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Abstract
Probabilistic Simple Temporal Networks (PSTN) represent
scheduling problems under temporal uncertainty. Strong con-
trollability (SC) of PSTNs involves finding a schedule to a
PSTN that maximises the probability that all constraints are
satisfied (robustness). Previous approaches to this problem
assume independence of probabilistic durations, and approx-
imate the risk by bounding it above using Boole’s inequality.
This gives no guarantee of finding the schedule optimising
robustness, and fails to consider correlations between prob-
abilistic durations that frequently arise in practical applica-
tions. In this paper, we formally define the Correlated Simple
Temporal Network (Corr-STN) which generalises the PSTN
by removing the restriction of independence. We show that
the problem of Corr-STN SC is convex for a large class of
multivariate (log-concave) distributions. We then introduce
an algorithm capable of finding optimal SC schedules to Corr-
STNs, using the column generation method. Finally, we val-
idate our approach on a number of Corr-STNs and find that
our method offers more robust solutions when compared with
prior approaches.

1 Introduction
Simple Temporal Networks with Uncertainty (STNU) (Vi-
dal and Ghallab 1996) are graphs used to represent and rea-
son over scheduling problems involving uncertain durations.
A solution to an STNU is a schedule at which to execute a
number of time-points, such that the temporal constraints are
satisfied. STNUs capture uncertainty in the problem through
the inclusion of set-bounded contingent links, over which
the operator has no control. Continuous probability distri-
butions are a more accurate representation of duration un-
certainty; Probabilistic Simple Temporal Networks (PSTNs)
model the uncertain duration with a probability density func-
tion (Tsamardinos 2002; Fang, Yu, and Williams 2014).

When dealing with uncertainty in temporal networks, it
is typical to classify the problem in terms of controllability
(Vidal 1999), which states how sophisticated an execution
strategy is allowed. Strong Controllability (SC) asks if there
is a single schedule robust to all uncertain outcomes, i.e.
all constraints are satisfied no matter what happens. How-
ever, PSTNs are rarely strongly controllable as the continu-
ous probability distributions are unbounded.
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A PSTN can be reduced to a strongly controllable STNU
through truncating the distributions over durations. How-
ever, this discards some of the probability mass of the dis-
tribution, thus reducing the robustness of the schedule. A
variety of approaches have been introduced for solving SC
of PSTNs while maximising robustness (Tsamardinos 2002;
Fang, Yu, and Williams 2014; Santana et al. 2016; Lund
et al. 2017). However, these approaches either bound above
the risk using Boole’s inequality which offers no guarantee
on optimising robustness; or solve a generic non-linear opti-
misation problem which can be computationally expensive.
Furthermore, all prior approaches assume independence of
uncontrollable outcomes, which does not always hold. As
an example consider a network of drones to be used in the
delivery of medical supplies to rural communities (Filippi
et al. 2022). The drone must fly between locations, picking
up and dropping off supplies before they expire. Each leg of
the journey is subject to correlated temporal uncertainty as
a result of weather factors such as wind speed and direction.
In vehicle routing problems correlation has been shown to
exist in travel times (Bakach et al. 2021), with coefficients
as high as 0.75 (Park and Rilett 1999).

In this paper we introduce the Correlated Simple Tem-
poral Network (Corr-STN) which generalises the PSTN by
removing the assumption of independence. We show that the
problem of optimising robustness is convex for a wide range
of log-concave distributions. This allows us to solve Corr-
STN SC using one of the many available convex optimisa-
tion algorithms. We introduce one such approach leveraging
the column generation method (Gondzio, González-Brevis,
and Munari 2016), in which we iteratively refine and opti-
mise on an approximation of the distributions. This approach
provides the decision maker the choice to trade-off numeri-
cal time spent with an acceptable optimality guarantee.

We test our approach on a number of drone delivery tem-
poral planning problems and compare results against a lin-
ear program (LP) using Boole’s inequality (Santana et al.
2016) and our approach assuming independence. We then
perform Monte-Carlo simulations, simulating the execution
of each schedule on the Corr-STN and compare the robust-
ness (the total probability of success) and accuracy of solu-
tions. We show that considering the correlations offers more
robust schedules than using Boole’s or assuming indepen-
dence. Although the robustness benefit of considering corre-

1

This is a peer-reviewed, accepted author manuscript of the following conference paper: Murray, A, Arulselvan, A, 
Cashmore, M, Roper, M & Frank, J 2023, A column generation approach to correlated simple temporal networks. 
in S Koenig, R Stern & M Vallati (eds), Proceedings of the International Conference on Automated Planning and 
Scheduling, vol. 33, AAAI Press, Palo Alto, CA, pp. 295-303. https://doi.org/10.1609/icaps.v33i1.27207



lations varied substantially, we typically experienced greater
improvements when the optimal robustness was low. When
the optimal robustness was less than 0.5, considering corre-
lation offered an average robustness improvement of 8.51%
over using Boole’s, and 3.50% over assuming independence.
We also highlight that while Boole’s is a bounding approx-
imation of the true robustness, it can be grossly inaccurate,
whereas assuming independence can be more accurate but
is not guaranteed to give a conservative estimate of robust-
ness. On the other hand, considering the correlation gives
an accurate approximation of the true robustness but is more
computationally expensive versus the other two approaches.

