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A B S T R A C T

Recent climate change initiatives, such as ‘Mission Innovation’ launched alongside the Paris Agreement in 2015,
urge redoubled research into innovative low carbon technologies. However, climate change is an urgent problem
– emissions reductions must take place rapidly throughout the coming decades. This raises an important
question: how long might it take for individual technologies to emerge from research, find market opportunities
and make a tangible impact on emissions reductions? Here, we consider historical evidence for the time a range
of energy supply and energy end-use technologies have taken to emerge from invention, diffuse into the market
and reach widespread deployment. We find considerable variation, from 20 to almost 70 years. Our findings
suggest that the time needed for new technologies to achieve widespread deployment should not be overlooked,
and that innovation policy should focus on accelerating the deployment of existing technologies as well as
research into new ones.

1. Introduction

The role and importance of technological innovation in reducing
greenhouse gas emissions is well established in national and interna-
tional policies (DECC, 2012; CCC, 2013, IPCC, 2015, IEA, 2015). Recent
initiatives aimed at accelerating innovation in low carbon energy
technologies focus in particular on enhancing government funding for
research, development and demonstration (RD&D) (Mission Innovation,
2016; Breakthrough Energy Coalition, 2016; King et al., 2015;
Dechezleprêtre et al., 2016). Yet if low carbon technologies are to play a
substantial role in reducing carbon emissions in the coming decades,
then it will be necessary to not just research, develop and demonstrate
them, but to also make them commercially available and deploy them
at scale, since emissions must fall rapidly during the period to 2050 to
meet internationally agreed climate targets (IPCC, 2015, UNFCCC,
2015).

Much of the substantial literature on ‘innovation systems’ recognises
that innovation policy needs to include both increased funding for RD&
D and targeted measures to create market opportunities for low carbon
technologies (IEA, 2000; Anderson et al., 2001; Foxon et al., 2005;
Gross et al., 2012; Winskel et al., 2011), with ongoing debate on the

optimal mix for specific technologies (Helm, 2010, 2017; Nemet and
Baker, 2009; King et al., 2015; Policy Exchange, 2011).

However, the amount of time required for new technologies to
emerge from fundamental research, go through demonstration and
early stage deployment and diffuse into the market place also matters
greatly, for the obvious reason that policy makers and innovators need
a sense of how rapidly such technologies can make a material impact on
reducing emissions. For this reason mitigation scenarios produced by
integrated assessment models, which are central to low-carbon path-
ways analysis, are increasingly scrutinised with regard to their real-
world feasibility, often by comparing their rates of low carbon energy
technology deployment to historical rates of deployment of existing
energy technologies (Wilson et al., 2013; Iyer et al., 2015; Napp et al.,
2017; Van Der Zwaan et al., 2013, van Sluisveld et al., 2015), so as to
determine whether or not they are simply “computerised fairy tales”
(Smil, 2010b).

The issue of the time taken for technologies to commercialise has
received relatively little attention in the innovation literature, in spite
of its criticality to understanding the feasibility of future mitigation
pathways and directing technology innovation and deployment policy.
As discussed in Section 2.2, there have been a number of analyses on
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the timescale for the growth of different energy sources and energy
technologies from initial prototype to various stages of development
and maturity. But there has not yet been a detailed analysis of the
timescale from invention to an agreed definition of widespread com-
mercialisation of energy technologies. A key contribution of this paper
is to provide new empirical evidence and insights on the topic of
commercialisation timescales.

As we explain further in Section 2, there is a multitude of definitions
and conceptualisations of various innovation stages. The paper there-
fore proposes new definitions of different stages in technology devel-
opment and deployment that are designed to be simple and readily
intelligible to non-specialists. In particular, the paper develops a new
definition of ‘widespread commercialisation’ that represents a level of
deployment of a technology that can be considered fully commercia-
lised, but with potential to continue to increase market share. This al-
lows innovation timescales to be presented in an accessible form that
permits comparison between technologies and can be readily used by
policy makers who need to understand how long it could take for new
low-carbon technologies to become widely commercialised and able to
make a material contribution to emission abatement.

To summarise, the paper's contribution is to enhance knowledge on
innovation timescales, by providing empirical evidence and commen-
tary on how long it has taken selected case study technologies to
emerge from RD&D and achieve a readily understandable level of
widespread commercialisation.

The rest of this paper is set out as follows: Section 2 presents a brief
background on innovation processes and frameworks, before discussing
the recent literature that specifically examines the timescales and rates
of energy technology penetration; Section 3 describes the methodology
used to calculate the innovation timescales for a range of energy supply
and end use technologies, as well as justifying the selection of these
technology case studies; Section 4 presents and discusses the results;
Section 5 discusses the findings and limitations of the study. Section 6
concludes and discusses policy implications.

2. Background: the literature on innovation systems, stages and
timelines

This section firstly provides a brief overview of the frameworks used
to describe the stages and processes involved in technological innova-
tion and deployment. Empirical analyses of energy transitions that have
examined the timescales over which these stages and processes have
occurred are then summarised. Finally, the section identifies gaps in the
existing literature with regard to innovation and widespread commer-
cialisation timescales, and discusses the contribution that this study
makes.

2.1. Frameworks and models of energy technology innovation and
deployment

There is a large literature on technology innovation in energy and
other sectors. Early perspectives focused on a relatively simple, one-
directional journey from basic research to applied research to tech-
nology development and diffusion, suggesting that the optimal way to
increase the output of new technologies was to put more resources into
R&D, a process called technology or supply-push (Schumpeter, 1934).
An alternative perspective, demand-pull, gained traction in the 1950s
(Carter and Williams, 1957), arguing that demand for products and
services was more important in stimulating inventive activity than
advances in the state of knowledge (Allen, 1967). Fri (2003) contends
that the model of innovation called research, development, demon-
stration and deployment (RDD&D), which combines supply-push and
demand-pull activities has set the form for virtually all discussions on
energy innovation.

