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The machinery health management system required for developing maritime autonomous surface ships can be
realised by employing prognostics and health management (PHM) methods. Pertinent PHM models are typically
trained by using datasets corresponding to limited operating conditions and are subsequently employed to analyse
a wide envelope of conditions. This study employs a PHM model that consists of a Deep Neural Network
(DNN) submodel and an Auto-Regressive Integrated Moving Average (ARIMA) submodel for predicting the health
indicator of a marine four-stroke engine. In specific, this study aims to quantify the accuracy of this PHM model
predictions. The PHM model is developed by employing limited datasets and subsequently validated by employing
extended datasets. The extended datasets reflect practical operating conditions including ambient temperature
variations, stochastic degradation trends, several engine loads, and multiple simultaneous degradations. The results
demonstrate that, when the testing dataset is employed, the PHM model predicts the engine exhaust valve health
indicator for future time slices with high accuracy of R-squared values of 0.998. However, the model accuracy
deteriorated reaching R-squared values of 0.707 when validation datasets representing extended operating envelope
are used. This study’s results emphasise that the PHM model accuracy is affected by the available datasets for
training, necessitating the generation of trustworthy datasets and scientific methods for developing trustworthy PHM
models.

Keywords: Marine Engine, Exhaust Valve, Degradation, Prognostics and Health Management, DNN, ARIMA,
Health Indicator, Operating Envelope

1. Introduction

Maritime Autonomous Surface Ships (MASS) are
expected to address current challenges of the wa-
terborne transportation. However, it is widely ac-
knowledged that commercial MASSs’ operation
is a medium- to long-term target. The machin-
ery health monitoring and management without a
human in the loop must be developed to enable
autonomous shipping. An increasing number of
research studies employed Prognostics and Health
Management (PHM) with data-driven approaches
for assessing ship machinery health conditions
Zhang et al. (2022). However, acquiring appro-
priate datasets to develop the PHM model is a
persisting challenge Saxena et al. (2008).

Pertinent maritime PHM studies typically ac-
quire datasets from shipboard measurements, ex-

perimental data, released public data, or simu-
lations Lei et al. (2018). Cheliotis et al. (2020)
employed shipboard measurements to develop an
early detection model of growing faults. How-
ever, because the measurement data represented
only healthy operating conditions, the fault de-
tection model employed simulated datasets with
linear degradation to the engine manufacturer’s
fault limit. Han et al. (2021) collected marine
diesel engine run-to-fail data from laboratory ex-
periments and developed prognostic models. The
experiments assumed two operating profiles, how-
ever, they characterised only limited conditions
in a controlled environment. Oikonomou et al.
(2019) employed the datasets reported in Coraddu
et al. (2016); Cipollini et al. (2018) to develop
real-time condition monitoring system of ship ma-
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chinery. This labelled dataset represented different 
conditions of a ship propulsion plant, however, 
it replicated fouling degradations with discretised 
coefficients i n l imited r anges o f 5 % a nd 2.5%
Coraddu et al. (2016). Coraddu et al. (2021) em-
ployed a marine dual fuel engine model consid-
ering air cooler degradation to generate datasets, 
which were used to test fault detection algorithms. 
However, the degradation was approximated by 
varying the model input parameters.

All the preceding studies achieved high accu-
racy for the developed PHM models. However, in 
practical situations, these models are expected to 
be employed for assessing the machinery health 
conditions under a wide operating envelope with 
several disturbances. The results of the tests in the 
limited envelope cannot guarantee the accuracy of 
the trained model in the extended operating en-
velope. Validation tests in a wide envelope of op-
erating conditions are required to benchmark the 
PHM model’s accuracy. This study aims at quan-
tifying the accuracy of a trained PHM model by 
employing extended datasets that replicate proba-
ble operating conditions.

2. Framework

The framework for quantifying the accuracy of
the trained PHM model in extended envelopes
is illustrated in the flowchart shown in Figure 1.
The simulation-based data generation approach
creates limited datasets and extended datasets
corresponding to different operating envelopes.
The PHM model is trained by using a limited
dataset that reflects a controlled environment. The
trained PHM model is validated with the extended
datasets representing a wide envelope of operating
conditions encountered in the machinery lifetime.
The ultimate output is the quantification of the
trained PHM model accuracy considering the ex-
tended envelope.

