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APPROXIMATE ESTIMATES OF ORBIT TRANSFER COST FOR
EFFICIENT MISSION ANALYSIS AND DESIGN

Giulio Avanzini,* Danilo Zona,† Francesco Marchetti,‡ and Edmondo Minisci,§

Symbolic Regression is investigated as a tool for identifying analytical expressions
which provide an estimate of orbit transfer cost, evaluated in terms of required veloc-
ity increment, as a function of initial and target orbit geometry. Different approaches
are considered to identify the best approach to sample the problem parameter space
and the algorithm which performs better, in the framework of Genetic Programming.
Each resulting method is tested for five different orbit transfer geometries between
coplanar circular and elliptical orbits. Results demonstrate the viability of the ap-
proach, although when the number of problem parameter increases, computational
cost becomes sizeable. Also, local minima may be filtered by the regression.

INTRODUCTION

The estimate of the cost of orbit transfer maneuvers from an initial orbit to a desired target orbit
is the cornerstone of any space mission analysis and design method. Unless very simple mission
scenarios are dealt with, the mathematical difficulties of the problem and the complexity of its nu-
merical solution result into a considerable computational burden. More in particular, interplanetary
missions which involve planetary flybys1 or missions aimed at visiting a sequence of orbiting tar-
gets2 require the solution of a Mixed Integer Nonlinear Programming (MINLP) problem, which
may feature several local optima over a possibly very wide search space.

The resulting optimization problem is often tackled by means of a nested approach,3 where the
inner optimization problem determines the optimal transfer from one target to the following one,
for a given sequence of targets, whereas the outer problem pursues the identification of the optimal
sequence. Different (and possibly competing) merit functions may be defined, such as overall trans-
fer time and total ∆V , together with other mission constraints. When a relatively high number of
targets needs to be reached during a single mission (as it may be required by an active debris re-
moval mission), the outer optimization problem can become hardly treatable. An accurate solution
of the inner problem may cause the overall computation cost to become prohibitive, even if high
performance parallel computing techniques are adopted. Approximate heuristic approaches have
been proposed in the past4, 5 for providing estimates of transfer cost, while recasting the preliminary
design phase in the form of a (still computational demanding) combinatorial optimization problem.
Once an optimal sequence of encounters with orbiting objects is identified, the optimization can be
refined on the basis of a more accurate simulation of the sequence of maneuvers.
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The availability of an accurate estimate of the transfer cost associated to each transfer leg of the
sequence of maneuvers clearly represents a significant advantage in the framework of the prelimi-
nary mission design phase. This paper presents possible methods to derive accurate heuristics to be
used during this phase, for increasingly more complex mission scenarios. Modern machine learning
methods are exploited in order to define a regressor which provides an analytical formulation for es-
timating the cost of a transfer arc between an initial and a target obit, as a function of the geometric
parameters which identify the problem.

The objective of the paper is twofold. On one side, the use of a Symbolic Regression (SR)
approach is proposed as an alternative to other more common machine learning methods, such as
artificial neural networks and deep learning. SR searches the space of mathematical expressions
to find the one(s) that best fit a given dataset, and in doing so, it is able to provide interpretable
models, as opposed to black-box ones. For this work a Genetic Programming (GP) based SR will
be considered.6, 7 Differently from other Evolutionary Algorithms (EAs), in the GPs the individuals
are mathematical expressions structured as trees (Fig. 1), where numerical coefficients and input
variables are called terminal nodes, while the other nodes in the GP tree are predefined primitive
functions. In this work, both single gene and multi gene GPs7, 8 will be considered and compared.
As a further contribution, performance of a regressor found on the basis of a regular sampling
of the parameter space of the problem is compared with randomized techniques, where problem
parameters are sampled stochastically.

