of J±|ψ(t)〉 and |ψ(t)〉 thus leads to 〈J±〉= 0, and correspondingly to 〈Jx〉= 〈Jy〉= 0. Likewise, 〈Jz〉= 0 follows
from the fact that the total transverse momentum of the state |ψ(t)〉 remains zero for all time.

For unitary evolution under Hcav, the initial state is in our simulations given by |ψ0〉= |0,0,0〉ph|N〉0|0〉+|0〉−. The dynamics
leads now to the state |ψ(t)〉 = Ucav(t)|ψ0〉, where Ucav(t) = e−iHcavt/h̄, for which the total photonic and atomic transverse
momentum is equal to zero. As the operators J± do not conserve the transverse momentum, they take the state |ψ(t)〉 to an
orthogonal part of the Hilbert space, and we again have 〈Jx〉= 〈Jy〉= 0.

For Hcav, 〈Jz〉= 0 follows from parity (+↔−) symmetry of Hcav, i.e. P−1HcavP = Hcav, where the operator P inverts the x
axis, switching between the + and − modes. The parity symmetry of Hcav and |ψ0〉 leads to a parity symmetry of the state |ψ(t)〉,
which means 〈Jz〉= 〈ψ(t)|Jz|ψ(t)〉= 〈ψ(t)|P−1JzP|ψ(t)〉=−〈Jz〉, leading to 〈Jz〉= 0.

To show that 〈J〉= 0 during dissipative evolution for Hcav, we write the Lindblad master equation for the density matrix ρ(t) as
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[S10]:

dρ
dt

= L[ρ], where L[ρ] =− i
h̄
[H,ρ]+κ ∑

j=0,±
(2a jρa†

j −a†
ja jρ−ρa†

ja j). (S43)

The above equation can be formally solved as [S19]:

ρ(t) = eLt [ρ(0)] = ρ(0)+ tL[ρ(0)]+ t2

2
L[L[ρ(0)]]+ ... (S44)

By noting that Tcav(d)ρ(0)T †
cav(d) = ρ(0), it can readily be shown that Tcav(d)ρ(t)T †

cav(d) = ρ(t). To demonstrate this, we write
for the first order term of (S44):

Tcav(d)L[ρ(0)]T †
cav(d) = Tcav(d)[−

i
h̄
[H,ρ(0)]+κ ∑

j=0,±
(2a jρ(0)a†

j −a†
ja jρ(0)−ρ(0)a†

ja j)]T †
cav(d). (S45)

Now, the relations Tcav(d)HcavT †
cav(d) = Hcav, Tcav(d)a0T †

cav(d) = a0 and Tcav(d)a±T †
cav(d) = e∓idqca± lead to:

Tcav(d)L[ρ(0)]T †
cav(d) = L[ρ(0)]. (S46)

Similarly, we write the second order term of (S44) as:

Tcav(d)L[L[ρ(0)]]T †
cav(d) = Tcav(d)[−

i
h̄
[H,L[ρ(0)]]+κ ∑

j=0,±
(2a jL[ρ(0)]a†

j −a†
ja jL[ρ(0)]−L[ρ(0)]a†

ja j)]T †
cav(d). (S47)

Using now the same relations as above and Eq. (S46) leads to:

Tcav(d)L[L[ρ(0)]]T †
cav(d) = L[L[ρ(0)]]. (S48)

Repeating the same procedure for all the higher order terms leads to:

Tcav(d)ρ(t)T †
cav(d) = ρ(t), (S49)

which can also be shown by using Eq. (2.4) of Ref. [S20].
One can then show that 〈T †

cav(d)J±Tcav(d)〉= e∓2idqc〈J±〉=Tr(T †
cav(d)J±Tcav(d)ρ(t))=Tr(J±Tcav(d)ρ(t)T †

cav(d))=Tr(J±ρ(t))=
〈J±〉, where we have used the invariance of trace under cyclic permutations, and the relations above. Since e∓2idqc〈J±〉= 〈J±〉 for
any d in the 1D space of the problem, we have 〈J±〉= 〈Jx〉= 〈Jy〉= 0 during dynamical evolution.

