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A B S T R A C T   

This research investigates the spatial heterogeneity of cohesion within soft clay and its implications for slope 
stability and post-failure analysis. In-situ cone penetration tests were conducted in alluvial soft clays to calibrate 
probabilistic strength properties. Slope stability analyses employed deterministic, semi-deterministic, and 
comprehensive probabilistic approaches, while post-failure analysis utilised the nodal integration-based particle 
finite element method. The undrained shear strength (cu) demonstrated a log-normal distribution (mean: 19 kPa, 
standard deviation: 3 kPa), with correlation lengths modeled through Bayesian inference. Treating correlation 
lengths as distributions resulted in a negligible 2% difference compared to using a single value for the probability 
of failure. Semi-deterministic analyses exhibited results similar to probabilistic analyses, offering computational 
advantages. Nevertheless, probabilistic analysis, considering spatial variability, provided more comprehensive 
insights for post-failure analysis. For a vertical slope of critical height in the studied soft clay, probabilistic 
analyses predicted a range of runout distances from 0 m to over 125 m. Specifically, 89% of these distances were 
less than 80 m, and 82% were less than 40 m. The findings contribute to an enhanced understanding of spatial 
variations in soil strength within soft clay slopes, providing valuable insights for future geotechnical assessments 
and design considerations.   

1. Introduction 

Alluvial soil is a common type of soft clay found worldwide in areas 
where rivers or other bodies of water are present. The characteristics of 
alluvium, including its texture and particle size distribution, are heavily 
influenced by the energy levels of the depositional environment. In low- 
energy environments, clay and silt particles are predominantly depos-
ited, while high-energy environments can transport larger particles such 
as sand and gravel, resulting in significant spatial variability in the shear 
strength of alluvial soils. 

Given the spatial variability of shear strength, designing geo-
structures in locations with soft clays, such as alluvial soils, presents a 
significant challenge. The current stability analysis of geostructures 
heavily relies on deterministic analysis, often resulting in solutions that 
are either unsafe or overly conservative. To address this issue, 
geotechnical design codes, such as Eurocode 7, employ the partial factor 
approach to account for spatial variability. This approach involves 
applying a partial factor to soil strength to reflect uncertainty. However, 
relying solely on the partial factor approach cannot capture the com-
plete range of soil strength variability, and its reliability is still a subject 

of debate. Incorporating the spatial variability of soil properties is a 
complex task that requires careful consideration of multiple factors, 
including computationally intensive stochastic modelling techniques 
and accurate, representative data on soil properties. 

Random field analysis (RFA) is a powerful tool used to investigate 
uncertainties in geotechnical design. By employing statistical principles 
and stochastic models, RFA provides insights into the random behaviour 
of soil parameters and predicts the response of soil structures under 
uncertain conditions. The Random Finite Element Method (RFEM) 
combines RFA with finite element analysis and has been applied to 
various geotechnical problems involving soils with spatial variability. 
Studies utilising RFEM have examined diverse geotechnical issues, 
including the bearing capacity of foundations (Li et al., 2015, Selmi 
et al., 2019, Yi et al., 2020), seepage analysis (Griffiths et al., 1997, Tan 
et al., 2017), slope stability (Agbaje et al., 2022, Dyson et al., 2019, 
Jiang et al., 2018), and others. 

Despite these contributions, many questions remain unanswered 
when considering the spatial variation of strength in the analysis of 
natural slopes. One crucial factor in RFA is the correlation length, which 
indicates the spatial correlation of a soil parameter. Determining the 
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correlation length through site investigations is not straightforward. 
Deterministic formulas, such as the one proposed by (DeGroot et al., 
1993), may not adequately account for the inconsistent and random 
occurrence of small changes in soil types within a study area. These 
changes could include transitions from clay to sand or variations in soil 
properties due to the presence of impurities like organic content. Given 
these considerations, a fundamental question arises: Should the corre-
lation length be treated as a variable in space, or is it appropriate to 
adopt a single mean value for the correlation length? Furthermore, due 
to the significant time consumption associated with RFA, it is worth-
while to investigate its performance for achieving optimised results. One 
aspect that merits exploration is the trade-off between safety and speed 
when comparing deterministic and probabilistic analyses. Conducting a 
review to assess the effectiveness of the partial factor method proposed 
by Eurocode 7 will also provide valuable insights. Additionally, the 
application of random field analysis in slope analysis is primarily 
focused on the failure stage, specifically the calculation of the factor of 
safety for a slope. However, limited contributions exist regarding the 
post-failure stage (Chen et al., 2021, Liu et al., 2021, Ma et al., 2022), 
particularly in studying the final run-out distance of an unstable slope. 
Questions regarding the influence of a random field on the run-out 
distance are still being investigated. This aspect is particularly impor-
tant as it pertains to the placement of critical infrastructures such as 
railways, roads, etc., which require a safe distance from potential 
landslide areas. 