There are a variety of models of technology diffusion in the litera-
ture which attempt to explain factors governing the speed of adoption
of new technologies and giving rise to the typical shape of the tech-
nology S-curve (Geroski, 2000), illustrated in Fig. 1. Diffusion of in-
novations theory (Rogers, 1962) sets out the conditions under which
innovative products may become accepted by consumers over time, so
as to lead to their widespread acceptance and purchase. Whether con-
sumers purchase an innovative product depends on how much they are
aware of any relative advantage over alternative products, and whether
they are motivated to find out more about the innovation (Faiers and
Neame, 2006).

Five groups of adopters are identified by Rogers (1962): innovators,
early adopters, the early majority, the late majority, and laggards. The
Bass model of product growth (Bass, 1969) builds on Roger's adoption
groups, so that early adopters through to laggards are considered to be
‘imitators’ of initial innovators. As more consumers adopt a product,
imitators are influenced in the timing of their adoption by increasing
social pressure to take up a product. According to the Bass model, the
probability that the initial purchase of a new product will be made at a
given point in time is ‘a linear function of the number of previous
buyers’ (Bass, 1969).

The ‘Epidemic’ model (Bartholomew, 1973) is commonly used to
account for the S-curve, and is based on the assumption that a lack of
available information about a technology constrains its rate of uptake.
Alternatively, the ‘Probit’ model (Davies, 1979), assumes that different
firms have different objectives and skills, and therefore do not all adopt
a technological innovation at the same time. In this model, diffusion
takes place as different types of firms choose to adopt a new technology
(Geroski, 2000).

The RDD&D, technology lifecycle and technology diffusion models
present a somewhat linear, successive picture of technology develop-
ment, which has been challenged by recent approaches which have
noted the importance of more complex, systemic feedbacks between the
supply and demand sides (Foxon, 2003), as well as the role of agents
and actors in developing and deploying technologies within a broader
socio-technical landscape. Examples of specific approaches include
‘technological innovation systems’, ‘technological transitions’, and the
‘multi-level perspective’ (Foxon, 2003). Technological Innovation Sys-
tems (TIS) theory aims to understand how new technologies can evolve
through interactions between actors, networks and institutions (Bergek
et al., 2008; Bento and Fontes, 2015). Transitions theory emphasises the
importance of technological and market niches by which an innovation
can be protected from normal market conditions and nurtured for a

Fig. 1. Typical technology S-curve.
Source: Taylor and Taylor (2012)
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period of time. A key element of transitions theory is the ‘multi-level
perspective’ which stresses that transitions do not only involve changes
in technologies, but also changes in user practices, regulation, in-
dustrial networks, infrastructure and symbolic meaning or culture
(Geels, 2002).

The innovation frameworks and models of technology diffusion so
far discussed highlight the importance of different activities to develop
and deploy technologies, the institutions and actors involved in their
penetration into the energy system, the role of consumer behaviour and
information diffusion, as well as the different stages of technology
maturity. However, the above concepts do not explicitly allow an ex
ante quantification of the time taken for these processes to occur. To
address this question, a more empirical literature has emerged, as dis-
cussed in the following sub-section.

2.2. Innovation and deployment in the energy sector

The foci of existing empirical analyses on innovation timescales are
diverse, ranging from analysis of discrete technologies moving through
a particular innovation stage (Bento and Wilson, 2016) to analysis of
long term historical transitions of fuel sources, energy services and in-
dustries (Fouquet, 2010; Perez, 2002; Smil, 2010b; Pearson and
Arapostathis, 2017). In addition, a very recent literature seeks to un-
derstand the feasibility of future low carbon scenarios by comparing
low carbon energy technology deployment rates with historical de-
ployment rates for existing energy technologies (Wilson et al., 2013;
Iyer et al., 2015; Napp et al., 2017; Van Der Zwaan et al., 2013, van
Sluisveld et al., 2015).

It has been suggested that technological innovations typically take
between five and seven decades to travel from invention to significant
market shares (O'Neill et al., 2003, Grubler, 1998). Perez (2002) con-
siders ‘radical’ innovations from the 1770s to 2000s, and observes that
successive ‘technological revolutions’ took between 43 and 66 years to
reach maturity. These include innovations associated with the in-
dustrial revolution, steam railways, steel and electricity and auto-
mobiles. Wilson and Grubler (2010) cite a variety of examples and
conclude that on a global scale it has taken 80–130 years for new en-
ergy technology clusters to achieve market dominance, and about twice
as long when considering the entire technology life cycle from first
introduction to market maturity.

However, the timescales needed for new technologies to diffuse
widely are contested. For example, Sovacool (2016) argues against the
widespread view that energy transitions are inevitably slow, noting that
it runs contrary to a number of important ‘quick’ empirical examples,
from nuclear power in France to improved cooking stoves in rural China
(Sovacool, 2016). Further rapid transitions include from petrol to bio-
fuels in cars in Brazil (Grad, 2006), the switch from coal-based town gas
to natural gas in the UK (Arapostathis et al., 2013) and the rapid ex-
pansion of wind energy in Denmark (Napp et al., 2017).

However there is no consensus definition of technological maturity
in the sense of when or at what market share a particular technology
can be considered as firmly established, widely available and com-
mercially viable. Kramer and Haigh (2009) identify a distinct stage at
which energy sources reach what they term “materiality”, whereby they
constitute about 1% of global primary energy supply, at which point
their annual growth transitions from exponential to linear. Wilson et al.
(2013) focus on the time taken for a range of energy technologies to
grow from 10% to 90% of their long-term saturation level, termed the
“duration” level by the authors, and in most cases taking several dec-
ades. One reason for the apparent disagreements over timescales would
appear to be a lack of agreement over what constitutes widespread
deployment.

Grubler et al. (2016) elaborate on differences between slow and
rapid energy transitions, arguing that the examples of quick transitions

provided by Sovacool (2016) are generally either new technologies
which substitute for older ones or have been previously used in other
markets, or which offer a high degree of tangible benefits for adopters.
Conversely, slower energy transitions may require changes to take place
in multiple technologies, infrastructures and institutions, extensive time
to develop and test new concepts, and may entail investments in large-
scale and costly technologies and infrastructures whose benefits may be
longer term, social or environmental (i.e. non-market), and therefore
less immediately tangible to consumers (Grubler et al., 2016).