The study starts from a relatively simple test case, represented by transfer between circular copla-
nar orbits. Such a configuration minimizes the number of relevant geometric parameters (namely,
the ratio between the radii of initial and final orbits, r2/r1 and transfer angle θ between the depar-
ture and arrival points). The cost of the transfer, represented by the sum of the ∆V ’s required for
the two impulsive maneuvers at departure and arrival, depends on three parameters only, r2/r1, θ,
and transfer time, ∆t, and it is estimated from the solution of a two point orbital boundary value
problem, for the considered geometry and transfer time. This elementary scenario is considered
only with the objective of tailoring the SR algorithms, before challenging it on more complex ge-
ometries, such as transfer between elliptical coplanar orbits. In this case, four more parameters are
required to define the problem geometry, namely, eccentricity e1 and e2 of the initial and final orbit,
angular separation ω between the periaxes, and initial position along the starting orbit, ν0, so that
the number of total independent parameters becomes equal to 7.

For non-coplanar orbit transfers, the angle between the orbit planes needs to be considered. More-
over, the angular position of the periaxes of both orbits, counted with respect to the line at the in-
tersection of the two orbit planes, ω1 and ω@, need to be accounted for independently. The total
number of independent parameters is thus equal to 9. This latter case will be dealt with in a future
research. In all the cases, the regressor is expected to provide an analytical formulation for the
total ∆V required for the considered orbit transfer, as a function of the parameters which describe
problem geometry and transfer time.

In what follows, the next section provides some details on the technique adopted for performing
the symbolic regression. The third section describes in more detail the geometries of the problems
and the solution algorithm adopted for the solution of Lambert problem, for the various configu-
rations. Results are then presented and discussed. The final section highlights some concluding
remarks and highlights future steps of the research.
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A NOTE ON GENETIC PROGRAMMING

Genetic Programming (GP)6 is an Evolutionary Algorithm (EA) capable of producing regression
or classification models in explicit mathematical form. When applied to regression, the approach is
termed symbolic regression because the produced regression model is in symbolic form. The output
of a GP model is depicted in Figure 1 and can be read as x− 4 + y + 5.

+

−

x 4

+

y 5

Figure 1: Representation of a GP tree.

In the GP algorithm, an initial population composed of randomly generated individuals is cre-
ated. Then, during the evolutionary process, the individuals are combined using the crossover and
selection operators resulting in an offspring population. Subsequently, from the offspring and the
parent population individuals are selected according to their fitness to form the parent population for
the next generation of the evolutionary process. The actions above are repeated, until a termination
criteria is met, which can be represented by either a maximum number of generations or finding the
best individual in the current population with a fitness level below (or above) a prescribed thresh-
old. The fitness is defined by the user and its goal is to guide the evolutionary process towards its
minimum (or maximum).

Several GP variants were formulated in the past, each of which focuses on a particular aspect of
the evolutionary process or on how the GP trees are shaped. In this work, two approaches to GP
are selected, the Multi-Gene Genetic Programming (MGGP) and the classic GP. The MGGP9 is a
GP variant where multiple GP trees are considered simultaneously to build a linear combination
model. If the output of an individual as the one in Figure 1 is represented by I , a MGGP individual
will be composed as p0 + p1I1 + p2I2 + ... + pnIn where n is the maximum number of genes
considered. The parameters p of this linear combination are then optimized using a least square
optimization algorithm. This optimization approach is faster than other local or global approaches,
therefore it can be performed for each individual at each generation without resulting in a prohibitive
computational cost. As a result, better performance can be achieved by the MGGP in comparison
to other GP formulations.

For both of the GP and MGGP approaches considered in this work, a variant developed in a
previous work is used, the Full Inclusive Genetic Programming (FIGP),10 resulting in the FIGP and
Full Inclusive Multi-Gene Genetic Programming (FIMGGP) algorithms. The FIGP was developed
to promote and maintain the population’s diversity throughout the evolutionary process. To do so,
both the genotypic and phenotypic diversity of the individuals is considered, and, regarding the
phenotypic diversity, both the training and validation fitnesses are considered to avoid overfitting.
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his renowned book [1], which provides the astrodynamic community
with one of the most widely used numerical procedures to efficiently
solve Lambert’s problem. His method is based on a corollary to
Lambert’s theorem [6], which states that the mean radius r0 depends
on the same set of variables as the transfer time, where the mean
radius is defined as the radius of the point along the orbit where the
velocity vector is parallel to the chord connecting P1 with P2 (the
normal point according to Levine’s definition [11]).