In this paper, we address these inquiries by conducting a compre-
hensive process of RFA on a vertical cutting slope in soft clay. Vertical 
slopes are commonly encountered, for example, during site in-
vestigations involving trial pit excavations. They also arise in earthwork 
projects where slope benching is performed, as seen in the remediation 
of soft clay slopes. In both scenarios, engineers must determine a safe 
vertical height for the excavation without incurring additional costs or 
necessitating additional land space. Our investigation encompasses the 
following key steps: First, we gather site-specific data necessary for 
generating random fields for soft clay ground. Next, we thoroughly 
analyse the date for calibrating the probabilistic properties of undrained 
shear strength of the soft clay, with particular emphasis on determining 
the Correlation Length (CL). Subsequently, we integrate random field 
generation with the mixed limit analysis method and the Nodal 
integration-based Particle Finite Element Method (N-PFEM) for con-
ducting slope stability analysis and post-failure analysis. We further 
compare the results obtained from deterministic analysis, semi- 
deterministic analysis, and comprehensive probabilistic analysis to 
gain insights and make meaningful comparisons. 

The subsequent sections of the paper are structured as follows: Sec-
tion 2 introduces the analysis methods adopted in this study. Section 3 
details the site investigation, focusing on the calibration of the proba-
bilistic properties of undrained shear strength. Section 4 covers the 
generation of random fields, while Section 5 presents the simulation 
results and subsequent discussion. The final conclusions are drawn in 
Section 6. 

2. Random field analysis using Monte Carlo simulation 

This study investigates the impact of soil strength variability on the 
stability and the post-failure process of a vertical slope in soft clay. The 
analysis incorporates random field analysis through Monte Carlo simu-
lation. This section provides a brief overview of the approaches used. 

2.1. Monte Carlo simulation 

Traditional slope stability analyses rely on single-valued parameters, 
offering deterministic estimates that overlook soil property variability. 
Acknowledging the probabilistic nature of slope stability is crucial. This 
study emphasises spatial variations in undrained shear strength in soft 
clay and their influences on slope failure. By utilising Monte Carlo 

simulations, we sample a random shear strength, incorporating it into 
stability and post-failure analyses for a comprehensive understanding. 

Various advanced Monte Carlo sampling methods, such as Markov 
Chain Monte Carlo (MCMC), Transitional Markov Chain Monte Carlo 
(TMCMC), and Sequential Monte Carlo methods, have been developed. 
TMCMC has found applications in geotechnical problems, including 
characterising the statistical uncertainties of spatial variability param-
eters based on CPT (Ching et al., 2016) and analysing the creep behavior 
of soft soil and its associated uncertainty (Zhou et al., 2018). In this 
study, we adopted the recently developed Transitional Ensemble Mar-
kov Chain Monte Carlo (TEMCMC) method (Lye et al., 2022) for sam-
pling. Combining the advantages of TMCMC and the Affine-invariant 
Ensemble sampler, TEMCMC has demonstrated superior performance, 
requiring less time while maintaining well-moderated acceptance rates 
within optimal bounds. For more details on the sampling approach used, 
readers are referred to the work of Lye et al. (2022). 

2.2. Bayesian inference 

Bayesian Inference was employed in this study to derive possible 
correlation functions for the survey data, allowing the calibration of the 
correlation length. Bayesian Inference (Lye et al., 2021) is a form of 
statistical inference based on Bayes theorem, updating prior knowledge 
as observations are made. Its mathematical formulation is defined as 

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)
(1)  

where θ is the vector of the uncertain parameters to be estimated, D is 
the vector of the observed or measured data, and M is the model or 
function that the data follows. The prior distribution, P(θ|M), charac-
terises the knowledge of the inferred parameter(s) before any mea-
surements are taken. The likelihood function, P(D|θ,M), accounts for the 
error in measurements and the agreement between the measurements 
and model predictions based on the inferred parameters. P(D|M) is the 
evidence function. The posterior distribution, P(θ|D,M), reflects updated 
knowledge after observations are made, with the evidence serving as a 
normalisation constant that gauges how well the measurements align 
with the given model. In this study, the model pertains to the correlation 
functions of the surveyed data. Details on the used Bayesian Inference 
has been documented by Lye et al. (2021). 

2.3. Mixed limit analysis for slope stability 

Limit analysis is widely applied in slope stability analysis, cat-
egorised into three types: the upper bound (kinematical) formulation, 
the lower bound (static) formulation, and the mixed formulations. The 
kinematical formulation considers displacement as the sole variable, 
providing an upper limit for the maximum load. Conversely, the static 
formulation considers stress as the only variable, resulting in a lower 
limit for the maximum load. The mixed formulation utilises both 
displacement and stress as variables. According to (Krabbenhøft et al., 
2007, Zhang et al., 2019), a mixed limit analysis formulation can be 
expressed as a min–max optimisation problem: 

min
u

max
(σ,α)

α +

∫

Ω
σT∇T(u)dΩ − α

∫

Γt

tT udΓ −

∫

Ω
bT udΩ

subject to f (σ) ≤ 0
(2)  

where σ =
(
σxx, σyy, σzz, σyz, σzx, σxy

)T is the Cauchy stress; u is the 
displacement; b is the body force; t is the prescribed traction; f(σ) is the 
yield function; α is the collapse load factor meaning αt the ultimate force 
the geostructure can sustain; and ∇ is the differential operator matrix. 