In Section 2 we introduce the definitions for PSTN SC. In
Section 3 we place the contribution of this paper in context
with respect to related work. In Section 4 we motivate the
importance of considering correlations through reference to
a toy example and formally define the Corr-STN. In Sec-
tion 5 we highlight how Corr-STN SC can be encoded as a
convex optimisation problem. In Section 6 we present one
possible solution approach utilising the column generation
method. In Section 7 we describe the setup and results of
our experimental evaluation. We conclude and address av-
enues for future research in Section 8.

2 Background
A Simple Temporal Network with Uncertainty (STNU) (Vi-
dal and Ghallab 1996) is a graph in which the nodes cor-
respond to time-points and the edges (links) correspond to
durations between the time-points. In STNU semantics, a
distinction is made between contingent links, for which the
duration of the interval is uncertain, and requirement links
for which we can choose the duration.
Definition 1 (STNU). A STNU is a tuple, SU =
⟨Tc, Tu, C,G⟩ where bi ∈ Tc is the set of controllable time-
points and ei ∈ Tu is the set of un-controllable time-points,
such that ti ∈ {Tc ∪ Tu}. The set C is the set of tempo-
ral requirement constraints between two time-points, nor-
mally written in the form c(tj , ti) = tj − ti ∈ [lc,ij , uc,ij ].
The set G is the set of contingent links given in the form
g(ei, bi) = ei− bi ∈ [lg,i, ug,i]. Here lc∨g, uc∨g is the upper
and lower limits for the constraint or contingent link respec-
tively. Let s (b) ∈ R+ be the assignment of a value to the
controllable time-point b. Let o (e) ∈ R+ be the value ob-
served by an uncontrollable time-point e. A projection of a
contingent link gi is ωi := o(ei)− s(bi).

The key challenge is that the set of contingent links may
take any random value within their bounds, and therefore an
effective execution strategy must consider all possible pro-
jections for each contingent link.

Strong Controllability Controllability of an STNU can be
separated into 3 categories (strong, dynamic, weak) and can
be considered as a way of classifying how much control is
needed to satisfy all constraints (Vidal 1999).
Definition 2 (Strong Controllability). Denote Ω, the space
of outcomes of the contingent links: Ω = ×g∈G[lg, ug]. Let
the schedule s be the assignment: s(b), ∀b ∈ Tc. An STNU S
is said to be strongly controllable if: ∃s | ∀ω ∈ Ω, s satisfies
all constraints.

SC is a highly desirable property, as it offers the advantage
that a fixed-time schedule can be computed offline which
will work regardless of how the contingent links are realised
at execution.

Without loss of generality, the requirement constraints can
be separated into the set of controllable constraints Cc in the
form: c(bj , bi) = bj − bi ∈ [lc,ij , uc,ij ] and uncontrollable
constraints Cu in the form: c(ej , bi) = ej− bi ∈ [lc,ij , uc,ij ]
or c(bj , ei) = bj − ei ∈ [lc,ij , uc,ij ], such that we can write
uncontrollable constraints as:

c(ej , bi) = bj + ωj − bi ∈ [lc,ij , uc,ij ] (1)
c(bj , ei) = bj − bi − ωi ∈ [lc,ij , uc,ij ] (2)

To check whether an STNU S is strongly controllable, it is
sufficient to check that the requirement constraints are satis-
fied for the worst possible projection of the contingent links.
For constraints of the form (1) we have:

max
ωj∈[lg,j ,ug,j ]

c(ej , bi) := ug,j ≤ bi − bj + uc,ij (3)

min
ωj∈[lg,j ,ug,j ]

c(ej , bi) := lg,j ≥ bi − bj + lc,ij (4)

And for constraints of the form (2):

max
ωi∈[lg,i,ug,i]

c(bj , ei) := ug,i ≤ bj − bi − lc,ij (5)

min
ωi∈[lg,i,ug,i]

c(bj , ei) := lg,i ≥ bj − bi − uc,ij (6)

For further details on solving STNU SC, we refer the reader
to a relevant paper (Morris and Muscettola 2005; Cimatti,
Micheli, and Roveri 2015).

Probabilistic Simple Temporal Networks When suffi-
cient data is available, it is more accurate to model the space
of projections of a contingent link by a probability density
function. This allows the scheduling process to focus on the
durations most likely to be realised at execution. Probabilis-
tic Simple Temporal Networks (PSTN) were introduced in
(Tsamardinos 2002; Fang, Yu, and Williams 2014).

Definition 3 (PSTN). A PSTN is a tuple, SP =
⟨Tc, Tu, C,D⟩, where Tc, Tu and C are as per the STNU.
The set of probabilistic constraints D, are in the form
d(ei, bi) = ei − bi = Xi, where Xi is a random variable
with a set of outcomes Ωi, probability density function f(ωi)
and cumulative probability function F (z) = P (Xi ≤ z).