Some of the most rapid energy technology growth rates have been
used as benchmarks against which to test the feasibility of low carbon
transitions. For example, Iyer et al. (2015) survey a range of national
and international historically achieved energy technology deployment
rates to inform a maximum 15% annual growth rate constraint on in-
dividual energy technologies in their low carbon pathway scenarios.
This compares to Kramer and Haigh (2009) who observe an approx-
imate 25% annual growth rate in primary energy sources achieved over
the early decades of their deployment. Wilson et al. (2013) use a dif-
ferent combination of metrics to compare future low carbon technology
deployment rates to historical rates, based on the time taken to grow
from 10% to 90% of their eventual market saturation level. van
Sluisveld et al. (2015) further develop this analysis to account for the
growing size of the economy and energy system over time. Napp et al.
(2017) combine a number of historical technology deployment metrics
to impose constraints on modelled low-carbon pathways, concluding
that if all available historical energy system transition metrics are taken
into account, then the ability of their energy system model to meet a
2 °C climate target is severely compromised.

Overall it appears that there is conflicting evidence on the speed of
energy technology penetration into energy systems, and considerable
variability in the metrics used to measure the timescale to widespread
deployment.

2.3. Gaps in the literature and contribution of this study

This paper sets out to improve understanding and clarity for policy
makers on how long it can take for new technologies to significantly
penetrate into the energy system from their point of invention. The
paper addresses a number of gaps in the existing literature. In particular
there are a wide range of metrics used to assess timescales in the ex-
isting innovation literature, and a lack of formal definitions of stages of
technology development, particularly with respect to when a tech-
nology can be considered to be widely commercialised (Bento and
Wilson, 2016; Grübler et al., 1999; Lund, 2006; Rogers, 1962; Smil,
2010a; Wonglimpiyarat, 2005). There are also a lack of analyses
charting the whole innovation journey from invention to maturity.
Bento and Wilson (2016) use a variety of metrics to measure the length
of the ‘formative phase’, which represents the point at which a tech-
nology transitions from an emergent market into a more established
market. Our paper goes beyond this analysis in applying a clear and
comparable definition of widespread use that charts a more extended
journey towards wider commercialisation.

We provide further weight to empirical evidence on historical de-
ployment rates of energy supply and end use technologies which can be
compared with deployment rates assumed in integrated assessment
models used to construct low carbon scenarios. In general our findings
contribute to existing empirical studies which contest whether diffusion
timescales for energy technologies are longer and may take place over
several decades (Wilson et al., 2013; Grubler et al., 2016) or more ra-
pidly for particular technology substitutes (Sovacool, 2016). One sur-
prising result from our analysis is the extended time taken for the car to
reach widespread commercialisation, which is related to a number of
contextual, income and economic growth-related factors (see Section
5.1).
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3. Methodology

This paper has two broad areas of investigation: an empirical review
of the time taken from invention to widespread commercial use for a
range of technologies and; a conceptual and definitional discussion of
innovation stages, rooted in the literature on innovation. The empirical
dimension of the paper, as discussed in Section 3.1, is based upon an
evidence review undertaken using an approach developed by the au-
thors for the UK Energy Research Centre (Speirs et al., 2015). The
conceptual discussion of innovation stages, as presented in Section 3.2,
is undertaken in order to develop our own definitions of innovation
start and end points, which we apply to the empirical case studies.

3.1. Evidence review on innovation

The evidence review sought out a range of technologies and used a
variety of innovation related search words. Relevant literature was
identified through keyword searches for innovation concepts, de-
scriptors of time and technologies or products (Appendix A) within two
databases, Elsevier Science Direct (Elsevier, 2015) and World Cat
(OCLC, 2015). Initially, innovation and temporal keywords were used
as the search terms, and subsequently combined with product or
technology keywords based on the initial searches (Fig. 2). A snow-
balling technique (Greenhalgh and Peacock, 2005) was also employed
which involved following citation trails of documents identified
through the keyword searches and including relevant cited documents
in the evidence database, in order to widen the number of potential
technology or product case studies. Ultimately, 13 successfully com-
mercialised innovations were identified as being instructive to the re-
search aims and for which sufficient information was available to
quantify timescales from invention to widespread commercialisation
(Fig. 2).

Following the filtering of retained search results key descriptive
information on each of the results were captured: (i) the innovative
product or technology considered; (ii) the timescales for specific in-
novation stages presented and; (iii) the geographic region (if not
global).

It should be noted that there are several other technologies for
which innovation journeys have been examined and discussed in the
literature. These include: various innovations in the US steel industry
(Gold et al., 1984); the dieselisation of railways (Mansfield, 1965); the
diffusion of the basic oxygen furnace (Oster, 1982); and alternative
fuelled vehicles (Yeh, 2007). However, as with Lund (2006), which
compares market penetration rates for 11 energy technologies, we limit
ourselves to those case studies for which data availability permitted a
like-for-like comparison of innovation timescales.

We compare a wide diversity of technologies – energy supply and
end use technologies, component parts (batteries), and various ‘as-
sembled products’ (Utterback, 1994) including consumer electronics
and the car. This technology diversity allows us to compare the time
taken to widespread commercialisation for both technological innova-
tions which can help to achieve energy systems decarbonisation, and
wider consumer products or technologies such as the car, mobile phone,
VCR and ATMs/cash cards.

Through this comparison we can observe differences in innovation
timescales between technologies aimed at climate change mitigation
and those which have experienced strong market demand from con-
sumers or provide distinct novel or replacement services for consumers.
The 13 innovations selected for the construction of innovation timelines
were organised into three groups: novel energy end use and consumer
products (new products with entirely new markets); replacement en-
ergy end use and consumer products (new technologies which replace
but perform a similar function to an existing product with an incumbent
market); and electricity generation technologies.