To show that 〈Jz〉= 0, we first note that the same procedure as above leads from Pρ(0)P−1 = ρ(0) to Pρ(t)P−1 = ρ(t). We
then have 〈P−1JzP〉=−〈Jz〉= Tr(P−1JzPρ(t)) = Tr(JzPρ(t)P−1) = Tr(Jzρ(t)) = 〈Jz〉, which leads to 〈Jz〉= 0 during dynamical
evolution.

Finally, we note that for the dissipative evolution, in contrast to the unitary case, d(δn+δN)/dt 6= 0 (see Eq. (S51)), meaning
the total momentum is not conserved, even though 〈δn〉 = 〈δN〉 = 0. However, the continuous translational symmetry of
the state is still preserved during temporal evolution, as ρ(t) = T †

cav(d)ρ(t)Tcav(d), because Tcav(d)HcavT †
cav(d) = Hcav and

Tcav(d)a jT †
cav(d) = eiφ j a j, for j = 0,±. Continuous symmetry operators of this type were discussed also in Ref. [S20].

TEMPORAL EVOLUTION OF THE VARIANCES FOR Hcav

We now discuss qualitatively the consequence of [Hcav,δn+δN] = 0 on the behavior of the variances of the δn+δN, δn and
δN operators by looking at their temporal evolution, described by Eqs. (S7) and (S8). The operator δn+δN is given by a zero
matrix at t = 0. In the unitary case, 〈δn+δN〉 remains zero for all time, which can be seen from taking the expectation value of:

d(δn+δN)

dt
=

i
h̄
[Hcav,δn+δN] = 0. (S50)

Using the identity [A,BC] = [A,B]C+B[A,C] cyclically, the unitary temporal evolution gives also zero values for the powers of
the δn+δN operator at all t, which means that all moments of this operator are also zero at all t. If one includes the cavity photon
dissipation into the picture, the Lindblad-type evolution gives:

d(δn+δN)

dt
=−2κδn. (S51)
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(a) (b)

FIG. S2. Temporal evolution of the variances for the unitary and dissipative case with κ = 5ωR for the ring cavity Hamiltonian Hcav. (a) Variance
of δn+δN for the unitary (orange) and κ = 5ωR case (blue). (b) Variance of δn for the unitary (orange) and κ = 5ωR (red) case, along with the
variance of δN for the unitary (light blue) and κ = 5ωR (dark blue) case. Simulation parameters: N = 8, (η , ∆̄c, ∆̄′c, U0)= (40, 110, −45, 10)ωR,
with h̄ = 1.

As 〈δn〉= 0 for all t due to the parity symmetry of the Hamiltonian, the 〈δn+δN〉 will also vanish in the dissipative case. For
the variance, we look at the evolution of (δn+δN)2, described by:

d(δn+δN)2

dt
= 2κ(n++n−)−4κ(δn+δN)δn. (S52)

The expectation values of the operators on the right hand side no longer vanish, which means 〈(δn+δN)2〉 no longer vanishes,
leading to a nonvanishing variance of δn+δN in the dissipative case.

Fig. S2a) shows the behavior of the δn+δN variances in the case of unitary and dissipative evolution. In the unitary case, the
variance vanishes (see Eq. (S50)), while in the dissipative case the variance increases almost linearly, indicating that the random
dissipation of photons from the cavity increases the overall noise for both the photonic and atomic variables.

The temporal evolution of the δn and δN operators is correlated due to [Hcav,δn] = −[Hcav,δN]. In the unitary case the
evolution of the δn and δN operators is related by:

dδn
dt

=
i
h̄
[Hcav,δn] =− i

h̄
[Hcav,δN] =−dδN

dt
, (S53)

which, upon integration over t, leads to δn =−δN for all t. This in turn means that (δn)2 = (δN)2 for all t, leading to equality of
the variances of δn and δN for all t in the unitary case (see Fig. S2b)). Smaller η’s lead to smaller 〈n0〉, 〈n±〉 and δn, meaning
that the Jz variance in the unitary case will be reduced for a smaller number of photons in the cavity.