Given the invariance property stated by Lambert’s theorem, it is
possible to demonstrate that the occupied and the vacant foci of orbits
passing throughP1 andP2must bemoved along two cofocal ellipses,
with P1 and P2 as the foci, to maintain the same transfer time [6].
Among all the admissible ellipses characterized by the same transfer
time, the symmetric one is of interest. In such a case, the normal
radius is perpendicular to the chord and it lies along the line of the
apses, being equal to either the orbit perigee or apogee, depending on
the relative position of the occupied and vacant foci with respect to
the chord. The transfer time between P1 and P2 can thus be
determined by solving Kepler’s equation only once, along half of the
transfer, the true anomaly ofP1 andP2 being equal in magnitude and
opposite in sign, hence their eccentric anomalies E. The set of
symmetric orbits can be parametrized in terms of an auxiliary
variable x equal to the tangent of half of the eccentric anomaly E.
Lambert’s problem is thus solved by evaluating the value of x
corresponding to the symmetric orbit with the prescribed transfer
time. The final orbit is determined by back-transforming the problem
geometry, shifting the occupied focus to its original position. The
extension of the approach to hyperbolic trajectories is dealt with in
Chapter 7 of Battin’s book [1].
The need for massive computations in the framework of

optimization problems puts significant stress on numerical
performance and, in this respect, the success of Battin’s method is
also a consequence of its computational efficiency and well-
posedness of the resulting equation. But if on one side the derivation
of the equation is relatively simple, its solution is far from trivial,
requiring relatively cumbersome transformations and the evaluation
of a hypergeometric function in terms of its (truncated) continued
fraction expansion [8]. Moreover, care is needed when dealing
with very short arcs to provide a satisfactory first guess for the
algorithm [8].

The novel parametrization introduced in this paper allows for a
numerical solution of Lambert’s problem almost as efficient as
Battin’s method, using a simple Newton–Raphson iterative scheme.
If, on one side, no significant advantages over Battin’s method
resulted in terms of accuracy, convergence speed, and overall
numerical efficiency, its simplicity makes it an appealing alternative
to the present-day classic Battin’s approach. This parametrization
exploits a well-known property of the eccentricity vector e, which
has a constant component in the direction of the chord r1 ! r2. In [1]
(p. 256), this property is attributed to E. Bender of the Jet Propulsion
Laboratory. The fundamental ellipse, that is, the orbit throughP1 and
P2 with minimum eccentricity, can be easily determined on
geometrical grounds. Given the fundamental ellipse, it is possible to
obtain a parametrization of admissible orbits in terms of the
transverse eccentricity component eT , that is, the component of the

eccentricity vector in the direction perpendicular to the chord. It will
be shown that the transfer time t12 betweenP1 andP2 is a monotonic
function of eT , so that it is possible to use eT as the unknown for
solving Lambert’s problem by means of the equation t12"eT# $ tS12.
Like Battin’s method, the resulting algorithm is not singular for
!!$ ".

The value of the transverse eccentricity component must satisfy
some constraints, that is, its value is limited within a (possibly finite)
interval. For this reason, a coordinate transformation is devised, such
that the numerical iterative scheme is not allowed to violate the
admissible limits of variation for the unknown eT . In the present
paper, only direct transfer arcs between P1 and P2 are considered.
Multiple-revolution transfers are the subject of ongoing research.

