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Abstract—This paper presents the development and performance evaluation of a novel platform for visual concrete crack 
inspection. Concrete surfaces are imaged using directional lighting to support accurate crack detection, classification and 
segmentation. In addition to developing lab- and field- deployable hardware iterations, we outline customised convolutional 
neural networks and filters that leverage the directionally-lit data set. Crack classification and segmentation accuracies 
were both 10% higher than accuracies for standard imaging techniques with diffuse lighting, and crack widths of 0.1 mm
were reliably detected and segmented. The major innovation described here is the combination of new hardware platforms
for directional lighting, with a suite of algorithms that utilise the directionally-lit data set to improve crack detection and
evaluation. This work demonstrates that directional lighting can improve the performance and robustness of automated
concrete inspection. This could be key in supporting the efforts of asset managers as they seek to automate inspections
of their ageing populations of concrete assets.

Index Terms—concrete inspection, visual inspection, crack detection, geometrical illumination, robotic inspection

I. INTRODUCTION

Routine visual inspections of concrete structures can pose risks to
inspectors’ health and wellbeing, delay projects, disrupt asset use,
and lead to low inspection repeatability. Automated inspection and
deep learning could provide asset managers with remote and traceable
tools to uphold concrete structural health and resilience [1]–[3], but
many automated systems still lack the adaptability to assess diverse
defects under varying and uncontrolled lighting conditions.

In this paper, we present the development and testing of a new
image acquisition and analysis platform called ALICS (Adaptive
Lighting for the Inspection of Concrete Structures). ALICS can be
used as a hand-held device to support documentation, or it can
be mounted to robots or vehicles to support semi-automated crack
inspection. The platform uses directional lighting to enhance the
detection, classification, and segmentation of concrete cracks.

Directional lighting has been used to enhance feature contrast during
surgery [4], and on production lines [5]. The use of illumination has
been only briefly explored in the context of civil structures. Authors
in [6] used angled lighting to highlight concrete textural differences,
but found that this reduced the accuracy of crack detection neural
networks, as the models were trained on images lit using standard
diffuse lighting. Authors in [7] and [8] analysed the impact of
brightness and lighting direction on void detection, and found that
low-intensity, low-angle lighting supported smaller feature detection.

There are currently a lack of image processing algorithms that are
trained on data sets comprised of directionally-lit images. The work
presented in this paper is, to our knowledge, the first demonstration
of the automation of directional lighting for concrete crack image
acquisition and the first demonstration of convolutional neural net-
works and filters that fully leverage the directionally-lit data set to
ehance crack identification and segmentation.
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II. HARDWARE DEVELOPMENT

A. Machine vision set up

In this work, a FLIR Blackfly 1" sensor machine vision camera
was used with the parameters outlined in Table 1. These settings
allowed images to be taken with a spatial resolution of 0.1 mm/pixel,
a field of view of approx 500 mm × 350 mm, and an exposure time
of 0.2 seconds. The concrete surface could be imaged with clarity at
working distances between 200 mm and 450 mm, with no discernible
diffraction effects, and with acceptable levels of edge blurring.

To account for lens image distortion, images of checkerboard
patterns at various distances and angles were captured. Distortion
correction coefficients were calculated using a checkerboard pattern
and applied using Python’s OpenCV camera calibration module.

B. Lighting hardware

Directional lighting presented a new parameter space that required
exploration so that we could optimise the lighting configuration for
imaging concrete faults. To this end, we developed the lab-based rig
shown in Figure 1a). The machine-vision camera is surrounded by
four 3-jointed servo-motorized arms holding LED strips. This allows
scenes to be lit from the up (U), down (D), left (L), or right (R)
direction, or any combination of these directions (e.g. UD, UDL),
including diffuse illumination by lighting from all directions at once
(all, A=UDLR). Each arm can project light at angles incident to the
surface ranging from 𝜃𝐿 = 5◦ to 50◦ and at various proximities to
the concrete surface. This rig was mounted to a six-axis robot so
that we could automate the scanning of large concrete surfaces in a
dark room. Illuminance in the room during testing was 0.2 lux.

C. Lab data set acquisition

Three-point bending loads of magnitude 700 N were applied to
the faces of unpolished, reinforced concrete slabs of size 600 mm
× 600 mm × 20 mm to produce tensile cracks. Slabs were flattened
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Fig. 1. a) Lab rig used to explore the lighting parameter space; and
field-deployable rig shown: b) as a handheld device, and; c) mounted
to a six-axis robot.

Fig. 2. Slab area lit from the right, R, at angles: a) 𝜃𝐿 = 50◦, and; b)
𝜃𝐿 = 10◦. Inset images show the same 224 × 224 pixel block.

TABLE 1. Lens and camera parameters.