For the dissipative case, the δn evolves as:

dδn
dt

=
i
h̄
[Hcav,δn]−2κδn, (S54)

while

dδN
dt

=
i
h̄
[Hcav,δN] =−dδn

dt
−2κδn. (S55)

For the variances in the dissipative case we look at the evolution of (δn)2, given by:

d(δn)2

dt
=

i
h̄
[Hcav,(δn)2]+2κ(n++n−)−4κ(δn)2, (S56)
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(a) (b)

FIG. S3. Simulation results for unitary evolution with HB and HB +H(2)
B . (a) Temporal evolution of 〈J2

e f f 〉 for pulsed driving switched off at
tOFF = 0.064/gmod (orange) and continuous driving (blue) for N = 80 atoms, see text. The green line represents 〈(∆Jz)

2〉 for both cases. (b)
Influence of adding the second order terms H(2)

B on the generation of entangled states for N = 10 atoms. Temporal evolution of the variables

〈J2
e f f 〉 (blue for HB, orange for HB +H(2)

B ), 〈(∆Jz)
2〉 (red for HB, green for HB +H(2)

B ) and 〈N2±〉 (purple), where N2± = a†
2±a2±. Inset:

Temporal evolution of ξ 2
gen (blue) and ξ 2

e f f (orange) for the Hamiltonian HB +H(2)
B . Horizontal dashed black line in both plots represents the

largest achievable value of 〈J2
e f f 〉.

and the evolution of (δN)2, given by

d(δN)2

dt
=

i
h̄
[Hcav,(δN)2] =−2

[
dδn
dt

+2κδn
]

δN. (S57)

where we have again used [A,BC] = [A,B]C+B[A,C]. The variances of δn and δN will no longer be equal at all t in the dissipative
case, although the temporal evolution of these operators is still coupled.

In Fig. S2b) we plot the evolution of δn and δN variances for the unitary and dissipative cases. As expected from Eq. (S53), the
variances of δn and δN are equal for the unitary case, and not equal for the dissipative case, with the variance of δN increasing
almost linearly with time, and the δn variance fluctuating around a small constant value. The reason for a relatively low δn
variance at the used parameters is the low intracavity photon number (see e.g. Fig. S5), occuring due to the laser-cavity detunings
∆̄c, ∆̄′c being much larger in absolute value than the cavity linewidth.

From Eq. (S57) it is also clear that when δn is a zero matrix, which happens e.g. when there is no light in the cavity, the
variance of δN stays constant. This fact can be used to create steady state motional Dicke squeezing by turning off the pump drive
at a suitable time (see Fig. S4).

STEADY STATE DICKE ENTANGLEMENT GENERATION

In order to generate Dicke entanglement in the steady state, we move away from continuous wave (cw) driving and instead
apply a temporally tailored driving field, given by a single square pulse amplitude starting instantaneously at t = 0 and switching
off instantaneously at t = tOFF , where tOFF is the time for which strongest Dicke state entanglement is observed.

For unitary evolution with N = 80 atoms under HB, this switch off time is tOFF = 0.064/gmod , as shown in Fig. S3a). After
switching off the driving gmod , the 〈J2

e f f 〉 stays near its maximum value (black dashed line) with 〈(∆Jz)
2〉 = 0, meaning the

system is very near the ideal Dicke state. Note that we have here neglected the fact that a square-shaped driving will have in the
spectrum the Fourier components with frequencies not equal to ωmod . The undesired part of the driving spectrum can however be
readily suppressed by using a suitable window function for the pulse shape. Indeed, apparently steady state sideband momentum
distributions with peaks at discrete momentum states at a ring of radius h̄k f were measured after rapidly switching off the magnetic
field driving in the 2D experiment of Ref. [S1].
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(b)

(c)

(a)

(e)

(d)