3. Method

3.1. Simulation-based Data Generation

The datasets used in this study are generated us-
ing the digital twin of a marine four-stroke en-
gine. The digital twin is customised based on the
previous author’s studies Stoumpos et al. (2018,

Fig. 1. Framework for quantifying the validation ac-
curacy of the trained PHM model

2020), and the trustworthiness of the DT and the
generated datasets are addressed in the previous
author’s study Jeon and Theotokatos (2023). Each
dataset contains 500 samples; each sample con-
sists of 8 features (the engine component running
hours, and the following engine performance pa-
rameters: engine power, turbocharger shaft speed,
exhaust gas temperature upstream turbine, max-
imum cylinder pressure, charge air pressure and
temperature, as well as fuel oil consumption).

3.2. Degradation Sub-Model

The study employs degradation sub-models by
combining an empirical degradation model and a
stochastic process model. The empirical model is
developed using the degradation mechanism and
verified through laboratory experiments. How-
ever, it is unable to represent environmental uncer-
tainty Rui et al. (2020). To simulate degradation
by considering both physical behaviour and un-
certainty, this study integrates the empirical model
with the stochastic process model.

For the empirical model, the valve recession
model reported in Lewis and Dwyer-Joyce (2001)
is employed. The model was derived from labo-
ratory experiments and describes the valve wear
based on Eq. (1) and Eq. (2). The original model
considered both the sliding and impact wear, how-
ever, this study considers only the impact wear
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since the effect of sliding wear is negligible on
the valves with high closing velocities, such as the
large marine engines Slatter et al. (2006).

V = K N en
(
Ai

A

)j

(1)

V denotes the wear volume, K is the impact
wear constant, N is the number of cycles, e is the
energy on impact, n is the impact wear constant,
Ai is the valve’s initial contact area, A is the
contact area after N cycles, and j is the wear
constant.

r =

(√
V

πRicosθssinθs
+ w2

i − wi

)
sinθs(2)

r denotes the valve recession, Ri is the initial
seat insert radius, θs is the seat insert seating face
angle, and wi is the initial seat insert seating face
width.

The stochastic wear sub-model is based on the
gamma process model that employs Eq. (3) van
Noortwijk (2009). The gamma process is ir-
reversible and continuous Rui et al. (2020);
Shahraki et al. (2017), hence it can represent the
wear behaviour.

Ga(x|v, u) = uv

Γ(v)
xv−1exp{−ux}I(0,∞)(x)(3)

Ga denotes the gamma process probability den-
sity function. IA(x) = 1 for x ∈ A and IA(x) = 0

for x /∈ A, and Γ(a) =
∫∞
z=0

za−1e−zdz for a >

0. The shape parameter v(t) is a non-decreasing
and right continuous function of time t.

3.3. PHM Model

The employed PHM model predicts the Health
Indicator (HI) using as input the engine perfor-
mance parameters and engine component(s) run-
ning hours. The HI ranges between 0 and 1.
The HI value 1 denotes the engine component(s)
healthy condition, whereas 0 denotes faulty con-
ditions.

The PHM model consists of a Deep Neural Net-
work (DNN) sub-model and an Auto-Regressive
Integrated Moving Average (ARIMA) sub-model,

as presented in Figure 2. The DNN model esti-
mates engine component(s) HI at past time slices
by using historical data as input. The DNN can
reduce the number of neurons compared to the
shallow neural network to achieve the same ac-
curacy Gökgöz and Filiz (2018). The ARIMA
submodel, which is a standard time series fore-
casting method, predicts the engine component(s)
HI at future time slices. The ARIMA submodel
combines the autoregressive process and the mov-
ing average process to predict near-future data by
using time series Siami-Namini et al. (2018).

3.4. Error Metric

The accuracy of the PHM model is evaluated us-
ing the R-squared (R2) according to Eq. (4). R2

exhibits high interpretability compared to other
metrics including the mean square error and the
mean absolute error Chicco et al. (2021).

R2 = 1−
∑m

i=1(Ŷi − Yi)
2∑m

i=1(Ȳi − Yi)2
(4)

Where m is the number of samples, Y is the actual
value, Ŷ is the predicted value, and Ȳ is the mean
value of actual values.