In what follows, after a brief review of the results reported by
Battin on the fundamental ellipse, the parametrization of orbits
passing through P1 and P2 in terms of transverse eccentricity
component eT will be derived, together with the transfer time. In this
framework, some minor variations to Battin’s notation will be
introduced to provide a uniform parametrization that embraces all
possible values of r1, r2, and !!. Lambert’s problem is here
parametrized in nondimensional terms, in such a way that the
(nondimensional) transfer time #12 becomes a function of two
parameters only, namely, the transfer angle !! and the ratio of the
radii r2=r1. In Sec. IV, the coordinate transformation used for
providing a fail-proof implementation of the Newton–Raphson
iterative scheme is described and results are derived for a set of
sample problems. Comparisons in terms of computational efficiency
with existing methods will be discussed. The Conclusions section
ends the paper.

II. Fundamental Ellipse
The orbit equation is expressed in vector form as [1]

e % r$ p ! r (1)

which is represented in a set of polar coordinates "r; !# by the
equation

r"!# $ p

1& e cos"! ! !# (2)

where the angular displacement ! is positive for counterclockwise
rotations, and the argument of the periapsis! is the angle between the
reference direction and the eccentricity vector e. Without loss of
generality, it is possible to assume the direction of r̂1 $ r1=r1 as the
reference axis of the polar coordinates.

As shown in [1], by taking the difference of the orbit equation in
vector form written for r2 and r1, one gets

e % "r2 ! r1# $ r1 ! r2

Dividing both terms of the latter equation by the length of the chord
c$ kr2 ! r1k, one gets

e % îc $! r2 ! r1
c

(3)

which clearly shows that the eccentricity vectors of all the orbits
through P1 and P2 have the same projection eF $ jr2 ! r1j=c along
the chord direction. This means that 1) all the eccentricity vectors of
admissible orbits terminate on a straight line perpendicular to the
chord c at distance eF from the occupied focus F, and 2) the
minimum possible eccentricity is eF, when the component in the
transverse direction is zero.

The minimum eccentricity orbit is referred to as the fundamental
ellipse. Its eccentricity vector is given by eF $ '"r1 ! r2#=c(îc,
whereas its semimajor axis is expressed on the basis of simple
symmetry considerations as [1]

aF $ "r1 & r2#=2
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Fig. 1 Geometry of the Lambert problem.
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Figure 2: Geometry of Lambert problem (from Ref. 11).

ESTIMATE OF ORBIT TRANSFER COST

The Classic Lambert Problem

The orbit two-point boundary value problem (also known as Lambert problem) is represented by
the determination of the Keplerian orbit arc of amplitude θ, which takes an orbiting body from an
initial point P1 at distance r1 from the primary body, to P2, at a distance r2, in a prescribed time
∆t. Its definition stems from Lambert’s theorem, which states that the transfer time between any
two points along a Keplerian orbit arc depends on three parameters only, namely, the chord length
c between the points, the sum of initial and final distances, r1 + r2, and the semimajor axis of the
orbit passing through P1 and P2 (Fig. 2). Hence, when the geometry of the problem is fixed, the
transfer time between P1 and P2 depends on a single parameter.

The orbits passing trough P1 and P2 can thus be parameterized as a function of a single free
variable, such as the component of the eccentricity vector normal to the chord, as it is done in
Ref. 11. The solution of Lambert problem can thus be recast into the identification of the free
parameter which results into the prescribed transfer time. Once the orbit arc is identified, initial and
final velocity are easily determined. The total cost of the transfer is defined by the sum of the ∆V ’s
required by impulsive maneuvers to inject the spacecraft from the initial orbit onto the transfer arc
and from the latter onto the target orbit, ∆Vtot = ∆V1 +∆V2.