Parameter Variable Value

Aperture diameter 𝑎𝑑 1 mm

Focal length 𝑓 8 mm

Working distance 𝐷 300 mm

f-number 𝑁 = 𝑓 /𝑎𝑑 8

Circle of confusion 𝑐 ≈ 𝑑/1500𝑑 11 µm

Depth of field 𝐷𝑂𝐹 = 2𝐷2𝑁𝑐

𝑓 2 250 mm

after bending to obtain thinner crack widths. To vary the location of
the cracks, bending support positions were changed for each slab.
Branching cracks were random in orientation, and ranged from 0.1 –
1 mm wide, and 10 mm to 500 mm long. The summed area of all slabs
in the lab was approx 2 m2, allowing us to capture 12 distinct 500 mm
× 350 mm images that were manually annotated to produce ground
truths for benchmarking image processing algorithm accuracy.

An example slab under varying lighting conditions is shown in
Figure 2. Inset images show a 224 × 224 pixel block (equivalent to
a 20 mm × 20 mm area on the slab). The figure shows that concrete
surface roughness becomes more apparent at lower lighting angles.

D. Field-deployable rig

Lab results outlined in Section IV allowed us to commit to specific
lighting angles and develop a second more robust iteration of the
ALICS imaging platform shown in Figures 1b) and 1c). The device
comprises a lightweight aluminium shroud to block ambient light,
LED strips to provide illumination at fixed angles, and a machine
vision camera at the apex of the shroud facing the concrete surface. For
an outdoor illuminance of 6000 lux (daylight conditions), illuminance
under the shroud was 0.2 lux. This rig was used to acquire a limited
number of field data sets from concrete assets in public areas.

III. IMAGE PROCESSING DEVELOPMENT

Image based crack detection, classification, and segmentation can
be achieved using black-box techniques, such as convolutional neural
networks (CNNs) [9], or white-box techniques, such as thresholding
and filter-based edge-detection [10]. In this work, we opted for a
hybrid black-/white- box approach described as follows:

1) A faster region-based convolutional neural network (Faster R-
CNN) detects and roughly locate cracks against the background
of undamaged concrete using bounding boxes.

2) The area within the bounding boxes is segmented into 224× 224
pixel blocks. A VGG-16 CNN is run on each block within the
bounding box to more accurately localize and classify cracks.

3) White-box techniques are used on the blocks labelled as positive
by VGG-16 to segment cracked pixels within each block. Binary
images are then stitched back together.

Through extensive testing, it was found that the only lighting
configurations needed to improve crack inspection were U, D, L,
R and A at a fixed angle of 𝜃𝐿=50◦. This may not necessarily be
the case for all algorithms or for other concrete faults and for wider
cracks. The following subsections provide more detailed descriptions
of each step, and the results of benchmarking on lab data sets.
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A. Faster R-CNN feature detection

Two-shot region-based CNNs (R-CNNs) consist of a region
proposal network (RPN), which detects features of interest against
a background, followed by a CNN classifier network. The R-CNN
used in this work was Tensorflow’s Faster-R-CNN Inception v2
COCO, trained via transfer learning on 400 manually-annotated
publicly-available concrete crack images [11]. Training images were
all captured under diffuse or ambient lighting conditions.

In this work, Faster R-CNN used the diffused image (A) only
to detect and locate cracks on the surface. The Area Under Curve,
AUC, of the Precision-Recall plot was used to assess the accuracy of
the R-CNN under various values of 𝜃𝐿 . It was found that angles of
𝜃𝐿 = 10, 20, 30 ◦ produced mean AUC values of 0.5 across all of our
samples, as shallow lighting angles accentuate surface texture, and
the edges of these features can erronously be picked up as cracks.
Values of 𝜃𝐿 = 40 and 50 ◦ produced mean AUC values of 0.7.

B. VGG-16 classifier

VGG-16 has been used successfully for crack detection in several
studies including [12]. The objective of the VGG-16 model in this
work was to filter 224 × 224 blocks within the bounding box obtained
from R-CNN into binary categories (cracked=1, uncracked=0). R-
CNN downselects cracked regions of the image prior to VGG-16 as
this reduces the computation time of running VGG-16 on all blocks.

Transfer learning was used to train the VGG-16 model on an
extensive data set gained from both our directional lighting apparatus
and publicly available crack data [11]. Dropout was added to mitigate
overfitting, and a dense layer with sigmoid activation supported binary
classification. We adopted a trial-and-error approach to configure
network parameters, using the Adam optimizer with binary cross-
entropy loss and accuracy metrics. The model underwent 10 epochs
of training (batch size 32), with final evaluation on testing data.