FIG. S4. (a) Temporal evolution of the ξ 2
gen for the unitary (blue), dissipative cw (yellow) and pulsed (orange) cases with the largest entanglement

seen in our simulations. The ξ 2
gen reaches negative values, for which the ξ 2

gen < 1 criterion is not valid, for 〈J2
e f f 〉< N/2, so these points were

excluded from the plot. The temporal evolution of (b) 〈n0〉 and (c) 〈n±〉 for the cw pump (blue, dot-dashed) and the square-pulse pump (red,
solid). (d) Temporal evolution of ξ 2

e f f for the 3 cases shown in (a). (e) Temporal evolution of the number of sideband atoms for cw driving in
the cw pumped case (blue, dot-dashed) and square-pulse pump (red, solid). Simulation parameters: N = 8, (∆̄c, ∆̄′c, U0) = (110, −45, 10)ωR,
with h̄ = 1. Unitary case: η = 40ωR, dissipative case: η = 50ωR, κ = 5ωR. The pulse starts at t = 0 and is turned off instantaneously at
tOFF = 0.75/ωR.

For the dissipative evolution with κ = 5ωR, N = 8 atoms under Hcav, this switch off time is tOFF = 0.75/ωR, see Fig. S4a).
After switching off the laser pump, the light field inside the cavity drops to zero in a time ∼ 1/κ (see Fig. S4b,c). In contrast, the
atoms are left with a given momentum state distribution, and their kinetic energy at a constant value, as the light-matter interaction
vanishes and there are no other channels for energy exchange in the system, since interatomic collisions and atom losses are
neglected in our model. Indeed, ξ 2

gen stays at a steady-state value of 0.18, see Fig. S4a), which is also the lowest value attained for
continuous driving. The lowest value attained in our simulations for the unitary case is ξ 2

gen = 0.03.
To compare to the experimental results of Ref. [S18], we introduce ξ 2

e f f , given by:

ξ 2
e f f =

(〈N++N−〉−1)〈(∆Jz)
2〉

〈J2
e f f 〉−〈N++N−〉/2

, (S58)

where the number of atoms in the sideband Dicke state has been postselected [S21], by replacing N with 〈N++N−〉 in ξ 2
gen.

As shown in Fig. Fig. S4e), the population of sideband atoms 〈N++N−〉 initially increases and then oscillates in time for cw
pumping, while for the square pulse the number stays at a constant value of 〈N++N−〉 ≈ 5. For the square pulse case, the
effective Dicke entanglement stays in our model at a constant value of ξ 2

e f f = 0.08 (-11 dB), which is comparable to -11.4 dB of
Ref. [S18], see Fig. S4d).

For both models the random collisions of the atoms in a BEC were neglected. The influence of such random collisions on the
lifetime of motional state multiparticle entanglement in a BEC is currently under investigation.

SUPPRESSION OF HIGHER ORDER SIDEBAND EXCITATION

Note that in writing the ansatz (S2), we have neglected the Fourier components with spatial periodicity of Λc/2, Λc/3, ... in the
atomic field, as was also done e.g. in Refs. [S12, S22]. In a transversely pumped Fabry-Perot cavity, the occurence of these higher
order components in ψ(x) is suppressed by the excitation of effectively only a single longitudinal optical mode. This leads to a
preference of the atoms to bunch into the optical lattice with the spatial periodicity set by the longitudinal cavity mode. Similarly,
in the setup for Hcav, the suppression of higher order Fourier components of ψ(x) is done by Fourier filtering of the intracavity
light, which again leads to the preference for formation of an atomic field with periodicity Λc. Indeed, taking the self-organized
potential depth in our calculations to be equal to h̄U0〈n++ n−〉 ≈ 1h̄ωR (see Fig. S5i)), and the atomic kinetic energy to be
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h̄ωR〈N++N−〉 ≈ 5h̄ωR (see Fig. S4e)), the ratio of the potential depth to kinetic energy is smaller than unity, which indicates
weak localization of the atoms [S23]. This relatively shallow potential means that the atomic field should not be deformed with
respect to the shape of the self-organized optical lattice, and the Eq. (S2) should be a good ansatz for the atomic field operator.