We deliberately chose technologies which have entered widespread
use and have been commercially successful and widely adopted in at
least some markets, and do not consider ‘failed’ technologies. This as-
pect of technology choice was largely pragmatic, reflecting a choice of
technologies for which good data were available and which would be
widely recognised by policymakers and a wider audience as being in
widespread use, though not necessarily ubiquitous. We included elec-
tricity generation technologies that might be viewed as less than fully
commercialised (for example wind power or solar PV) or for which
market size might have been larger (nuclear power). The judgements

Fig. 2. Schematic illustrating approach to selecting case study technologies through the evidence review.
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we made around definitions of widespread commercialisation and
overall market share are discussed in Section 3.2.

The categories are chosen to help provide insight into some of the
key factors that affect how rapidly new products reach commercial
maturity. As we discuss below, the innovation literature suggests that
replacement products may reach widespread commercialisation more
quickly than those which require the creation of new markets, infra-
structures, regulatory environment and consumption patterns (Grübler
et al., 1999). The distinctions are approximate in some instances and
there may be debate at the margin, for example whether cars (‘horseless
carriages’) are replacement horses, or whether VCRs could be con-
sidered a replacement for reel to reel cinematography. We argue that
the capabilities of cars and VCRs represent such fundamental de-
partures from any predecessors that it is better to consider them as
entirely new products.

We note that Saviotti and Metcalfe (1984) discuss a categorisation
of products in terms of whether they offer new technical characteristics
and/or new services. In this regard, we consider that new forms of
electricity generation are also replacement technologies – since they
provide the same service or output as the power generation technolo-
gies which they replace. We give separate attention to electricity gen-
eration technologies because many analyses suggest that electricity
sector decarbonisation is of particular importance in reducing overall
emissions (IEA, 2015, IPCC, 2015, CCC, 2015, Bassi et al., 2013) and in
addition the market for these technologies is not end users (as in the
case of the other technologies), but rather utilities providing electricity
supply.

The geography chosen to assess the time taken for innovation is also
important, since in many instances particular countries or regions
provided important early markets1 for new technologies. In a manner
similar to that used by Bento and Wilson (2014), we assess the time
taken to reach widespread commercialisation in early or lead markets
at a national scale. In two cases market diffusion occurred rapidly
across multiple countries over a short period of time (LCD-TVs and li-
thium ion rechargeable batteries) and we therefore present data for
global market growth for these technologies. Since the point of inven-
tion is not geographically restricted and may be distinct from the
country that went on to provide the first market for an emerging

technology we take the year of invention as the time it occurred in any
location in the world.

Table 1 provides an overview of the main technologies and their
year of invention, technology categories and geographies included in
the analysis.

3.2. Defining the different stages of the innovation journey

As shown in Table 2, the innovation literature uses a wide range of
terminology to describe progressive stages of technological innovation
(Dismukes et al., 2009; Wonglimpiyarat, 2005; Perez, 2002; Taylor and
Taylor, 2012; Gao et al., 2013; Yeo et al., 2015). However, it is possible
to identify phases for which multiple terms are used but which appear
to be, in broad terms, consistent. For the purposes of this study, the
timescales for each innovation were initially grouped according to three
progressive phases in the innovation life cycle, identified for every
product in the evidence assessment: ‘development’, ‘market formation’,
and ‘growth and diffusion’. These categories were further rationalised
into two composite phases: ‘invention, development and demonstra-
tion’ and ‘market deployment and commercialisation’ (Fig. 3). The first
of these begins with invention and encompasses research and devel-
opment, and ends at the point of market introduction of an innovation.
The second phase starts with market introduction and ends when a
technology or product reaches a point which we have defined as
‘widespread commercialisation’.

Fig. 3 provides a schematic of the phases defined for this study, and
the wider terminology used to define different phases in the literature.
Defining the start and end points of these innovation stages is not un-
complicated and providing appropriate definitions and distinctions
therefore comprised an important component of the research.

We have generally taken the point of invention for each innovation
as the year in which a product or a technological application was
conceived and tested at laboratory scale – the first laboratory test of a
prototype such as a solar cell or cathode ray tube. This is similar to the
narrow definition of innovation in Grübler et al. (1999) as the first
‘practical application of an invention’. However for many of the in-
novations studied, the basic scientific or engineering principles under-
pinning an innovation predate even the laboratory stage by several
decades. For example, in 1954 Bell Laboratories developed a silicon-
based, laboratory-scale solar PV cell which could be translated rapidly
into practical application. In the following year, Bell Laboratories used
this breakthrough cell design to construct a silicon solar PV module for
outdoor use to power telephone lines in Georgia. Yet, the photovoltaic
effect itself was established using selenium in the late 1870s (Perlin,
1999).

Table 1
Innovations and geographies.

Innovation category Product or technology Year of
invention

Geography/ geographies applying to market introduction
and widespread commercialisation

Novel products for new markets – energy end
use and consumer products

Cars 1885 US
Cathode Ray Tube (CRT) TV 1912 US
ATM/Cash cards 1964 UK
Video cassette recorder (VCR) 1956 UK

Replacement products – energy end use and
consumer products

Mobile phone 1970 US
Thin Film Transistor Liquid Crystal
Display (TFT-LCD) TV

1988 Global

Lithium ion rechargeable batteries for
consumer products

1979 Global

Compact fluorescent light bulbs
(CFLs)

1976 UK

LED lights 1992 UK
Electricity generation technologies Combined cycle gas turbines (CCGT) 1949 UK

Wind electricity 1957 Denmark
Nuclear power 1941 France
Solar photovoltaics (solar PV) – grid-
connected

1954 Germany

1 These are not necessarily the definitive lead markets for each technology
included in this study, and they were also selected based on available data
permitting timescales to be quantified according to the definitions for innova-
tion stages applied in the analysis.
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For all end use and consumer products, we define market in-
troduction as the point in time when products first became commer-
cially available. For electricity generation technologies, market in-
troduction refers to the commissioning of the first commercial units
which generated electricity for supply to the grid, discounting early
demonstration installations or grid-connected prototypes – similar to
the approach taken by McDowall (2015) to pinpoint market entry for
hydrogen fuel cell vehicles. Details of the judgements made for each
technology are provided in Appendix C.