Following the study by Meng et al. (2020), a three-node triangular 
element was employed, and the approximation of displacement (u) 
within an element is expressed as: 
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u(x) ≈ Nû (3)  

where û incorporates the displacement values at mesh nodes, and N 
denotes the shape function. Accordingly, the strain approximation is 
given by: 

ε ≈ ∇T(Nû) = Bû (4)  

where B = ∇TN stands for the strain–displacement matrix. Sequentially, 
the discretisation of the min–max problem (2) takes the form: 

min
û

max
(σ,α)

α +

∫

Ω
σT BdΩû − α

∫

Γt

tT NdΓû −

∫

Ω
bT NdΩû

subject to f (σ) ≤ 0
(5)  

where σ represents the uniform stress in the element. The analytical 
resolution of the minimisation component leads to a subsequent max-
imisation problem: 

max
(σ,α)

α

subject to :

∫

Ω
σT BdΩ = α

∫

Γt

tT NdΓ +

∫

Ω
bT NdΩ

f (σ) ≤ 0

(6) 

To mitigate the volumetric locking issue inherent in three-node 
triangular elements, nodal integration is implemented based on 
smoothing domains following the work of Meng et al. (2020). This 
approach effectively overcomes the volumetric locking issue with linear 
elements, as demonstrated in the works of Meng et al. (2020) and Zhang 
et al. (2023). 

Subsequent to nodal integration, the maximisation problem (6) is 
reformulated as 

max
(σ,α)

α

subject to:

⎧
⎨

⎩

BT σ̂ − Fb = Ft

f i(σ̂) ≤ 0 i = 1, 2, ⋯ , NN

(7)  

where the notation (•)i denotes the value of ( • ) at the ith node unless 
otherwise specified, and NN represents the total number of nodes. The 
vector σ̂ encompasses stress components at all mesh nodes and can be 
regarded as the weighted average stress of triangles adjacent to the 
node. The matrix B represents the weighted average of the 
strain–displacement operator, while Ft and Fb denote the surface force 
and body force estimated based on nodal integration, respectively. It is 
noteworthy that, even in the absence of an upper/lower bound feature in 
this mixed limit formulation, the solution derived from such analysis 
often closely approximates to the exact bearing capacity of a structure, 
as indicated by Nguyen (2023). 

2.4. N-PFEM for post-failure analysis 

The analysis of post-failure processes in slope failure poses a chal-
lenge. This is due to the substantial deformation experienced by the 
sliding soil, resulting in significant mesh distortion when employing the 
traditional finite element method. In this study, we utilise the N-PFEM 
developed by Meng et al. (2021) and Zhang et al. (2022) for post-failure 
analysis. The fundamental steps of the N-PFEM are outlined (see also 
Fig. 1): 

1. Define the computational domain by using the alpha-shape tech-
nique with the particle cloud, Pn;  

2. Generate triangle meshes, Mn+1, by triangulating the domain based 
on the particle cloud and the identified domain boundary;  

3. Create cells, Cn+1, corresponding to Mn+1; 

Fig. 1. Computational circle of the N-PFEM (after (Zhang et al., 2022)).  
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4. Solve the governing equations on mesh Mn+1 and cell Cn+1;  
5. Adjust the positions of the particles (i.e. mesh nodes) based on the 

resolved incremental displacement and reset the mesh topology to 
obtain Pn+1;  

6. Iterate through the above process for all time increments. 

The N-PFEM combines the advantages of the Lagrangian finite 
element method in addressing nonlinear problems and meshfree particle 
methods in dealing with large deformation and free-surface evolution. 
Its robustness and effectiveness in modelling granular flow and landslide 
problems have been well demonstrated (Zhang et al., 2023). For more 
details on the implementation of the utilised N-PFEM, we refer readers 
to the work of Meng et al. (2021) and Zhang et al. (2022). 

3. Site investigation survey 

Soft clays are commonly encountered in project works undertaken 
close to rivers, such as earthworks to facilitate road, rail, or coastal 
development. In this section, we present data collected in the project 
nearby the Tay River in Perth, Scotland, where alluvial deposits occur. 
Such soft clays can be found widely across the UK and globally. To better 
understand the probabilistic strength properties of the soft clays, the 
data were collected from the Cone Penetration Test (CPT) undertaken by 
pushing a cone vertically to a maximum depth of 12 m below ground 
level (bgl). Resistance at the cone tip and around the sleeve at 0.01 m 
depth intervals was measured. Such semi-continuous data per CPT test is 
ideal for determining the vertical correlation length. For calibrating the 
horizontal correlation length, the CPT locations were also positioned in 
a horizontal alignment along the riverbank, as shown in Fig. 2. A total of 
19 CPTs were conducted along a chainage of 505 m. CPT data are pro-
vided as supplementary materials of this paper. 

The soil was classified according to the Soil Behaviour Type (SBT) 
Index (Robertson et al., 1983a, Robertson et al., 1983b) - a calibrated 
relationship between the CPT cone resistance, skin friction, and the type 
of soils. The pi-chart shown in Fig. 3 indicates that 77.3% of the soils are 
predominantly cohesive (i.e., clays to silty clays or organic soils) with 
only 22.7% being granular (i.e., sands). Design standards (BSI, 2015) 
recommend that any soils with greater than 25% clays should be 

analysed based on the undrained properties. Hence, the Tresca model 
was adopted in the following to describe the soil behaviour. 

3.1. Undrained shear strength 

Fig. 4 shows a deterministic representation of the soil behaviour 
types between chainages 0 + 025 m and 0 + 505 m. The representation 
was generated based on a simple interpolation between known values. 
Probabilistic visualisations will be presented later in this paper. 