4. Case Studies

This study considers the degradation of the en-
gine cylinder valve recession. The impact of the
dataset’s characteristics on the PHM model accu-
racy is investigated by considering different op-
erating envelopes. The PHM model for training
and testing employs a limited operating enve-
lope that includes a degradation trajectory with
weak stochasticity, fixed engine load at 75%, and
single-component degradation. The trained PHM
model is subsequently applied to the three valida-
tion cases that consider practical operating condi-
tions, such as degradation trajectories with strong
stochasticity, engine load variations, and simulta-
neous degradation of multiple components. The
employed operating envelopes for each case are
listed in table 1, whereas the employed health in-
dicator time variations are illustrated in Figure 3.
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Fig. 2. PHM Model structure

Table 1. Operating envelopes for case studies

Dataset Stochasticity Load Degradation
(%) Component

Training Weak 75 EV
Testing Weak 75 EV

Validation 1 Strong 75 EV
Validation 2 Strong 70 - 85 EV
Validation 3 Strong 75 EV & IV

Note: EV: Exhaust Valve, IV: Intake Valve

Fig. 3. Dataset Visualisation

4.1. Testing Dataset - Limited operating
envelope

To quantify the trained PHM model accuracy, the
testing dataset in the limited operating envelope
was employed. The trained PHM model showed
exceptional accuracy with R-squared values of
0.998. The PHM model results are shown in Fig-
ure 4.

4.2. Validation 1 - Strong Stochasticity

The first validation test was performed to quantify
the PHM model accuracy with strong stochas-
ticity datasets. The actual operations are usually

Fig. 4. Test Result for Prediction Model

exposed to a more stochastic environment com-
pared to laboratory conditions. The operational
uncertainties including the quality of the spare
parts, environmental conditions, and ship operat-
ing mode increase the stochasticity of the com-
ponent’s degradation. The accuracy of the trained
PHM model decreased to R-squared values of
0.754 under the strong stochasticity of the degra-
dation pattern. The first validation test results are
presented in Figure 5.

Fig. 5. Validation 1 Result for the trained PHM Model
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4.3. Validation 2 - Load Variations

The second validation test was performed to quan-
tify the PHM model accuracy considering datasets
corresponding to engine load variations. The en-
gine loads typically vary in actual operation cor-
responding to the ship voyage schedule and re-
quired power demand. The accuracy of the trained
PHM model was reduced to the R-squared values
of 0.855 obtained under the degradation patterns
with varying engine loads. The second validation
test results are shown in Figure 6.

Fig. 6. Validation 2 Result for the trained PHM Model

4.4. Validation 3 - Multiple Components
Degradation

The third validation test was performed to quan-
tify the PHM model accuracy under multiple com-
ponents’ degradations. Several PHM studies con-
sidered limited components into account when
training a PHM model, therefore the other com-
ponents’ degradations impact its accuracy. The
intake valve was employed as the additional com-
ponent that was not considered during the training
phase. The accuracy of the trained PHM model
for predicting the HI of the exhaust valve at future
time slices decreased, as the R-squared reduced to
0.707. The third validation test results are shown
in Figure 7.

5. Conclusions

This study quantified the accuracy of the trained
PHM model for predicting the health indicator

Fig. 7. Validation 3 Result for the trained PHM Model

of a marine engine exhaust valve by employing
four different operating envelopes. The validation
results verify the impact of the used operating
envelope on the accuracy of the PHM model.

The trained PHM model exhibited remarkable
accuracy on the testing dataset, which deteriorated
when using the extended datasets representing a
wide envelope of operating conditions. The accu-
racy deterioration was the most critical when the
dataset considered the simultaneous degradations
of multiple components from R-squared values of
0.998 to 0.707.

The study emphasises the significance of oper-
ating envelopes in datasets, however, it is chal-
lenging to change operating envelopes of mea-
surement datasets like historical data and ex-
perimental data due to physical constraints. The
simulation-based data generation approach is rec-
ommended for future studies to acquire datasets
in a wide operating envelope. The study em-
ployed only three disturbances for the operat-
ing envelopes, however, practical operations have
a wider range of operating disturbances. Future
study is advised to consider appropriate operating
disturbances corresponding to the purpose of a
PHM model.
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