Defining ‘widespread commercialisation’ is more challenging. This
is because a judgement is needed about when a technology is ‘wide-
spread’ or ‘mature’ or ‘established’. The term we use throughout this
paper is ‘widespread commercialisation’. This is not as hard and fast a
concept as invention point or the entry of the first products into a
market. We therefore utilised and extended definitions from the lit-
erature, which are summarised in Table 3. For example, Grübler et al.
(1999) refer to the notion of the ‘pervasive diffusion’ of technologies in
which a rapidly increasing commercial market share of 5–50% is

achieved. Based on Rogers (1962), wider commercialisation might be
represented by between 15% and 50% of potential adopters taking up a
new product: if the early majority adopts an innovation, this would
cover half the eventual number of adopters, as opposed to the first 15%
being accounted for by initial innovators (2.5%) and early adopters
(12.5%). Lund's comparison of market penetration rates for energy
technologies uses a definition of ‘market potential’ taken at different
market shares (1–50%) for different technologies, varying both by
constraints to reaching higher market shares (e.g. renewable energy
intermittency) and the geographical size of the market (Lund, 2006).
Vaclav Smil provides a more consistent definition – referring to the time
taken for the rise of a new “fuel or prime mover” from a 5% to a 25%
share of global energy supply (Smil, 2010a). Wonglimpiyarat (2005)
refers to a ‘means to market’ phase which begins after: ‘…the dis-
tribution capabilities (distribution channels) are sufficient to access
20% of the target population of users for the innovation’. Bento and
Wilson propose that a 10% market share represents one indicator of the
end of the ‘formative phase’ (Bento and Wilson, 2016). The precise
meaning of the end of the formative phase is linked to innovation
systems theory, representing a transition point between a technology
that is in a nascent market and one that is in a more established market.
In terms of the journey towards wider commercialisation, this falls
some way short of the definition of widespread use sought for this
paper.

There are thus no agreed quantitative definitions of invention,
market introduction or widespread commercialisation in the literature.
The size and specification of market share that is chosen to represent
widespread commercialisation differs considerably within the literature
and there is no more consistency (and indeed some ambiguity) over
what reference point – ultimate market size, fully adopted, saturated,
etc. – is used (Table 3). The definitions of start points and – even more
challenging – the end point used herein were therefore chosen to permit
technologies to be compared on a ‘like for like’ basis within each of the
technology categories described in the main text. They were created to

Table 2
Key terms used to describe processes and stages of energy technology innovation (adapted from Wilson and Grubler, 2014).

Key term Definition

Invention Origination of an idea as a technological solution to a perceived problem or need
Innovation Putting ideas into practice through an iterative process of design, testing, application and improvement
Research and development (R&D) Knowledge generation by directed activities (e.g. evaluation, screening, research) aimed at developing new or improving

on existing technological knowledge
Demonstration Construction of prototypes or pilots for testing and demonstrating technological feasibility and/or commercial viability
Research, development and demonstration (RD&D) A commonly used grouping of the main pre-commercial stages of the innovation cycle
Niche markets Application of a technology in a limited market setting (or niche) based on a specific relative performance advantage (or

on public policy incentives) and typically protected in some way from full market competition
Market formation Activities designed to create, enhance, or exploit niche markets and the early commercialisation of technologies in wider

markets
Diffusion/deployment Widespread uptake of an energy technology throughout the market of potential adopters
Innovation, technology or product (development)

life cycle
The sequence of processes and stages of an innovation's journey from invention right through to senescence or
obsolescence

Fig. 3. Phases of the innovation timeline (authors’ own).

Table 3
Definitions of widespread market diffusion of innovations: examples from the literature.

Author(s) (year) Name / description of metric Definition of widespread market diffusion

Bento and Wilson (2016) Formative phase 10% of eventual market saturation (units produced and capacity installed); or
10% of maximum unit capacity

Grübler et al. (1999) Pervasive diffusion 5–50% commercial market share
Lund (2006) Market potential 1–50% market potential or adoption ceiling
Rogers (1962) Early majority 15–50% of potential adopters taking up an innovation
Smil (2010a) Time for a new ‘fuel or prime mover’ to achieve given shares of

total global energy supply
25% share of global energy supply

Wonglimpiyarat (2005) Means to market Distribution channels can access 20% of target population of users for the
innovation
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help inform policy by providing a reasonable approximation of the time
taken for a successfully commercialising product to emerge from the
research stage and commercialise – in particular, to represent when use
of new products became widespread, though not necessarily ubiquitous
or market saturated. This is important because a principal goal of the
research is to assess the time needed to achieve usage on a scale where
it might be material to carbon abatement goals. Whilst acknowledging
that there is no ‘right answer’ (it could be 15% or even 50% of ultimate
market) we propose 20% of ultimate market size as an approximate
measure of widespread commercialisation, for all categories of tech-
nology. More precisely, our definitions are as follows (see also Table 4):

We consider both novel products for new markets and replacement
products to have reached widespread commercialisation when the
number of products in use (i.e. the yearly number of products in
ownership, use or installed in the marketplace) first reaches 20% of
peak products in use (i.e. the maximum number of products in own-
ership, use or installed in the marketplace, based on annual time series
data). Electricity generation technologies are considered to be in wide-
spread commercialisation when their installed capacity first reaches
20% of peak installed capacity of the technology in question (the
maximum installed capacity of that technology – not all electricity ca-
pacity – based on annual time series data).

Only a few of the technologies included in this analysis are obsolete
(e.g. CRT TVs have been replaced by LCD TVs; VCRs were replaced by
DVD players), while the installed capacity of nuclear power in France
peaked in 1999. Most of the innovations included in the study are
contemporary, commercially established technologies, with sales that
continue to add to the cumulative stock of products, and many have yet
to reach their maximum market volume. In these cases, the current2

number of products in use (or installed capacity for electricity gen-
eration technologies) is taken as a proxy for the peak market size. This
is discussed further in Sections 4.2 and 5.1. In all cases a variety of
alternative definitions were explored in the research, including when
replacement products overtook sales of incumbent products, or when
electricity production reached a fraction of total electricity sales (Hanna
et al., 2015). The definitions above were chosen in order to maximise
consistency across our categories of innovative product. In the case of
electricity generation we chose fraction of total installed capacity of the
technology in question (wind, gas, solar, etc.) rather than total installed
capacity, electricity sales, or share of customers for the reason that in
many (almost all) countries a mix of power generation sources are used
and there is no reason to expect any one technology will come to
provide all electricity. In line with the pragmatic approach taken gen-
erally we were seeking a measure that would permit a consistent and
readily understood definition of widespread commercialisation.