In contrast, the excitation of higher order sidebands in the experiment of Ref. [S1] is precluded only for 〈N0〉 � 〈N±〉. To
clarify this, we first write the second order atomic field operator as:

ψ(r) =
1√
V

(
b0 +b+eik f x +b−e−ik f x +b2+e2ik f x +b2−e−2ik f x

)
. (S59)

Integration of the corresponding interatomic scattering term of the Hamiltonian,
∫

d3rψ(r)†ψ(r)†ψ(r)ψ(r), over the volume of
the cloud, yields here the terms containing the second order sideband operators:

b†
2+b†

2+b2−b2−+b†
2−b†

2−b2+b2++2b†
0b†

0b2+b2−+4b†
2+b†

2−b2+b2−+4b†
2+b†

−b2+b−+4b†
0b†

+b2+b− (S60)

+4b†
+b†

2+b2+b++4b†
+b†
−b2+b2−+4b†

0b†
2+b0b2++2b†

+b†
+b0b2++2b†

0b†
2+b+b++2b†

2+b†
2−b0b0 (S61)

+4b†
2+b†

2−b+b−+4b†
2+b†

−b+b0 +4b†
0b†
−b+b2−+4b†

−b†
2−b−b2−+4b†

0b†
2−b0b2−+2b†

−b†
−b0b2− (S62)

+4b†
+b†

2−b+b2−+2b†
0b†

2−b−b−+4b†
+b†

2−b0b−. (S63)

The dispersion for momentum states is ε(k) = h̄2k2/2m, which gives for the single excitation states ε± = h̄2k2
f /2m = ε , while

for the double excitation states one has ε2± = 4h̄2k2
f /2m = 4ε . Transforming to the rotating frame with b± → b±e−iεt/h̄,

b2±→ b2±e−4iεt/h̄, and keeping only the terms resonant with the driving±h̄ωmod = 2ε , leads now to the second order Hamiltonian:

H(2)
B = ih̄gmod(b

†
0b†

2+b+b++b†
0b†

2−b−b−)+H.c.. (S64)

It is clear from the Eq. (S64) that the higher order sideband terms are small with respect to the first order terms only if the number
of single sideband excitations is much smaller than the number of ground state atoms, i.e. 〈N0〉 � 〈N±〉, which is satisfied for the
weakly excited (collisionally thin) medium of Ref. [S1].

In the results plotted in Fig. S3b), we numerically demonstrate that the second order terms increase the ξ 2
gen parameter for

the two first order sidebands, by increasing 〈(∆Jz)
2〉 and reducing 〈J2

e f f 〉. However, the ξ 2
e f f parameter still reaches quite small

values (at short times after switching on the driving). We note here that it may turn out to be possible to filter out the higher order
excitations in experiment, e.g. by judiciously tailoring the a(t) or by removing the atoms in the second order modes from the
self-organized lattice, which is a highly intriguing topic for future research, given the very large values of 〈J2

e f f 〉 reached for the
results of Fig. 2 of the main text.

EXPERIMENTAL DESIGN OF THE RING CAVITY SETUP

To estimate the attainability of Dicke squeeezing for realistic parameters, we first note the experimentally available κ values of
2π×0.13 MHz [S24] and 2π MHz [S25]. Also, in state of the art experiments, cloud sizes for cigar-shaped BECs can be on
the order of ∼ 250 µm [S26], which limits Λc to values between approximately 1-50 µm. On the short side, Λc is limited by
numerical aperture of the light collection system, while on the long side it is limited by the requirement of having at least a few
periods of the transverse pattern in a cloud.

Tuning the sideband frequency ω ′0 by varying effective cavity length L

The cavity configuration envisaged in Fig. S1a) consists of an afocal telescope in a ring cavity, such that the front focal plane of
the right lens is a distance L apart from the back focal plane of the left lens. This enables the tuning of the diffractive length of the
cavity independent of the physical cavity length and thus enables flexibility with regard to distances of the optical elements to the
BEC. In the focal plane between the two lenses, the spatial Fourier spectrum of the intra-cavity field at the position of the BEC is
available for spatial filtering. The filter is transmitting the on-axis mode and the off-axis spatial sidebands at a particular transverse
wavenumber qc. The schematic with two intracavity lenses is conceptionally the simplest, however, to minimize Fresnel losses
the system may be implemented using curved mirrors (see below).