The representation shows that, as is typical for alluvial soils, certain 
discrete locations of sand deposits exist. To consider the influence of the 
sand deposits on the CPT interpretation of the undrained shear strength 
(cu), two sets of interpretation have been undertaken: (i) cu at all loca-
tions (including those with sand deposits); and (ii) cu at locations with 
only cohesive soils (i.e., SBT from 1 to 4 only). The interpretation was 
based on (Lunne et al., 2002): 

cu =
qt − σvo

Nkt
(8)  

where qt is the cone tip resistance (corrected for unequal end area ef-
fects), σvo is the total overburden stress, and Nkt is an empirical cone 
factor usually in the range from 10 to 20. In this study, a median value of 
Nkt = 15 was used. 

As we concentrate on soft clays, only data at locations without sand 
deposits or over-consolidation are utilised in the following analyses. As 
shown in Fig. 5, the undrained shear strength of the soils statistically 
varies from 0 to 657 kPa, with the majority having undrained shear 
strength less than 19 kPa. The distribution type (i.e., a normal or log- 
normal distribution) the soil parameter obeys was calibrated by 
measuring the skewness and kurtosis values: 

Skewness =
1
N
∑n

i=1

[
cui − μcu

σcu

]3

(9)  

Kurtosis =
1
N
∑n

i=1

[
cui − μcu

σcu

]4

(10)  

where μcu 
and σcu are the mean and the standard deviation of cu, 

Fig. 2. Location of site investigation survey.  
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Fig. 3. Pi chart of soil behaviour types.  

Fig. 4. Long Section (along chainages) showing the different types of soil based on deterministic interpolation.  

Fig. 5. Undrained shear strength (locations with soft clay only).  
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respectively. To calculate the skewness and kurtosis for log-normal 
distribution, cu, μcu 

and σcu in Eqs. (9) and (10) are replaced by their 
respective natural logarithms. 

According to Eqs. (9) and (10), the normal distribution has an ab-
solute skewness value of 2.5 and an absolute kurtosis value of 7.5. On 
the other hand, the log-normal distribution has an absolute skewness 
value of 0.1 and an absolute kurtosis value of 0.9. By definition, the 
distribution with the lower skewness and kurtosis is more suitable. 
Thereby, it is concluded that the undrained shear strength of the con-
cerned soft clay obeys a log-normal distribution. To illustrate this 
conclusion, Fig. 6 shows that the surveyed undrained shear strength 
agrees well with the log-normal cumulative distribution with a mean 
shear strengthμcu 

= 19 kPa and a standard deviation σcu = 3 kPa. In 
contrast, the normal distribution with the calibrated arithmetic mean of 
31.8 kPa and arithmetic standard deviation of 34.5 kPa does not fit the 
survey data. 

3.2. Correlation length 

Estimating the Correlation Length (CL), also referred to as the scale 
of correlation, was initially undertaken based on the deterministic 
method of moments (DeGroot et al., 1993). According to (Fenton et al., 
2008, Vanmarcke, 2010), the CL is defined as the area under the cor-
relation function. The correlation function is defined as: 

ρ
(
rj
)
=

Ĉ
(
rj
)

Ĉ(0)
=

Ĉ
(
rj
)

Ĉ(max)
(11)  

with the covariance function being 

Ĉ
(
rj
)
=

1
n

∑n− j+1

i=1

(
Yi − my

)(
Yi+j− 1 − my

)
(12)  

where rj is the distance in the direction of measurement; Yi is the discrete 
parameter in a particular direction, for instance the undrained shear 
strength cu in horizontal or vertical direction); and my is the sample 
average of Yi in the specific direction. 

The correlation function is a hypothesis (Cami et al., 2020, Fenton 
et al., 2008, Phoon et al., 1999) which, for soils, decays exponentially 

and is expressed as 

ρ
(
rj
)
=

Ĉ
(
rj
)

Ĉ(0)
= e

−

(⃒
⃒
⃒
⃒

Arj
CL

⃒
⃒
⃒
⃒

)B

(13)  

where Ĉ(0) is the maximum covariance function and A and B are factors. 
Typically, B is in the range of 1 to 2 (Agbaje et al., 2022, Fenton et al., 
2008). Particularly, B = 1 indicates the Markov correlation function, 
whereas B = 2 implies the Gaussian correlation function. 

3.2.1. Vertical correlation length 
Fig. 7 shows typical vertical correlation functions (i.e., Eqs. (11) & 

(12)) from the survey data where spikes are observed in the functions 
from CPT CH 068, CPT CH 245, CPT CH 425A, CPT CH 485A, for 
instance, at the depth where impurities, such as sands, exist (ISBT = 5 or 
greater are first encountered). To further explore the relationships be-
tween the spikes and impurities, a plot comparing the location of spikes 
versus the location of encountered sands in the concerned soft clay is 
illustrated in Fig. 8. Clearly, it is shown that the spikes occur at locations 
where there is a change between soft clays and sands. This also echoes 
the finding from (Agbaje et al., 2022) that the change from granular soils 
to soft clays leads to spikes. 

Fig. 6. Statistical distribution of undrained shear strength.  