We have characterised the innovation journey in terms of the cu-
mulative adoption of each technology against time. Progress with in-
novation could alternatively be measured through patent applications
or technological performance and there are alternatives to using time as

a metric for the innovation journey, such as tracking innovation against
investment in technological development (Taylor and Taylor, 2012).
However the focus of the paper is on the temporal dimension of tech-
nology development.

In Appendices B and C we present in further detail the timelines for
each technology reviewed and some of the assumptions and judgements
that were used to determine these timescales. We also provide the
historical context and reference sources used to construct timelines for
each technology.

A final and crucially important point of note before discussing
specific technologies is that innovation does not proceed in a linear
fashion from one stage of the technological diffusion to the next (Wilson
and Grubler, 2014). The ‘innovation journey’ should not be conflated
with any suggestion that R&D is ‘finished’ for any particular technology.
Technologies rarely move out of the R&D stage completely following
market introduction. Ongoing R&D is crucial to improving performance
and reducing costs even in the most mature of technologies (Sanden and
Azar, 2005). This is a fundamentally important caveat to the historical
analyses that follow and a point we reiterate in our discussion and
conclusions.

4. Key findings on innovation timescales

4.1. Introduction

This section provides an empirical review of 13 products and
technologies whose journeys from invention to widespread commer-
cialisation span the late 19th Century through to the present time. A
detailed review of sources of historical information is drawn together
with the definitions of the start of each stage and reaching of wide-
spread commercialisation, as explained in Section 3.2. Technologies are
organised into three categories, described below in order to inform a
discussion of factors which affect the time taken for products to enter
into markets and reach widespread commercial use.

4.2. Chronology of innovations

The technologies here represent a diverse range of consumer goods,
together with electricity generation options. Most were invented after
1940 – while the car and cathode ray tube TV (CRT TV) were invented
in 1885 and 1912 respectively (Fig. 4). More recent products appear on
the whole to have developed and commercialised more quickly, al-
though additional research based on a larger sample of technologies
more evenly distributed through time would be needed to confirm this
trend. The nature of our definition of widespread commercialisation
also creates a tendency towards comparatively longer timescales for
older, obsolete products such as the CRT TV, whose market volume
peaked and then declined. Conversely, our approach might create a
tendency towards shorter timescales for those products which can be
considered widely commercialised, but may have yet to reach their
ultimate market volume. This latter effect applies both to the car and to
more recent products in the sample (see Section 5.1).

Table 4
Defining the point of widespread commercialisation.

Innovation category How widespread commercialisation is defined in this study Geographies applicable

Novel products for new markets When the yearly number of products in ownership, use or installed in the marketplace first reaches 20% of
peak products in use (i.e. the maximum number of products in ownership, use or installed in the
marketplace, based on annual time series data).

UK, US

Replacement products or
technologies

As above UK, US, Global

Electricity generation
technologies

When installed capacity first reaches 20% of peak installed capacity (i.e. the maximum installed capacity of
that technology based on annual time series data).

UK, Denmark, France,
Germany

2 Based on the latest available year of data collected as part of the evidence
review.

R. Gross et al. Energy Policy 123 (2018) 682–699

688



4.3. Duration of innovation: general observations

The findings demonstrate that the journey to our definition of
widespread commercialisation takes between two and four decades for
most of the products and technologies reviewed. The median time taken
from invention to widespread commercialisation was 32 years. Fig. 5
orders the innovations by the duration of their innovation journey. The
shortest time to commercialisation was 20 years (for the LCD TV), while
the longest was 69 years (the car). Although the median duration of the
two innovation stages (invention, development and demonstration, and
market deployment and commercialisation) is the same at 18 years, the
length of each phase shows considerable variation across the innova-
tions reviewed. For example, the shortest time taken for invention,
development and demonstration was 5 years (the compact fluorescent
light bulb and the LCD TV), while the longest was 37 years (solar PV).

Similarly, the shortest time from market introduction to widespread
commercialisation was 8 years for the VCR whereas the longest was 46
years (the car). In addition, CCGT in the UK took just 5 years to reach
widespread commercialisation after a 15-year moratorium on gas
generation and during the ‘dash for gas.’ The particular case of CCGT is
discussed in Section 5.1.

4.4. Duration of innovation by technology category

Fig. 6 groups the innovation timescales by technology category:
Novel energy end use and consumer products (new products with en-
tirely new markets); Replacement energy end use and consumer pro-
ducts (new technologies which replace but perform a similar function to
an existing product); and electricity generation technologies.

Fig. 4. Historical timelines of innovation for all technologies reviewed.

Fig. 5. Duration of innovation for all technologies reviewed.
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5. Discussion

In what follows we consider the implications and limitations of the
findings of the review, and compare the findings to the observations
made by other authors. Overall, electricity generation technologies
exhibit some of the longest commercialisation time periods within the
technologies reviewed. The median time from invention to widespread
commercialisation was 43 years for the four electricity generation
technologies included in our study. In comparison, the nine energy end
use and consumer products have a median duration of 27 years from
invention to widespread commercialisation (Table 5). Lund (2006) also
finds a shorter time to market penetration for some energy end use
products (which can be less than 25 years) compared to energy pro-
duction technologies. Our research does not provide a clear reason for
this difference; however it is consistent with a number of potential
explanations. For one, electricity generation technologies typically have
long asset lives – several decades in the case of power stations. They
therefore take longer to replace than many consumer products

(Grubler, 1998). A number of studies also indicate that electricity
generation technologies require time to achieve up-scaling, thereby
enabling the widespread deployment of large-scale units (Bento and
Fontes, 2015; Grubler, 2012; Wilson, 2012).