PSTN SC and Risk in Literature It is impossible to find
a schedule that will work for all values in an unbounded dis-
tribution. As a result, it is typical to truncate the distribution
by neglecting the extreme, unlikely outcomes in the tails,
i.e: Ω∗i = [ld,i, ud,i]. If we denote by d∗(ei, bi) the trans-
formed probabilistic constraint with value defined by ran-
dom variable X∗i and set of outcomes Ω∗i, then performing
this transformation transforms the probabilistic constraint
to a contingent link, i.e. d∗(ei, bi) = ei − bi = X∗i ∈
[ld,i, ud,i] ≡ g(ei, bi). Applying this transformation to all
d ∈ D is equivalent to transforming the PSTN, SP to an
equivalent STNU, S∗U . However the schedule is now only
robust to the outcomes considered in S∗U (see Figure 1).
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Figure 1: Figure showing risk associated with squeezing a
probabilistic constraint to an equivalent contingent link.

The probability mass excluded by performing this transfor-
mation is the risk of S∗U , while the probability mass con-
sidered is the robustness. We refer to Fang, Yu and Williams
(2014) for a definition of robustness and risk, written in its
equivalent form below.

Definition 4 (Robustness and Risk). We denote ΩR ⊆ Ω
and c(ω) the value of each constraint c ∈ C given an out-
come ω. If ω ∈ Ω and for every c ∈ C, c(ω) ∈ [lc,ij , uc,ij ]:
then ω ∈ ΩR. The robustness Γ, is P (ΩR), while the risk ∆,
is P (Ω̄R), where Ω̄R denotes the complement of the set ΩR.

Since the joint probability functions, P (ΩR) and P (Ω̄R)
may be non-trivial, it is typical to treat each probabilistic
constraint independently, such that the robustness can be
evaluated: Γ =

∏
d∈D P (ld ≤ X ≤ ud) and the risk:

∆ = 1 −
∏

d∈D(P (ld ≤ X ≤ ud)). The values of ud

and ld are determined through the SC relationships, equa-
tions (3) to (6), by substituting lg, ug for ld, ud. To permit
a linear formulation, it is possible to bound above the risk
using Boole’s inequality. The robustness can then be ap-
proximated through: Γ =

∑
d∈D (F (ud)− F (ld)), while

the risk: ∆ =
∑

d∈D (1− F (ud) + F (ld)).

3 Related Work
Tsamardinos (2002) takes a risk minimisation approach to
PSTN SC, and makes use of assumptions to leverage Se-
quential Quadratic Programming. Santana et al. (2016) and
Lund et al. (2017) make varying assumptions to permit the
use of LPs to allocate risk in PSTNs. Santana et al. pose and
solve an LP using Boole’s inequality and piecewise linear
approximations of the cumulative density function (CDF);
Lund et al. iteratively pose and solve an LP using non-
bounding approximations of the probability mass on the tails
of the probability distributions.

Fang et al. (2014) introduced the CC-PSTN: by enforc-
ing an allowable tolerance on the risk as a constraint in the
system. Some other objective function could then be opti-
mised, while ensuring that the schedule risk does not exceed
the bound. In some instances, the risk required to enforce SC
can be deemed too high. Yu et al. (2015) extend the chance-
constrained framework to the Relaxable CC-PSTN by per-
mitting the use of soft constraints which can be relaxed. The
relaxable CC-PSTN is solved by Yu et al. using a nonlinear

solver, combined with a conflict detection mechanism based
on identification of negative cycles in STNUs.

To the best of the authors’ knowledge, all previous ap-
proaches to PSTN SC assume independence (Lund et al.
2017; Fang, Yu, and Williams 2014; Yu, Fang, and Williams
2015; Santana et al. 2016; Tsamardinos 2002), and either
use Boole’s inequality to bound above the risk (Fang, Yu,
and Williams 2014; Yu, Fang, and Williams 2015; Santana
et al. 2016), or solve a generic non-linear optimisation prob-
lem (Tsamardinos 2002; Wang and Williams 2015). Using
Boole’s inequality permits the use of LPs, however it is not
guaranteed to return the optimal solution maximising ro-
bustness (see Section 4); procedures used to solve generic
non-linear optimisation problems offer no guarantee on ei-
ther optimality or computational efficiency.

The main contributions of this paper is that we show in
Section 5 that PSTN SC can be modelled as a convex opti-
misation problem enabling globally optimal, robust sched-
ules to be found. We suggest one such approach to solve
this problem in Section 6, that has been employed in convex
optimisation literature. Rather than using piecewise linear
approximations of the CDF which is not convex (see San-
tana (2016)), we form inner approximations of the negative
log of the CDF which is convex. These inner approxima-
tions are analogous to piecewise linear approximations in
one dimension, however generalise to polyhedral approxi-
mations at higher dimensions. This makes it possible to ap-
proximate multivariate random variables and consequently
consider correlations in the optimisation, which we motivate
in the coming section.