The sideband cavity mode wavevector k′0 (with length k′0 = 2π/λ ′0) is related to the on-axis cavity mode wavevector k0 = k0ẑ
(with length k0 = 2π/λ0) via the relation k′0 = k0 +qc, where qc = qcx̂ (with length qc = 2π/Λc) is the transverse component
of the sideband mode wavevector, which is in our case selected by Fourier filtering (see Fig. S1a)). For a ring cavity without
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the intracavity lenses, the dispersion relation of the on-axis modes is ω0 = ck0, while for the sideband with qc it is ω ′0 = ck′0 =
c(k2

0 +q2
c)

1/2 = ω0(1+q2
c/k2

0)
1/2.

For the cavity with two intracavity lenses of same focal length f, the diffractive length is given by L (see Fig. S1a), where L is
also the combined distance of the two lenses from the 4f configuration. In both the cavity with and without the intracavity lenses,
the phase difference between the selected sideband mode and the on-axis mode after one round trip of duration Lcav/c through the
cavity is given by δφ = (ω ′0−ω0)Lcav/c, where Lcav is the length of the cavity. On the other hand, the diffraction of the sideband
mode through the cavity with a diffractive length L leads, in the paraxial limit (valid for small qc/k′0), to a diffractive phase shift
with respect to the on-axis mode of δφ ≈ q2

cL/2k′0 = q2
ccL/2ω ′0, see e.g. Eq. (2) of Ref. [S9]. Equating the two expressions for

the phase shift after one round trip through the cavity, the frequencies ω ′0 and ω0 are in this case related via the relations (valid for
small qc/k′0):

ω0 ≈ ω ′0

(
1− q2

cc2

2ω ′20

L
Lcav

)
, ω ′0 ≈

ω0

2

(
1+

√
1+

2q2
c

k2
0

L
Lcav

)
. (S65)

The frequency ω ′0 of the cavity mode with transverse wavevector qc, selected by Fourier filtering, can thus be tuned relative to the
on-axis mode frequency ω0, by translating the position of the intracavity lenses with respect to the 4f configuration, which changes
the effective cavity length L. In the case when L = 0 (4f condition perfectly satisfied), all sidebands have equal frequencies, see
e.g. Ref. [S27]. On the other hand, for L = Lcav (no intracavity lenses), we regain the above stated dispersion relation by a Taylor
expansion for small qc/k′0, which gives ω ′0 ≈ ω0(1+q2

c/2k2
0).

We note here that the cavity mirrors might need to be slightly concave to allow intracavity propagation of sidebands with
a slight tilt from the cavity axis in a system of finite extent. The stability of such cavities has been demonstrated e.g. in Refs.
[S28, S29], where Fabry-Perot cavities were used for experimental measurements of transverse self-organization.

Estimating the threshold for realistic parameter values

To start, we take the relevant on-axis mode of the ring cavity to be detuned by ∆a = 2π × 50 GHz from the 87Rb D2 line
(ωRb = 2π × 384.23 THz, λRb = 780 nm, transition linewidth Γ = 2π × 6.066 MHz, recoil frequency ωr = 2π × 3.77 kHz).
Taking the cavity length of Lcav = 20 cm and the effective cavity length of L = 0.18 mm (i.e. very near the perfect 4f condition),
the frequency difference of the on-axis mode and the sideband with Λc = 30 µm is equal to ω ′0−ω0 = 2π×116.89 MHz, which
is an order of magnitude smaller than the free spectral range of this ring cavity, given by 2π× c/Lcav = 2π×1.5 GHz.

In deriving Hcav we approximate the atom-cavity coupling g0 for all three cavity modes to be equal, which is a good
approximation in this case, as the mode frequencies and their volumes at the location of the atoms are approximately equal.
Allowing for a reduction of the cavity finesse by the intracavity optics in the 4f configuration (“bad cavity" regime), we take
κ = 2π×100 MHz and g0 = 2π×80 kHz, and get U0 = g2

0/∆a = 2π×0.128 Hz.
The transverse pattern recoil frequency ωR can be related to the optical transition recoil frequency ωr via the relation

ωR = ωrλ 2
Rb/Λ2

c = 2π × 2.55 Hz, and we take the number of atoms to be N = 5× 105. Finally, tuning the laser frequency at
∆̄′c =−κ (with ∆′c =−2π×99.94 MHz), we get ∆̄c = 2π×16.89 MHz, and the critical pump rate of ηc = 2π×12.65 GHz.