Fig. 7. Vertical correlation functions based on CPT survey data.  
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Given the existence of spikes in the correlation function and the 
considerable differences between the functions from different CPTs as 
shown in Fig. 7, Bayesian Inference (Lye et al., 2021) was employed in 
this study to gain possible correlation functions for the survey data 
(prior) so that correlation length can be calibrated. The updated corre-
lation functions were from the algorithm TEMCMC proposed in (Lye 
et al., 2022) with the Markov correlation function (B = 1). In this study, 
a total of 3000 posterior correlation function curves have been gener-
ated, which were sufficient to reach a converged solution in the prob-
abilistic limit analysis. For clarity, 200 posterior curves (in black) are 
illustrated in Fig. 9. As shown, all the generated curves obey the expo-
nential function ρ

(
rj
)
= e− ayy. The factor ay obeys a normal distribution 

function with a mean of 5 and a standard deviation of 1.66 as depicted in 
Fig. 10. Fig. 10 also shows a plot of CLy versus ay. Since the survey data 
ay is less than 0.27, the maximum value of CLy from our study is 3.67. 
Generally, the accuracy of CPTs is limited to a minimum of 0.01 m in-
tervals; thus, the minimum value of CLy is assumed to be 0.01 as well. 

3.2.2. Horizontal correlation length 
The horizontal correlation length (CLx) was obtained using a similar 

approach, but with the variation of cu considered along the chainage. As 
this study focuses on determining the properties of soft clays, data from 
locations where sands exist were excluded. Specifically, only 10 CPT 
locations from Fig. 5 were utilised. This exclusion may result in a gap in 
the data for calibrating CLx. Therefore, data interpolating is necessary to 
fill this gap. Only depths with a minimum of 3 CPT chainage points at 
that depth was utilised for assessing CLx. 

The vertical covariance function has a distinct starting point (i.e., 
soil/non-soil boundary at ground level). Typically, the maximum value 
of the covariance function occurs at ground level with the function 
decaying with depth. However, for the horizontal covariance, we usu-
ally do not have a starting point or soil/non-soil boundary. Thus, in this 
study, the starting point was taken to be the location with the largest 
covariance function at each depth. 

The reason for this lies in the fact that the correlation function, used 
to derive the correlation length, is the normalised version of the 
covariance function. In other words, the correlation function results 
from dividing the covariance function by the maximum data of the 
covariance function as shown in (13). Consequently, the maximum 
value of a correlation function is always 1, and it diminishes to 

Fig. 8. Vertical correlation function spikes versus sand depths.  

Fig. 9. Bayesian inference vertical correlation function curves.  
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0 (typically following an exponential decay function), while the 
covariance function can have any numerical maximum. This conven-
tional approach has been employed in the works of Fenton et al. (2008) 
and Ching et al. (2019). Therefore, by definition, for an exponentially 
decaying function like the Markov correlation function, which was used 
to model the correlation function curves (black curves as illustrated in 
Fig. 12), they will always initiate from the point with the maximum 
correlation function. 

Correlation functions at different depths were consequently lag- 
removed. Specifically, all starting points (points with maximum auto-
correlation function) have been taken as the horizontal value of 0 m with 
decay measured from these points. Fig. 11 shows some of the survey 
horizontal correlation functions with starting point lag-removed. 

As per the vertical correlation length, Bayesian inference was applied 
to determine posterior Markov curves to fit the data for calibrating CLx. 
The updated correlation function curves are shown in Fig. 12, which all 
obey an exponential function, ρ

(
rj
)
= e− axx, where ax has a normal 

distribution (see Fig. 13) as ay does. However, ax has a lower mean of 
0.05 and a standard deviation of 0.0166. According to the Fig. 13, the 
maximum value of CLx for the concerned soft clay is 367 while its 
minimum value is 8. The minimum value is referred to the point where 
ax is at 3 standard deviations from the mean (0.02 % probability of 
occurring). 

4. Generation of random fields 

A single random variable approach was employed in both the failure 
and post-failure analyses. It involved defining a shear strength param-
eter, such as cohesion, as a probability distribution function. The 

Fig. 10. Bayesian inference vertical correlation length (CLy).  

Fig. 11. Horizontal correlation function - survey data (11 levels from the top 2 
m shown due to clarity). 
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geometry of the vertical slope under investigation is shown in Fig. 14. 
To generate a randomly distributed cohesion across the vertical slope 

shown in Fig. 14, we first generate a random field for a domain much 
larger than the slope geometry, followed by mapping the cohesion from 
the domain to the slope, as illustrated in Fig. 15. The verification of the 
generated random fields was also carried out through post-random field 
generation checks. These checks demonstrated that the input and output 
mean, standard deviation, and vertical correlation length values were 
approximately equal. This was accomplished by extracting multiple 
random horizontal and vertical strata of data points within the slope 
domain to assess the convergence of input and output values. An illus-
tration of this process is presented for the case of a slope height of 4.47 m 
in Fig. 16 as a demonstration. 

5. Results and discussions 

5.1. Failure analyses 

The mixed limit analyses were conducted to study the stability of the 
vertical cut slope under consideration (Fig. 14). For clay soils with a 
constant value of cu, the critical height Hcr at which the FoS of a slope 
equals 1 can be calculated using the following equation: 

Hcr = Nscu/γ (14)  

where γ is the unit weight of the soil. Although cu can vary within the 
range of ± 50 kPa, as indicated in our data, the variation in γ is typically 
less than ± 2 kN/m3 for a given soil, as shown in (BSI, 2015). In the 
interest of simplicity and focused research, a single uniform value of 17 
kN/m3 has been used to represent the unit weight of low-strength clays, 

Fig. 12. Bayesian inference horizontal correlation function curves.  

Fig. 13. Horizontal correlation length.  
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γ, in all analyses. The semi deterministic analysis was first conducted 
followed by comprehensive probabilistic analyses with particular 
attention given to the influence of the correlation length. 