4 Motivating Example
We motivate our approach by discussing the toy example
given in Figure 2. Consider a drone used in the transporta-
tion of medical supplies. After being notified of a potential
delivery, the drone must fly from a depot to a location to pick
it up. The travel time of this leg of the journey (e1 − b1) is
described by the random variable X1 ∼ N (60, 10). After it
has collected the supplies it must fly to the drop off point and
deliver the supplies within the required time-frame (between
0 and 160 minutes after setting out e2 − b1). This leg of the
journey (e2 − b2) can also be described by the random vari-
able X2 ∼ N (100, 25). We want to find the schedule that
maximises robustness Γ. We have two uncontrollable con-
straints c(b2, e1) and c(e2, b1). From (1) and (2) we have:

c(b2, e1) ≡ 0 ≤ b2 − b1 −X1 ≤ ∞
c(e2, b1) ≡ 0 ≤ b2 +X2 − b1 ≤ 160

The only decision variable is the difference between the time
assigned to b2 and b1. W.l.o.g. we assume b1 = 0.

Boole’s Inequality Using Boole’s inequality we can for-
mulate the objective as:

max
b2
{P (b2−∞ ≤ X1 ≤ b2)+P (−b2 ≤ X2 ≤ −b2+160)}

If we consider first that b2 = 75 then we have:

(FX1
(75)− FX1

(−∞)) + (FX2
(85)− FX2

(−75)) = 1.21
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b1 e1 b2 e2
Travel
N (60, 10)

Collect
[0,∞]

Travel
N (100, 25)

Deadline
[0, 160]

Figure 2: Image showing toy example (above) and compar-
ison of robustness using Boole’s versus actual robustness
with varying correlation coefficient ρ (below).

Next we consider that b2 = 67 so we have:

(FX1
(67)− FX1

(−∞)) + (FX2
(93)− FX2

(−67)) = 1.14

Using Boole’s, b2 = 75 is clearly the better schedule.

Joint Outcome with Independence If we consider the
joint outcome with independence then the objective is:

max
b2
{P (b2 −∞ ≤ X1 ≤ b2)P (−b2 ≤ X2 ≤ −b2 + 160)}

For b2 = 75:

(FX1
(75)− FX1

(−∞)) (FX2
(85)− FX2

(−75)) = 0.26

And b2 = 67:

(FX1
(67)− FX1

(−∞)) (FX2
(93)− FX2

(−67)) = 0.30

Considering the joint outcome, the optimal solutions are
switched with the schedule b2 = 67 offering a 15% increase
in robustness versus the solution returned using Boole’s in-
equality. This effect is observed in greater detail in Figure 2.

Joint Outcome with Correlation We will now show that,
even considering the joint outcome with independence is not
necessarily guaranteed to return optimal solutions if the cor-
relation is experienced when the schedule is executed.

We return to the drone example and consider that the
travel times X1 and X2 are correlated due to uncertainty
in wind speed. We plotted the robustness for varying b2 and
varying correlation coefficient ρ in Figure 2. Considering a
fixed schedule of b2 = 67, with ρ = 0 we have indepen-
dence and consequently the robustness is as per the previous
section Γ = 0.30. On the other hand, if the two variables
have correlation ρ = 0.9 then the robustness Γ = 0.39. If we
were to assume independence in the optimisation then this is
the best robustness we can hope for. It is clear from Figure
2, that better robustness can be achieved through scheduling

b2 five minutes earlier (b2 = 62) such that the robustness
Γ = 0.44. Considering correlation in the scheduling process
offers a 12.8% improvement in robustness.

To explain this difference we refer to Figure 3, which
shows a contour plot of the joint probability density func-
tion of X = [X1, X2]. With b2 = 67, the robustness is given
by the volume beneath the contour plot within a rectangle
with dimensions −∞ ≤ X1 ≤ 67 and −67 ≤ X2 ≤ 93
(shown by the vertical and horizontal blue lines). The di-
mensions of the box are fixed by the constant bounds, [lc, uc]
associated with each uncontrollable constraint. Finding the
schedule that optimises robustness, involves moving the box
(by changing the schedule), such that it covers as much of
the probability mass as possible. This in turn is dependent
on the underlying distribution - for which correlation may
have a significant effect. For the correlated case the opti-
mal occurs at b2 = 62, such that the rectangle has bounds
−∞ ≤ X1 ≤ 62 and −62 ≤ X2 ≤ 98 (shown by the
vertical and horizontal red lines).

Objective Accuracy It’s worth noting that if you assume
independence, you are not guaranteed to have a conserva-
tive estimate of the actual robustness. For example in Fig-
ure 2, with ρ = 0, the robustness from the model would be
Γ = 0.3. The decision maker would be expected to make
a decision based on this value, whereas in reality the ro-
bustness experienced could be much lower. If correlation
ρ = −0.9 was experienced at execution time, the actual ro-
bustness from the schedule b2 = 67 would be Γ = 0.16.
Referring to Figure 3 can offer some insight into this ef-
fect. When we solve assuming independence, the solution is
a conservative approximation of the probability mass under
the blue contour plot, enclosed within the blue box. The ac-
tual robustness is the probability mass under the red contour
plot (also within the blue box). This is not guaranteed to be
strictly less than the equivalent probability mass under the
independent pdf. While the optimal schedule for Boole’s and
correlation ρ = −0.9 are similar, the objective of Boole’s,
Γ = 1.2 offers nothing to a decision maker who has to rea-
son over the risk of the schedule. Under such circumstances
it becomes necessary to consider the correlation directly. We
now formally introduce the Corr-STN:

Definition 5 (Corr-STN). A Corr-STN is a tuple, SC =
⟨Tc, Tu, C,D,R⟩, where Tc, Tu and C are as per the PSTN.
R is the set of correlations involving a number of probabilis-
tic constraints with correlation matrix ϱ. Each r ∈ R defines
an n dimensional multivariate normal vector X ∼ (µ,Σ)
with mean vector µ and covariance matrix Σ. The set D is
the set of independent probabilistic constraints. If there are
no correlations, then the set R = ∅ and the set D is the set
of all independent probabilistic constraints as per the PSTN.