Following Ref. [S30], the detuned saturation parameter of the intracavity beam is given by s∆ = I/Is/[1+ (∆a/Γ)2] =
g2

0〈n0〉/(∆2
a +Γ2), which gives for the threshold intracavity zero-order light intensity Ic = g2

0N|αc
0 |2Is/Γ2 = 6.76 mW/cm2.

The number of zero-order photons per atom at threshold can be estimated from Eq. (S30) to be equal to |αc
0 |2 = 〈n0〉/N =

η2
c /N/(∆̄2

c +κ2) = 0.031, which is comparable to the results in Fig. S5.
We note at the end of this section that it may be possible to avoid the “bad cavity" parameters in a state-of-the-art experiment,

by replacing the intracavity lens-mirror pairs by suitably curved mirrors. This would reduce the scattering losses caused by finite
reflectivity of the lens elements, and thus lead to an increase of the cavity finesse as compared to the system with intracavity
lenses, which should benefit both the reduction of κ and the increase of g0. There will be other experimental challenges which
will need consideration and engineering efforts, such as the losses at the Fourier filtering stage and the finite extension of the
medium and beam.

LIMITATIONS FOR THE NUMERICAL SIMULATIONS WITH Hcav

When solving the Schrödinger and master equations for Hcav numerically, we truncate the infinite-dimensional Fock space of
the photonic degrees of freedom into a finite-sized Fock space. This limits the maximal pump strength η that can be used in our
simulations, as higher pump rates will naturally lead to larger 〈n0〉 and 〈n±〉 values, such that higher dimensional photonic Fock
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FIG. S5. Comparison of the temporal evolution under Hcav of relevant system observables for the case when the state with maximal photon
number in all modes is |4〉0|3〉+|3〉− (red, solid) and the case when the state with maximal photon number in all modes is |5〉0|3〉+|2〉− (blue,
dashed), see text for details. The evolution of observables for the unitary case with η = 40ωR: (a) 〈(∆Jz)

2〉, (b) 〈J2
e f f 〉, (c) 〈n0〉, (d) 〈n±〉 and (e)

ξ 2
gen. The evolution of observables for the dissipative case with η = 50ωR: (f) 〈(∆Jz)

2〉, (g) 〈J2
e f f 〉, (h) 〈n0〉, (i) 〈n±〉 and (j) ξ 2

gen. Simulation
parameters: N = 8, (∆̄c, ∆̄′c, U0, κ) = (110, −45, 10, 5)ωR, with h̄ = 1.

spaces are needed to correctly capture the system dynamics. The limits of the calculations are in our case set by the size of the
working memory of the computational nodes.

To demonstrate the numerical accuracy of the plots in the main text, we have compared the results for the dynamical evolution
of the relevant observables for the case where the maximal photon number state in all modes is |4〉0|3〉+|3〉−, to the case with the
same total maximal photon number but where the state with the maximal photon number in all modes is |5〉0|3〉+|2〉−, both at
N = 8 atoms, and at largest η used in the unitary and dissipative cases.

In Fig. S5 we compare the two Fock space truncations by plotting the temporal evolution of relevant variables for the maximum
η values used in the unitary (η = 40ωR) and dissipative (η = 50ωR) cases of the main text. The plots confirm that the truncation
of Fock space where the state with the maximal number of photons in each mode is |4〉0|3〉+|3〉−, accurately describes the
dynamics in the simulated time interval.

In the unitary case the evolution of both the atomic and photonic variables exhibit fast oscillatory motion, a signature of Vacuum
Rabi oscillations occuring in the quantum electrodynamic treatment of light-matter interaction of atoms in a cavity [S31]. In the
dissipative case with κ = 5, these fast oscillations are averaged out. However, the slow oscillations, a signature of the sloshing
dynamics where atoms slosh around the minima of the dynamical potential and periodically amplify the transverse patterns [S13],
still persist.
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