In lab testing on ground-truthed images, VGG-16 accuracy (the
ratio of true positives and true negatives to all classifications) was
found to be highest (98%) for lighting angles of 𝜃𝐿 = 50 ◦. This
was an improvement of 10% over diffused lighting for our particular
data set, and provides further support for the use of this angle. This
accuracy is high, but should be interpreted with caution as these are
initial tests on a limited lab data set. It is the 10% improvement
in accuracy when using directional lighting that is the main result,
rather than the absolute accuracy value. The network’s performance
in the face of noise and blurring is discussed in our other work[13].

C. White-box segmentation

The white-box segmentation algorithm only recieves 224 × 224
pixel blocks labelled as cracked by the VGG-16 classifier. This
improves the robustness and accuracy of the segmentation, as other
features (marks on the surface) are pre-filtered by the classifier. This
reduces the overall number of false positive pixels.

Figure 3 illustrates the white-box method used in this work. Images
lit from U, D, L and R were combined with the diffused image (A)
to enhance crack contrast. Edges were detected in each image using
a 3 × 3 pixel Laplacian kernel, producing four binary masks that
were combined using a bitwise OR operation. In the final image,
positive pixels remain if they were positive in at least one input image.
Following this process, segmented cracks are joined, and noise is

Fig. 3. Directionally-lit image combination using white-box method.

removed using the skele-marker method described in our previous
work [14]. During benchmarking, it was found that the Dorafshan
white-box method [15] achieved a 54% accuracy in predicting crack
pixels on diffused images, whereas the bitewise OR combination of
directionally lit images achieved a 69% accuracy.

IV. RESULTS AND DISCUSSION

Figure 4 shows example and sequential outputs for each step in our
algorithm on a lab sample: a) Faster R-CNN draws bounding boxes
around two features labelled as cracks; b) VGG-16 classifies blocks
within those bounding boxes; c) the white-box algorithm segments
the cracked pixels. Segmentation image contrast has been enhanced
for the sake of visibility in this paper; this crack is on average 0.1 mm
wide or less. Surface markings and uneven surfaces in the top left
and bottom left of this image may have posed a challenge for the
white-box segmenter, but have have been filtered out by the R-CNN.

VGG-16 leverages the directionally lit data set to filter out uncracked
blocks with a higher accuracy at a higher computation cost. False
positives from the R-CNN bounding box on the left, the result of
an uneven casting surface, are discarded by VGG-16. VGG-16 is
currently needed to fully leverage the directionally lit data set, but
there will be future work required to assess other CNNs and better
integrate them as the classifier networks of Faster R-CNN.

Example outputs of the algorithm on field data set images are
shown in Figure 5. VGG-16 crack classification accuracies were
89% on the field data set. This is a 10% drop relative to the lab data
set, owing to the fact that real concrete structures are more varied
than the lab data set, and contain significantly more crack types and
surface textures. The field data set is still relatively small at this stage,
and future work will look to improve accuracy and robustness by
training the CNN on broader fault types in the face of confounding
variables linked surface paints, effloresence and biofouling.

Images in Figures 5 a), b), c) were classified as containing cracks.
The segmentation’s binary mask is shown as blue pixels overlaid on
the images. The white-box algorithm has generally performed well,
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Fig. 4. Overview of the outputs from a) Faster R-CNN, b) VGG-16 and c) the white-box segmentation algorithm. The white-box output’s image
contrast has been enhanced for clarity.

Fig. 5. Four example outputs of the white-box segmentation algorithm
on the field data set with overlaid binary masks.

but still contains noise (e.g. see image c). Cracks in images range from
0.07 mm to 0.3 mm and have all been segmented successfully. The
algorithms described in this paper can reliably detect and segment
0.1 mm cracks, and can often pick out features below this level.
In image b, the algorithm has failed to segment cracks that are
significanly wider than those contained in the lab data set. Future
work will therefore look to further improve the robustness of this
algorithm by tuning the pre-processing steps and the edge-detection
methods. Image d in Figure 5 shows that the white-box algorithm
has detected and segmented exposed aggregate. The VGG-16 CNN
did not classify this block as containing a crack, so it would not be
flagged as a fault to be segmented, but it has been included here
to demonstrate how using a hybrid black-/white- box approach can
reduce overall false positive rates.

V. CONCLUSIONS

This paper presented the design and assessment of an automated
hardware and software platform for the directional lighting of concrete
surfaces to improve crack detection rates. In lab studies, lighting
at a 50◦ angle was found to improve detection and classification
rates for cracks in concrete faces. These lab studies and benchmarks
supported the production of a second, more robust hardware iteration,
that faciliated the demonstration of concrete crack detection and
segmentation in the field. Future work will look to increase the
volume and breadth of this field data set, investigate the platform’s

robustness when imaging various and concurrent defects, and evaluate
other neural network architectures with directional lighting.
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