5 Corr-STN SC is Convex
In this section we show how Corr-STN SC can be formulated
as a convex optimisation problem.

Decision Variables The decision variables include the
vector of controllable time-points x, and the vector of lower
and upper bounds z (introduced below).
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Figure 3: Image showing bi-variate normal distribution
probability density function with and without correlation.

Controllable Constraints The controllable constraints
can be written in the form of two less than inequalities:
bj − bi ≤ uc,ij and bi − bj ≤ −lc,ij , such that they rep-
resent a polyhedron: Ax ≤ β, where A is the coefficient
matrix of values, Aij ∈ {−1, 1, 0}, β is the vector of bounds
βi ∈ {uc,−lc} and x is the decision variable vector.

Independent Probabilistic Constraints For each d ∈ D,
we have a number of uncontrollable constraints preced-
ing/succeeding it. From (3) to (6), we can write the uncon-
trollable constraints in the form: bi − bj + lc,ij ≤ Xj ≤
bi−bj+uc,ij and bj−bi−uc,ij ≤ Xi ≤ bj−bi−lc,ij . Conse-
quently we have the matrix inequality zd ≤ Tdx+qd, where
zd,i ∈ {ud,−ld}, Td,ij ∈ {−1, 1, 0} and qd,i ∈ {uc,−lc}.
The probability that the constraint is satisfied is given by the
probability function Fd = P (ld ≤ X ≤ ud).

Correlations For each correlation r ∈ R, we write the
nr uncontrollable constraints involved in the correlation in
the form: zr ≤ Trx + qr. The difference here is that we
have more than one random variable involved in each cor-
relation. The vector of upper and lower bounds are in the
form ur = [ur,1, . . . , ur,nr

]T and lr = [lr,1, . . . , lr,nr
]T ,

and therefore calculating the probability that the constraints
are satisfied involves calculating the joint probability func-
tion Fr = P (lr ≤ X ≤ ur), for the multivariate distribution
X ∼ N (µ,Σ) as per Definition 5.

Objective Function For each d ∈ D and r ∈ R, we know
that the lower and upper bounds ld, ud and lr, ur are directly
encoded in the vectors zd and zr which represent rows of a
vector z, such that z = [zd1 , . . . , zd|D| , zr1 , . . . , zr|R| ]

T . The
objective function is to maximise the robustness Γ giving the
following optimisation problem:

max
x,z
{
∏
r∈R

Fr

∏
d∈D

Fd | z ≤ Tx+ q, Ax ≤ β}

On Convexity Following from above, the only non-linear
function here is the robustness Γ =

∏
r∈R Fr

∏
d∈D Fd,

used in the objective. If the probability distribution of a ran-
dom vector X is log-concave, then the cumulative probabil-

ity function is also log-concave and so is any linear trans-
formation of it (Prékopa 1971, 1973). The result is that the
functions Fr and Fd are log-concave. It should be noted
that many interesting distributions contain this characteristic
(Prékopa 2003), the multivariate normal distribution being
one such family. Another important property of log-concave
functions is that the product of log-concave functions is also
log-concave, and therefore:

log

(∏
r∈R

Fr

∏
d∈D

Fd

)
=
∑
r∈R

logFr +
∑
d∈D

logFd

is concave. As a result we can reformulate the optimisation
problem as a convex one:

min
x,z
{
∑
r∈R

ϕr +
∑
d∈D

ϕd | z ≤ Tx+ q, Ax ≤ β} (7)

Where ϕr = − logFr and ϕd = − logFd.

Running Example Consider the small Corr-STN from
Figure 2. In this example, we have no controllable con-
straints, no independent probabilistic constraints and only
one correlation defining a multivariate normal distribution
X = [X1, X2]. The uncontrollable constraints associated
with the correlation are c(b2, e1) for X1 and c(e2, b1) for
X2 respectively. We encode this as:[

ur,1
ur,2

−lr,1
−lr,2

]
≤
[−1 1

1 −1
1 −1
−1 1

] [
b1
b2

]
+

[
0

160
∞
0

]
The objective is to find the value of vectors x = [b1, b2]

T ,
and z = [ur,1, ur,2,−lr,1,−lr,2]T that minimises ϕr.