5.1.1. Semi deterministic analyses 
For slope stability analyses, a deterministic approach is characterised 

by the absence of spatial variability. In this study, it means that a uni-
form value of cu is applied throughout the entire domain or geometry. 
According to the UK-based industry standard Ciria R185 (Nicholson 
et al., 1999), choosing a single uniform value typically corresponds to 
the most probable value, often associated with a likelihood of occur-
rence of 1 in 2 or the 50th percentile probability. Alternatively, when 
applying a partial factor of safety, the preference is generally for a value 
from the conservative side of the distribution curve of soil strength re-
sults. However, an important question arises: ’How far into the safer side 
of the distribution curve is considered safe enough?’ In other words, 
what is the optimal value of the partial factor to account for the 

variability of cu? For the Eurocode 7 design standard (EN, 1997-1), a 
partial factor of 1.4 is applied to cu. Nonetheless, BS EN 1990 (EN, 2002) 
clause 3.5 (5) in the Eurocode also suggests an alternative approach to 
the partial factor method, wherein a design directly based on probabi-
listic methods can be employed. Therefore, in this section, the Proba-
bility of Failure (PoF) was initially computed using a semi-deterministic 
approach. 

In the semi-deterministic approach, instead of selecting a single 
value of cu as performed in deterministic analyses, a series of analyses 
are undertaken using multiple values that correspond to different per-
centages derived from the Cumulative Distribution Function (CDF). For 
instance, Fig. 17 illustrates that an analysis employing a cu value of 19 
kPa corresponds to a CDF of 50 %, while a cu value of 9 kPa corresponds 
to a CDF of 20 %, and so on. The CDF represents the cumulative prob-
ability of observing a soil strength at the site based on the collected data. 
Fig. 18 presents a semi-deterministic parametric study of the FoS ach-
ieved at various slope heights for cu values representing different CDF 

Fig. 14. Vertical cut geometry for slope stability and landslide analyses.  

Fig. 15. Sample random field generation using the FFT transform and mapping onto a slope geometry for analyses.  
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percentages derived from the data pertaining to low-strength soils. In 
the semi-deterministic analyses, the PoF corresponds to the likelihood of 
observing the cu value for a specific slope stability height where the 
Factor of Safety (FoS) is less than 1. In other words, it is the cumulative 
distribution function (CDF) percentage derived from the site data (refer 
to Fig. 17) when the FoS equals 1.0 for a given slope (as shown in 

Fig. 18). The results from Fig. 18 will be subsequently utilised later for 
comparison with the findings obtained from the probabilistic analyses. 

5.1.2. Probabilistic analyses 
The comprehensive probabilistic analyses were subsequently con-

ducted to calculate the FoS of the vertical slope by incorporating spatial 

Fig. 16. Verification of generated random field.  

Fig. 17. Semi-deterministic CDF.  
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variability, as opposed to the non-spatial variability considered in the 
deterministic/semi-deterministic analyses. These analyses were per-
formed as part of a parametric study, where the vertical cut height was 
varied with Ns ranging from 1 to 4. A series of Monte Carlo simulations 
were executed with the mixed limit analyses and generated random 
fields to determine the FoS. An illustrative plot, shown in Fig. 19, depicts 
the case of Ns = 2. It demonstrates that by considering the probabilistic 
cu, as well as the probabilistic CLx and CLy (Fig. 10 and Fig. 12) to 
generate the random fields, the mean FoS of the series tends to converge 
after approximately 3000 random simulations. Similar trends were 
observed across cases where Ns ranged from 1 to 4, indicating that 3000 
Monte Carlo simulations proved sufficient for the analyses. 

By definition, the PoF represents the percentage of unstable slope 
stability analyses among all probable slope stability analyses. For the 
probabilistic analyses in this study, the PoF is simply calculated as the 
ratio of the number of unstable slopes to the total number of slopes 
obtained from the Monte Carlo simulations. A convergence analysis was 
conducted to examine the influence of mesh size on the PoF. Initially, a 
series of analyses were performed by varying the mesh size and calcu-

lating the PoF. Fig. 20 illustrates the results for the case where Hcr ranges 
from cu/γ to 4cu/γ. In all the probabilistic analyses, the log-normal mean 
(19 kPa) was considered a more suitable measure of central tendency 
than the arithmetic mean (31.8 kPa), due to the log-normal distribution 
of the data explained in Section 3.1. The analyses presented in Fig. 20 
represent a set of simulations where the correlation lengths were 
allowed to vary based on the probability distribution depicted in Fig. 10 
and Fig. 13. The results demonstrated that the accuracy of the PoF was 
affected by the mesh density up to a density of 13.3 nodes per m2. For 
instance, as depicted in Fig. 20, when considering the case ofHcr = 4cu/γ, 
the PoF increases from 47% (at 0.9 nodes per m2) to 54% (at 13.3 nodes 
per m2) with an increase in mesh density. Beyond this point, a converged 
PoF is achieved. If not otherwise specified, the presented results for all 
probabilistic analyses were obtained using a mesh density of 13.3 nodes 
per m2. 

5.1.3. Comparison and discussion 
Fig. 21 displays a comparison between the PoF obtained from the 

semi-deterministic and probabilistic analyses. Two sets of probabilistic 
analyses were illustrated: one incorporating Monte Carlo sampling of 
correlation lengths from the distributions depicted in Fig. 10 and Fig. 13, 
and another where only the median values of the correlation length were 
sampled from both figures. By juxtaposing the unfactored semi- 
deterministic results (without considering the correlation length) with 
the probabilistic results (considering the correlation length), it becomes 
evident that the PoF values obtained from the semi-deterministic ana-
lyses, and both sets of probabilistic analyses are highly similar. 