The two renewable generation technologies, solar PV (55 years in
Germany) and wind (40 years in Denmark), also have amongst the
longest timescales of the 13 innovations included in our study. Slow
diffusion timescales for renewable energy technologies were observed
in the early 2000s in European countries by Negro et al. (2012), who
point to a range of innovation system failures which constrain their
deployment, such as a lack of long term and consistent institutional
support. Such failures are compounded by lock-in to incumbent fossil
fuel technologies which have become optimally aligned with sup-
porting institutions and have benefited from economies of scale and
technological learning over extensive periods of time (Negro et al.,
2012). However it is important to note the significant growth in re-
newables capacity experienced in many countries in more recent years.
It is possible that diffusion rates will increase as technology costs fall.

Fig. 6. Historical timelines by product / technology category.

Table 5
Range of innovation duration by technology category (median durations indicated in brackets).

Innovation group Innovation sub-category Invention, development and
demonstration

Market deployment and
commercialisation

Total duration
(years)

Energy end use and consumer
products

Novel products for new markets 7–26 (21) 8–46 (16.5) 22–69 (35.5)
Replacement products 5–13 (10.0) 14–27 (15.0) 20–32 (27.0)

Energy end use or supply Energy end use and consumer
products

5–26 (12.0) 8–46 (15.0) 20–69 (27.0)

Electricity generation
technologies

18–37 (24.0) 18–21 (19.0) 39–55 (43.0)

All innovations Median 18.0 18.0 32.0
Minimum 5 8 20
Maximum 37 46 69

Table notes.
Novel products for new markets: Cars; Cathode Ray Tube (CRT) TV; ATM/Cash cards; and VCR.
Replacement products: Mobile phone; Thin Film Transistor Liquid Crystal Display (TFT-LCD) TV; lithium ion rechargeable batteries; compact fluorescent light bulbs
(CFLs); and LED lights.
Electricity generation technologies: CCGT, nuclear power, wind electricity and solar PV.
The market deployment and widespread commercialisation phase and the median total timescale for the electricity generation technologies include the EU regulatory
restriction on gas generation (and therefore CCGT) from 1975 to 1990.
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As noted in Section 3.1, it has been suggested that new products
which replace the function provided by a pre-existing product diffuse
more quickly than those products which provide a completely new
service (Grübler et al., 1999). If new institutions or infrastructures are
needed to commercialise a technology, it will tend to take a longer time
to develop and its diffusion is likely to be slower. Conversely, the rate of
technological diffusion may be faster for replacement products which
have a greater perceived relative advantage over incumbent or rival
products (Grubler, 1998). More rapid formative phases have been ob-
served for innovations which are ‘ready substitutes’ for pre-existing
technologies, compared to ‘non-ready substitutes’ which take longer to
align with new institutions and stimulate market demand (Bento and
Wilson, 2016). This is broadly consistent with our review findings,
which show that replacement consumer products had a shorter median
period from invention to widespread commercialisation (27 years) than
products aimed at entirely new markets (35.5 years) (Table 5). Many
factors are relevant here, not least the dramatic reduction in retail
prices of ‘aspirational’ products such as flat screen TVs relative to prices
for incumbent products and to incomes (Energy Saving Trust, 2007).
The LCD TV travelled from invention to widespread commercialisation
in less than half the time (20 years) it took the Cathode Ray Tube (CRT)
TV (44 years).

It is important to exercise considerable caution in drawing overly
firm conclusions from the relatively small sample the review con-
sidered. Moreover, two of the four new products - cash cards/ATMs and
the videocassette recorder – achieved widespread commercialisation in
less than three decades (Fig. 5). Nevertheless, it appears likely that
replacement products which do not require new infrastructure or in-
stitutions will tend to reach widespread commercialisation more ra-
pidly than entirely new concepts that require wider system change.

5.1. Limitations

In seeking a widely applicable definition of widespread commer-
cialisation, based upon available data, our analysis gives rise to a
number of difficulties and limitations. Some of these manifest with
regards to particular technologies, others are more generic. We discuss
each in turn.

The car: The long timescale for the car came as a considerable
surprise given the rapid adoption of automobiles in the US in the early
twentieth century. The principal reason it took so long for the car to
reach our definition of widespread commercialisation in the US is that
extensive growth in the market for automobiles continued over most of
the twentieth century. This was driven as much by population and
economic growth, and growth in private incomes, as innovation in
vehicle manufacturing and technology. Incomes needed to reach a level
sufficient for widespread uptake of the car to be possible (Grubler,
1998), since the purchase of a car required (and still does) a very large
expenditure relative to income compared to all the other consumer
products reviewed.

Gas fired power stations: CCGT in the UK is also a special case,
because it experienced a significantly later market introduction in the
UK than globally (the first ‘large’ CCGTs over 100 MW were sold in
Japan and France in 1970), due in part to an EU regulatory restriction
on natural gas generation from 1975 to 1990 (Watson, 1997). The rapid
deployment of CCGT that followed in the early 1990s has been asso-
ciated with the liberalisation of the UK electricity market, and the so-
called ‘dash for gas’ (Watson, 1997).

LED Lights: The replacement products selected in this study have
gone on to replace the incumbent product(s) by achieving the largest
share of annual sales or products in use, with one exception – the LED
light bulb. LED lights have considerable potential to replace incumbent
lighting products and in particular the CFL, but are still in an early stage
of market growth and represent only a small fraction of light bulbs

installed in UK households: 0.6% in 2016 (BEIS, 2017b). For these
reasons, LEDs have not yet reached widespread commercialisation ac-
cording to our definition, despite their widespread availability to con-
sumers.

More broadly it is likely that as well as technology or market spe-
cific factors the length of any technology's gestation period could be
affected by macroeconomic and societal factors, from wars and reces-
sions to changing use of digital and social media. In compiling evidence
for our case studies, we note for instance that the expansion of car
manufacturing in the US in late 1920s was disrupted by the Great
Depression (Mercer and Douglas Morgan, 1971). Bento and Wilson
(2016) show a relatively quick formative phase for nuclear power as-
sociated with the unusually high demand pull from military users
during World War Two.