6 Method
The key result of the previous section is that the problem
is convex, allowing use of a rich suite of existing solu-
tion methods. For a recent survey, we refer to Van Ack-
ooij (2020). In the coming section, we introduce one such
method that forms an inner approximation of the convex
functions ϕd and ϕr using a number of generated approxi-
mation points (hereby referred to as columns) (Fábián et al.
2018; Fábián 2021). The problem is then solved via the col-
umn generation procedure as outlined in Algorithm 1, in
which two optimisation phases are iteratively solved:
1. The Restricted Master Problem (RMP), which solves

the probability maximisation problem using the columns
generated so far (line 4).

2. A Column Generation Problem (CGP) for each func-
tion ϕd and ϕr, which finds the best new column to in-
clude in the RMP (line 7).

The results of the RMP and CGP are stored in modelR
and modelC respectively. We extract the dual values (mod-
elR.duals) from the solution to the RMP, and use them to
model the reduced cost which we set as the objective to the
CGP (modelC.objective). Since we are minimising reduced
cost, any column whose reduced cost is negative is called
an improving column. If an improving column can be found
(line 8), we set terminate to False (line 9), and add the new
column (line 10). The process then repeats until no improv-
ing column can be found.
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Algorithm 1: Algorithm for SC of Corr-STN

Input : A Corr-STN, SC

Output: An optimisation model modelR containing
a schedule that optimises robustness.

1 columns← getInitialColumn(SC);
2 terminate← False;
3 while terminate← False do
4 modelR← RMP(columns, SC);
5 terminate← True;
6 for function ∈ D ∪R do
7 modelC ← CGP(modelR.duals, function);
8 if modelC.objective < 0 then
9 terminate← False;

10 columns.add(modelC.solution)
11 end
12 end
13 end

Return: modelR

Figure 4: Inner approximation for a bivariate convex func-
tion ϕ(z). The red crosses are the approximation points
(columns) zi at which the function has been evaluated and
the black dots are the function evaluations ϕi.

Inner Approximation Note that ϕr and ϕd are the only
nonlinear functions in (7) and they are convex. For any con-
vex function ϕ, if we have enumerated sufficiently many fi-
nite points, {z1, z2, ..., zK}, referred to as base (see (Geof-
frion 1970)), in its domain, and let ϕi := ϕ(zi), then we can
approximate minϕ(z) with :

min{
K∑
i=1

ϕiλi :
K∑
i=1

λi = 1, λi ≥ 0} (8)

where K depends on the desired level of approximation (see
Figure 4). Note that from henceforth the notation i refers to
the ith column. Since the inner approximation is an over-
estimate of the convex functions ϕr and ϕd, it is a conserva-
tive approximation of the robustness Fr and Fd.

Running Example To highlight this we return to the run-
ning example. Assume that we have evaluated the function
ϕr at a number of points: li, ui for i = 1, 2, ..,K, such that

min
x,λ

∑
r∈R

Kr∑
i=1

ϕi
rλ

i
r +

∑
d∈D

Kd∑
i=1

ϕi
dλ

i
d

s.t. Ax ≤ β

Kr∑
i=1

λi
rz

i
r ≤ Trx+ qr r ∈ R (dual : πr)

Kd∑
i=1

λi
dz

i
d ≤ Tdx+ qd d ∈ D (dual : πd)

Kr∑
i=1

λi
r = 1 r ∈ R (dual : νr)

Kd∑
i=1

λi
d = 1 d ∈ D (dual : νd)

xi, λ
i ≥ 1

Figure 5: Master Problem

ϕi
r refers to ϕr(l

i, ui). The inner approximation would be: u1
r,1 ... uK

r,1

u1
r,2 ... uK

r,2

−l1r,1 ... −lKr,1

−l1r,2 ... −lKr,2


 λ1

r

...
λK
r

 ≤ [−1 1
1 −1
1 −1
−1 1

] [
b1
b2

]
+

[
0

160
∞
0

]

[ 1...1 ]

 λ1
r

...
λK
r

 = 1, λi
r ≥ 0, ϕr =

K∑
i=1

ϕi
rλ

i
r (9)

While the column: zi = [ui
r,1, u

i
r,2,−lir,1,−lir,2].

Restricted Master Problem If we form an inner approx-
imation for each independent probabilistic constraint and
correlation using (8), we can re-write (7) in its approximate
form as a linear program as shown in Figure 5. We refer
to this as the Master Problem (MP). Notice that we have
replaced the z variables in (7) with λ variables. With each
point, zi, in our base we can associate a column of coef-
ficients in the constraint matrix corresponding to the vari-
able λi (as shown in (9)). The value of the lambda variables
allow for the convex combination of the columns enumer-
ated so far. We refer Kr,Kd as the number of columns gen-
erated for each correlation r and independent probabilistic
constraint d. Likewise we refer λr as the Kr dimensional
vector of variables associated with the columns of a corre-
lation r and λd as the Kd dimensional vector of variables
associated with the columns generated for an independent
probabilistic constraint d.

K can be prohibitively large when solving the MP in Fig-
ure 5 directly. In addition, we are only interested in the
columns from our base that are in the vicinity of the op-
timal solution. The key idea is that we iteratively solve a
restricted version, that we refer to as the Restricted Mas-
ter Problem (RMP), where only a subset, {z1, . . . , zk} such
that k << K, of our base is considered. Note that the opti-
mal solution to the RMP is always feasible to the MP. For it
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to be optimal, none of the unconsidered columns in our base
would improve the objective when included in the RMP. If
no such column exists, then the optimal solution of the RMP
is also optimal to the MP.