These results are intriguing as they demonstrate that calculating the 
PoF using a non-spatially variable analysis with an accurate semi- 
deterministic approach yields equivalent results to a Monte Carlo 
random field analysis with spatial variability. Furthermore, the findings 
indicate that performing a full probabilistic analysis by varying the 
correlation lengths according to the distribution curves from Fig. 10 and 
Fig. 13 only provides a marginal improvement of 0% to 2% compared to 
probabilistic analyses where only the median correlation lengths 
derived from Bayesian Inference were utilized. 

Remarkably, the computational demands of the semi-deterministic 
analysis are substantially lower compared to those of a comprehensive 
probabilistic analysis, primarily due to the requirement of a significantly 
larger number of simulations in probabilistic analyses. For instance, in 
this case, the probabilistic analyses entailed 3000 Monte Carlo 

Fig. 18. Semi-deterministic analyses - Factors of Safety.  

Fig. 19. Probabilistic analyses calibration of number of Monte Carlo simula-
tions required. 
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simulations for a single slope geometry, whereas only 6 analyses per 
slope geometry were performed for the semi-deterministic analyses. 

5.2. Post-failure analyses 

In this section, cases with FoS less than 1 were re-analysed using the 
N-PFEM to investigate their post-failure stages. Fig. 22 presents an 
example of the visualisation of three distinct failure mechanisms 
observed in the slope stability analyses (Ns = 4) derived from the 
probabilistic analyses. These mechanisms are referred to as Stage 1 of 
the analyses, representing the initial state where no movement has 
occurred. Subsequent stages pertain to landslide analyses where further 
movement takes place. 

The visualisations reveal that, in all three cases, the primary factor 
contributing to instability is the presence of a low-strength layer near or 
just below the toe of the vertical cut. This layer exhibits high plastic 
strains. A rotational slip surface has been super-imposed on the slopes, 

denoting a similar failure surface as expected in deterministic analysis. 
However, the key distinction in the probabilistic failure surfaces is the 
occurrence of multiple fuzzy bands of plastic strains within the zone 
bounded by the rotational surface and the vertical cut. For instance, in 
Fig. 22(c) and (d), which represent the results from the 15th case (out of 
3000 Monte Carlo runs) involving a very low strength clay, the fuzzy 
bands of plastic strain within the rotational slip surface are more 
prominent, corresponding to layers of exceptionally low strength. These 
plastic strain bands are less prominent in simulations with higher shear 
strengths, as observed in Run 82 (Fig. 22(e) and (f)), where only a 
localised spot of plastic straining occurs at the toe. 

For the post-failure analyses, the simulations were continued until 
the maximum velocity within all nodes in the analysis domain dropped 
below 0.00001 m/s. To maintain conciseness, landslides extending 
beyond 125 m from the front of the slope were excluded, as they 
represent cases where the soil exhibits high flow and fluid-like proper-
ties for the geometry of the cutting vertical slope in consideration. 

Fig. 20. Mesh density vs probability of failure.  

Fig. 21. Probability of failure (mesh density = 13.3 nodes/m2).  
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Additionally, a landslide was deemed to have reached a final runout 
distance if an increase in ground level of 125 mm occurred at that dis-
tance due to the landslide. This threshold of 100 mm was selected which 
is slightly smaller than the height of a standard motorway kerb (i.e., 125 
mm). 

Fig. 23 illustrates the progression of a typical post-failure landslide 
obtained from the N-PFEM simulation. Starting from an initial stage (i. 
e., stage 0 as shown in Fig. 23(a)) where no movement or failure is 
observed, the plastic strain bands gradually develop and migrate, 
becoming more prominent. The landslide exhibits both forward move-
ment and retrogressive slip surfaces, leading to soil loss and instability in 
the opposite direction of the landslide flow. In Fig. 23(k), multiple quasi- 
rotational slip surfaces can be observed, indicating a complex pattern of 
fuzzy failure has occurred. These intricate fuzzy failure bands can be 
attributed to the spatial variability and horizontal layering induced by 
the random fields. 

The velocity of a landslide is a crucial factor in assessing the level of 
risk it poses to people, infrastructure, and the environment. A faster- 
moving landslide can result in more destructive consequences than a 
slower one. Understanding the velocity is essential for evaluating po-
tential impacts and developing appropriate mitigation measures. For 
slow-moving landslides, engineers may consider stabilising the slope 
with measures such as retaining walls or drainage systems. In contrast, 
rapidly moving landslides may necessitate evacuation plans and more 
robust engineering solutions. Fig. 24 presents the horizontal velocity of 
the front of the landslide at the same level of 100 mm above ground level 
for Run 18 (Fig. 23). This depiction reveals that the landslide velocity 
profile follows a parabolic trend. This parabolic velocity behaviour 
agrees well with the findings of Pudasaini et al. (2022) who also re-
ported a parabolic trend of landslide velocity based on a class of 
nonlinear advective–dissipative system. The parabolic trend is also 
consistent with the classic inviscid Burgers’ equation, typically used to 
model landslide velocities (Ma et al., 2023, Oberender et al., 2016). For 
the specific example with a log-norm mean cu of 5.976 kPa, a deter-
ministic approach predicts a runout greater than 125 m, suggesting the 
landslide would behave in a pseudo-fluid manner. This implies that 
considering spatial variability does indeed provide some resistance to 

landslide runout. 
A comparison was conducted between the results of probabilistic 

analysis and semi-deterministic analysis of the post-failure stages. 
Generally, design standards do not specify partial factors for cu when 
assessing movements of landslides. Therefore, a Eurocode 7 analysis in 
this section refers to an unfactored analysis. 