The findings on innovation timescales are sensitive to the tech-
nology case studies selected. The approach taken to selecting techno-
logical innovations in our study sought to allow a comparison of in-
novation timescales across a diversity of energy-related and broader
consumer products, so that insights might be drawn from observed
differences between consumer products and energy supply or end use
technologies. Our evidence review has not set out to categorise tech-
nological innovations or products in terms of whether they are con-
sumer, investor or government-led, or to consider the impact of these
aspects on innovation timescales. However, technology and market
factors influencing commercialisation timescales may vary considerably
between consumer-led products and those driven more by policy or
investment by manufacturers or utilities. For example, compared to
consumer-led products (e.g. the mobile phone or LCD TV), electricity
generation technologies such as solar PV and wind may lack demand
pull since their benefits are less immediately tangible to consumers and
may be ‘non-market’ factors (such as lower emissions) which Grubler
et al. (2016) associate with slow energy transitions.

It is conceivable that emerging developments such as the rollout of
smart meters, household ICT and energy management, and peer-to-peer
electricity trading could result in a blurring of traditional boundaries
between electricity as a supply or end use activity. This could lead to
increasing levels of consumer demand for smart and flexible energy
services and potentially shorter timescales to widespread commercia-
lisation for associated carbon abatement technologies.

A further caveat is with respect to the point of widespread com-
mercialisation and peak product use. Widespread commercialisation
has been taken as 20% of peak or current installed products in use (or
installed capacity for electricity generation). Older technologies such as
the CRT TV, which have already passed peak volume and declined into
obsolescence, will tend to show a more extended timescale in com-
parison to products which have not yet reached their peak. For many of
the more recent products in the sample as well as for the car, markets
still appear to be growing. Hence the 20% level may be reached earlier,
because the full extent of growth in the volume of products is not yet
known.

6. Conclusions and policy implications

Our review suggests first and foremost that the process of innova-
tion, as defined from the point of invention to the point of widespread
commercialisation, can be a multi-decadal process – taking thirty or
forty years for many of the technologies in this study. We also note that
in many cases the scientific principles that were put to use in new
technologies were established at an even earlier stage.

The first policy insight which follows is that any suggestion that the
principal response to the challenge of climate change should be an in-
tensive research effort to discover new, breakthrough low-carbon
technologies needs to be treated with a considerable degree of caution.
Such an approach risks taking too long to deliver the solutions needed
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to address climate change, even assuming entirely new, breakthrough
technologies can be found.

Care needs to be taken in extrapolating innovation timescales from
the past, and historical contexts from early in the twentieth century will
obviously differ from the future of technological development. It is of
course possible that entirely new, low carbon, technologies could be
discovered in the coming years and that these could be pushed through
the various phases of research, demonstration and market introduction
exceptionally quickly. However the attainment of a low-carbon energy
system in the coming decades is far more likely to be the result of the
full commercialisation of energy technologies already available, or
which are close to being deployed at scale. This implies that technology
deployment policies, including regulation, subsidy schemes and targets
continue to be at least as important as support for fundamental research
and development.

Whilst not the principal focus of our research it is also important to
reiterate that research and development continue throughout the
period of commercialisation. Ongoing research is often undertaken in
concert with the learning, innovation and cost reduction which results
from the manufacture, market penetration and use of technologies. As
such, the choice for policy makers is not one of either supporting R&D or
supporting deployment, but of how to strike the right balance between
these policies as technologies are first developed and then enter mar-
kets.

Another insight from this analysis concerns the potential for more
rapid commercialisation of end-use products when compared to elec-
tricity generation technologies. The review does not provide a defini-
tive view, since the sample size is small. However, the products re-
viewed here suggest that consumer products such as phones and flat
screen TVs have tended to commercialise relatively rapidly. There is
also evidence to suggest that replacement products which can benefit
from established infrastructures and institutions commercialise more
rapidly than those which are entirely new concepts.

A taxonomy of key low-carbon technologies that considers these
factors could prove fruitful in identifying those which could penetrate
into markets rapidly, versus those that are likely to do so more gra-
dually. It may also be possible to begin to assess where various barriers
to commercialisation exist and to address these directly.

Understanding the realistic timescales for the commercialisation of
different energy technologies in this way could provide a critically
important ‘reality-check’ for future low-carbon scenario-analysis, in

terms of which technologies are required to be deployed at given points
in time. Further research could investigate the consistency between
historically-observed and modelled diffusion rates for different low
carbon technologies, across a range of energy systems models and
scenarios. This could help identify and avoid significant bottlenecks or
errors, as well as identify where different policy efforts should be tar-
geted to achieve the desired transition pathway.

As we look to the future it is important that innovation policy
continues to recognise that sustained support for low carbon technol-
ogies is likely to be required over many decades. Policy efforts to pro-
mote ‘breakthrough’ technologies are important, particularly in areas
where low carbon substitutes for existing products or processes are yet
to be found. However it would be unwise if climate policy were to focus
excessively on RD&D, neglecting the time and effort needed to ensure
that low carbon technologies find a route to market. Climate policies
will need to continue to ensure that lower carbon options are given the
support that they may need to compete with incumbent technologies
until they become established and secure widespread use.
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Appendix A. Keyword searches used to identify relevant literature in Science Direct and World Cat

Initial search term categories Subsequent search term filters

Innovation Temporal Innovative technology or product

Innovation Time Cars / automobiles
Research Life “Catalytic converter”
Mass market Cycle “Lithium ion” AND “car batteries”
"Market saturation" Rate “Lithium ion” AND “rechargeable batteries”
Commercialisation Speed Television / “Cathode Ray Tube TV” / “CRT
Deployment History TV”/ “Liquid Crystal Display TV” / “LCD TV”
Diffusion “Automatic Teller Machine” / ATM / “cash cards”
Uptake “Videocassette recorder” / VCR
"Innovation life cycle" Photocopier / “plain paper copier”
"Technology life cycle" “Mobile phone”
Technology “Compact fluorescent light bulbs” / CFLs
"Product development" “LED light bulbs” / “LED lamps”

“Combined cycle gas turbines” / CCGT
“Wind electricity”
“Nuclear power”
“Solar photovoltaics” / “solar PV”
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