Finding an Initial Feasible Point In order to initialise the
algorithm, we must find an initial column z0, for which the
RMP has a feasible solution. Any previous PSTN SC algo-
rithm can be used to generate a feasible point. To see this,
consider that we obtain a schedule, i.e. an assignment of a
value to all the controllable time-points: x0 ∈ Rn, which
satisfies all the constraints. The equivalent column can then
be evaluated as z0 = Tx0 + q. Many efficient PSTN SC
algorithms exist capable of finding such a feasible point, for
details on how to implement such an algorithm, we refer the
reader to the relevant paper (Tsamardinos 2002; Fang, Yu,
and Williams 2014; Santana et al. 2016; Lund et al. 2017).

Column Generation A column is said to be an improv-
ing column if the reduced cost is negative (Dantzig 1963).
Given a linear program minx{cTx | Ax ≤ b, xi ≥ 0}, any
variable xi that takes a zero value in the simplex procedure
is known as a non-basic variable. The reduced cost of in-
troducing a non-basic variable xi into the simplex basis is:
ci −AiT y, where Ai refers to column i of matrix A and y is
the dual vector associated with the constraint Ax ≤ b.

Running Example Returning to the ongoing example, we
show how to generate an improving column zk+1

r , for ϕr.
The objective coefficient would be ck+1 = ϕk+1

r . From (9),
the column of coefficients in the constraint matrix associated
with variable λk+1 is Ak+1 = [zk+1

r , 1]T and from Figure 5
the dual vector y = [πr, νr]. We can therefore find the best
improving column by minimising reduced cost, i.e. solving
the following optimisation problem.

min
zr
{ϕr(zr)− zTr πr − νr} := min

lr,ur

{− logF (lr, ur)

−[ur,−lr]
[
πur

πlr

]
− νr | ur > lr} (10)

Such that πur,i =
∑

{j:zr,j=ur,i} πr,j refers to element i

in vector πur
, where j = 1, 2, ...,m and m is the num-

ber of rows in constraint matrix zr ≤ Trx + qr. Similarly
πlr,i =

∑
{j:zr,j=−lr,i} πj refers to element i in vector πlr .

To prevent domain errors with log(0), we constrain the up-
per bound to be greater than the lower bound, ur > lr.

We refer to this as the Column Generation Problem
(CGP). We solve one CGP for all r ∈ R and d ∈ D. If
no improving column can be found for any function, at any
iteration, then it is not possible to find another variable λk+1

(and column zk+1) which will improve the objective when
entered into the simplex basis. In other words, our inner ap-
proximation already contains the optimal solution and so we
can terminate the algorithm. The convergence of this proce-
dure has been shown in (Dantzig 1963).

In order to solve (10) it is necessary to efficiently compute
the gradient vector. This can be evaluated as:

∇
(
ϕ(zr)− zTr πr − νr

)
= −∇F (lr, ur)

F (lr, ur)
−
[
πur

πlr

]

There exists efficient algorithms capable of calculating cu-
mulative probabilities of multivariate normal distributions
(e.g. (Genz 1992)). Prekopa (2013) proves it is possible to
analytically evaluate the gradient of the function F (z) for
multi-variate normal distributions using the same efficient
algorithm (Van Ackooij et al. 2010, 2011). For a formula for
the case, ∇F (l, u) which relies on the same result, we refer
the reader to (Van Ackooij et al. 2010).

Stopping Criteria Using the objectives of the RMP and
CGP’s, we can derive bounds on optimality and terminate
the algorithm when this bound falls below a certain thresh-
old. We denote M, the optimal objective to the RMP on
iteration k, is a valid upper bound to the master problem. If
Cr and Cd are the optimal solutions to the CGP associated
with correlation r and independent probabilistic constraint d
respectively on iteration k, thenM+

∑
r∈R Cr +

∑
d∈D Cd

is a valid lower bound on the optimal solution. We define
some allowable tolerance, ε. After each iteration, we check
the following condition: (UB − LB)/LB ≤ ε, and termi-
nate the algorithm when it is satisfied.

7 Experimental Evaluation
PDDL (Fox and Long 2003) problem instances were gen-
erated for a drone delivery domain. To generate Corr-STN
instances, each problem was solved using the temporal plan-
ner OPTIC (Benton, Coles, and Coles 2012). The best plan
found within 10 minutes was saved as an STN. For each
STN, we then generate 10 separate PSTN instances by sam-
pling mean and standard deviations to apply to actions. For
each PSTN, we then create 3 separate Corr-STN instances
by sampling random correlation matrices of size 2, 3 and
4. Finally TIL deadlines were then varied to generate Corr-
STN problems with a wide variety of robustness. The result
was a total of 5850 Corr-STN problem instances of which
4872 could be solved 1.