For semi-deterministic analyses, where soil strength is uniform, a 
specific value of cu will consistently result in a particular runout dis-
tance. For instance, as depicted in Fig. 25, a semi-deterministic cu of 9 
kPa and 12 kPa will always yield runout distances of 80 m and 40 m, 
respectively, for a slope height of 4.47 m. In contrast, probabilistic an-
alyses predict a range of possible runout distances spanning from 0 m to 
over 125 m. However, 89% of these runout distances were less than 80 m 
and 82% were less than 40 m. In probabilistic analyses, although the 
vertical cut is unstable, the influence of the correlation length (spatial 
variability) suggests that random layers with higher soil strength have a 
minimal mitigating effect on reducing landslide runout. As anticipated, 
runout distances are directly influenced by the slope height. For 
instance, at a slope height of 4.47 m, 1.6% of simulations exhibited 
runout distances greater than 80 m, while 0.27% of simulations sur-
passed 80 m for a lower slope height of 1.12 m. Additionally, for a slope 
height of 1.12 m, 0.4% of simulations, even though unstable, had a 
runout distance of less than 1 m, whereas for a slope height of 4.47 m, 
1.8% of simulations, even though unstable, had a runout distance of less 
than 1 m. 

A final analysis was conducted to elucidate the pivotal parameters 
influencing the runout distance. This involved plotting the mean cu, 
horizontal correlation length, and vertical correlation length against the 
runout distance, as depicted in Fig. 26. The results indicated that, when 
scrutinised individually, correlation lengths exhibited no discernible 
impact on the runout distance. However, drawing insights from the 
failure mechanism shown in Fig. 22 - where failure is contingent on 
plastic failure occurring at the toe of the slope, and since the occurrence 
of plastic failure is contingent on spatial variability - it can be deduced 
that the combined effect of both correlation lengths and the random 
field generation dictates the likelihood of a random weak spot materi-
alising at the toe of the slope. Consequently, this combined influence 

Fig. 22. Failure mechanism for various typical analyses.  
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bears significance in determining the runout distance. On the other 
hand, Fig. 26 reveals a trend with uncertainty for probabilistic runout 
distances concerning the mean undrained shear strength of the soil. 
Specifically, for landslide runout distances, the mean undrained shear 
strength, especially around the toe, emerges as the most significant 
factor. Additionally, Fig. 25 illustrates that in some cases, even with a 
very low mean undrained shear strength, no runout was achieved. This 
phenomenon is attributed to spatial variability providing some soil 
strength at the toe. 

6. Conclusions 

This paper presents a comprehensive investigation into the spatial 
variation of strength, specifically cohesion, in soft clay and its impact on 
slope stability analysis and post-failure analysis. In-situ cone penetration 

tests (CPTs) were conducted near the Tay River in Perth, Scotland, 
where alluvial soft clays are prevalent. The collected data was analysed 
to calibrate the probabilistic strength properties of the soft clays, 
including the distribution characteristics of undrained shear strength, 
vertical and horizontal correlation lengths, and more. Subsequently, 
slope stability analyses were performed using a mixed limit analysis to 
calculate the Factor of Safety (FoS) based on deterministic, semi- 
deterministic, and comprehensive probabilistic approaches. Addition-
ally, in the event of slope failure, post-failure analyses were conducted 
using a novel continuum approach called N-PFEM to analyse the failure 
evolution process and final runout distance. The major findings from this 
research can be summarised as follows. 

The surveyed undrained shear strength obeys well the log-normal 
cumulative distribution with a mean shear strength of 19 kPa, and a 
standard deviation of 3 kPa. A change between soft clays and sands 

Fig. 23. Visualisation of post failure process from N-PFEM simulation.  
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results in spikes in correlation function, leading to difficulties in deter-
mining correlation length. The correlation lengths exhibit statistical 
distribution patterns that can be modelled using Bayesian inference. 

However, in the case of the investigated soft soils, treating the correla-
tion lengths as distributions yielded only a minimal 2 % difference 
compared to using single centralized correlation length value such as the 

Fig. 24. Landslide horizontal velocity vs runout distance.  

Fig. 25. Landslide runout distances (probabilistic vs deterministic).  
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median value. This is considered true for soft soils with horizontal 
layering similar to those in the data studied. However, further in-
vestigations are needed for soils with different correlation length char-
acteristics, such as soils with substantial mixing rather than layering. 

The semi-deterministic analyses demonstrated remarkably similar 
results to the probabilistic analyses in calculating the probability of 
failure. This provides a significant advantage over probabilistic ana-
lyses, as it significantly reduces computation time and memory re-
quirements. Nevertheless, for post-failure analyses, the probabilistic 
approach provided more comprehensive results by considering the 
spatial variability of soils. It provided a range of runout distances with 
associated probabilities, whereas semi-deterministic analyses tended to 
yield fixed runout distances as single values. 
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