Each Corr-STN was then solved using three methods: an
SC Linear Program with Boole’s inequality (implementa-
tion of the PARIS algorithm from Santana et al. (2016)) (re-
ferred to as Boole’s); Column Generation method assuming
independence (referred to as Independent); Column Gen-
eration with correlation (referred to as Correlated). Python
was used for the implementation with Gurobi as the linear
programming optimiser, and the SLSQP solver within the
python package SciPy as the column generation solver.

Robustness To assess the robustness we simulated each
schedule, for each Corr-STN, 20,000 times and calculated
the Monte-Carlo robustness. Boole’s and independent ro-
bustness were then compared to correlated, and the percent-
age difference plotted in Figure 6a.

The improvement in robustness when we consider cor-
relation versus using Boole’s is substantial but has a wide
variance. In general, we see a significant improvement on
problems in which the optimal robustness is low with some
cases offering up to 80% improvement. The intuition for this
can be gained from Figure 3. As discussed in Section 4, the

1Source code and benchmark problems can be accessed online
at: https://anonymous.4open.science/r/corr-stn/
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Note: ΓMC and ΓTH refer to the Monte Carlo robustness, and theoretical robustness obtained from the optimisation model. The
notation b, i, c, c2, c3 and c4 refer to the results for Boole’s, independent, all correlated cases, and correlated cases of sizes 2, 3
and 4 respectively. Figures 6a and 6c are plotted against the optimal probability, as obtained from the Monte Carlo simulations
considering correlation.

(a) Plot showing % difference in Monte
Carlo robustness for different solutions:
θx,y = (ΓMC

x − ΓMC
y )/ΓMC

x × 100.
Boole’s and independent are compared to
correlated of different sizes.

(b) Plot showing % of cases solved versus
runtime for Boole’s, independent and cor-
related.

(c) Plot showing % difference in Monte
Carlo and theoretical robustness: αx,y =
(ΓMC

x − ΓTH
y )/ΓMC

x × 100. Theoretical
for independent and correlated are com-
pared to correlated Monte-Carlo.

Figure 6: Experimental results for (a) robustness, (b) runtime and (c) accuracy.

problem of Corr-STN SC involves moving a box (by varying
the schedule) of n dimensions over the n dimensional mul-
tivariate normal pdf. When the box is small and constrained
to the outer corners of the distribution, the optimal location
of the box can be quite different. Of the 928 cases where the
correlated Monte Carlo robustness was less than 0.5, corre-
lated offered a mean improvement of 8.51% over Boole’s
and 3.50% over independent.

Runtime Figure 6b plots the percentage of cases solved
versus runtime for the Boole’s, independent and correlated
of varying correlation sizes. As expected using the Boole’s.
LP is substantially faster with all cases solved within 1 sec-
ond. This is a result of the fact that the encoding is entirely
linear. On the other hand approximately 90% of the inde-
pendent cases and 80% of the correlated size 2 cases could
be solved within 1 second. The runtime grows exponentially
with the size of the distribution, some cases with correlation
size 4 took up to 400 seconds. Nonetheless approximately
80% of the correlated size 3 cases and 50% of the correlated
size 4 cases could be solved within 10 seconds.

It’s worth mentioning that the stopping criteria allows for
a trade-off between the solution quality and runtime. All of
the problems were solved with a gap of 1% (i.e. ε = 0.01),
however it is possible to terminate the algorithm earlier, and
return the best solution found so far.

Accuracy To measure accuracy, we compare the theoret-
ical robustness obtained from the objective for independent
and correlated, with the Monte-Carlo robustness considering
the correlation. The percentage difference is plotted in Fig-
ure 6c. If we assume independence, we can obtain theoreti-
cal robustness values which are up to 3 times higher than the
actual robustness observed through Monte-Carlo simulation.
This is because assuming independence is not guaranteed to
provide a bounding approximation of the correlated robust-

ness (see Section 4 and Figure 3). We do not plot the the-
oretical versus experimental robustness using Boole’s since
the objective is not representative of the actual probability.

8 Conclusion
To summarise, we formally define the Corr-STN and show
that Corr-STN SC is convex for a wide range of multivari-
ate (log-concave) distributions. We introduce one solution
method using column generation, in which we iteratively re-
fine and optimise on an approximation of the distributions.

In our experimental validation we solved a number of
Corr-STNs using 1. Boole’s inequality, 2. column genera-
tion with independence and 3. column generation with cor-
relations of varying sizes. We compared schedules in terms
of robustness, runtime and accuracy. We find that for prob-
lems in which the optimal probability is small, considering
correlation can offer a significant robustness improvement
versus Boole’s inequality and column generation with in-
dependence. Additionally, to ensure an accurate, bounding
approximation of robustness, considering correlation is nec-
essary, however it comes with additional computational ex-
pense which may be prohibitive for many applications.

While we have empirically shown that considering the
correlation in the scheduling process can be important and
have outlined a method for doing so, we note that the value
of considering the correlation varies significantly. For some
cases, the improvement is substantial, however for others
it is not worth the additional computational effort. There
are a vast number of problem specific factors which affect
this: size/magnitude of correlation, tightness of constraints
as well as which constraints we consider correlated to name
a few. In future work we hope to define a metric which can
be used to determine the benefit of considering the correla-
tion for particular networks.
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