Planar Case

The simplest possible geometry of a single orbit transfer leg is represented by the transfer between
coplanar circular orbits. In this case (Fig. 3.a), if distances are scaled with respect to the initial orbit
radius, r1, and times are scaled with respect to the period of the initial orbit, T1, the problem
geometry is defined by only two parameters, namely ρ = r2/r1, and the transfer angle θ. The
prescribed duration of the transfer, τ = t/T1, in nondimensional terms, provides the third (and
last) independent variable of the problem, so that the regressor is required to provide an analytical
approximation of the total cost of the transfer

∆Vtot = fCC(ρ; θ; τ)

where the subscript CC stands for circular coplanar orbits.
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Figure 3: Geometry of coplanar transfer problems for circular (a) and elliptical (b) orbits.

The mission scenario becomes more complex when coplanar elliptical orbits are dealt with, as
represented in Fig. 3.a. In this case the geometry of the problem must account for the eccentricities,
e1 and e2, of initial and target orbits, and the angle ω between their periaxes. The ratio ρ = a2/a1
is now taken between the semimajor axes of the two orbits. A coasting arc on the initial orbit also
needs to be included among the independent variables, provided that the transfer cost between the
two orbits depends on the radius r1(ν0) at departure. The overall cost of the transfer thus becomes

∆V = fEC(ρ, e1, e2, ω; ν0, θ; τ)

where the subscript EC stands for elliptic coplanar orbits.

Transfer Between Non-Coplanar Orbits

Note that the transfer angle, θ, is determined by initial and final positions on orbits lying on
different planes, and its value can be replaced by the true anomaly at the arrival point on the target
orbit, νF . Anyway, this latter case is introduced here for the sake of completeness, but only planar
transfers will be considered in the section of Results.

Practical Scenarios

Bounds on the values of i, e1, and e2 can be identified, depending on the particular mission
scenario considered. As an example, almost circular orbits can result into small values for both e1
and e2. Similarly, if the targets of the missions fly along neighboring orbits, also the value of i can
be small. At the same time the value of transfer time τ can be bounded by mission requirements.
As an example of such a scenario, collecting debris fragments in Low Earth Orbits (LEO) typically
deals with low eccentricity orbits. If mission time is not an issue, it is also possible to exploit orbit
perturbations (in particular, precession of the line of the nodes under the J2 effect) to minimize the
required orbit plane change. Conversely, the values of ω1, ω2, ν0, and θ can vary in general from
−π to π rad. These variables need to be sampled over their entire range of admissible variation
during the process of identification of the regressor.
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Figure 4: Geometry of non-coplanar transfer problems for elliptical orbits..

RESULTS AND DISCUSSIONS

In this section the results obtained for the performed tests are presented. Two scenarios are
considered, namely transfers between coplanar circular orbits and transfers between coplanar el-
liptical orbits. These scenarios will be referred to as circular and elliptical transfers respectively.
As described in the previous Section, in the circular transfer reference model, ∆Vtot depends on
ρ = r2/r1, θ and τ , whereas in the elliptical transfer reference model ∆Vtot depends on ρ = a2/a1,
e1, e2, ω, ν0, θ and τ . Therefore, the goal of the numerical experiment is to obtain a regression
model of the circular and elliptical transfer models using the FIGP and FIMGGP algorithms de-
scribed above. Moreover, two approaches to build the dataset are considered: a regular grid and a
Latin Hypercube Sampling (LHS). Therefore a total of eight experiments are performed: 1) Circular
transfer-FIGP-grid dataset, 2) Circular transfer-FIGP-LHS dataset, 3) Circular transfer-FIMGGP-
grid dataset, 4) Circular transfer-FIMGGP-LHS dataset, 5) Elliptical transfer-FIGP-grid dataset,
6) Elliptical transfer-FIGP-LHS dataset, 7) Elliptical transfer-FIMGGP-grid dataset, 8) Elliptical
transfer-FIMGGP-LHS dataset.

The aim of these experiments is: 1) to observe differences of performances between FIGP and
FIMGGP algorithms; 2) evaluate the influence of dataset sampling on performance; 3) assess the
applicability of the FIGP and FIMGGP to a simple regression problem and to a more complex one.
To obtain a preliminary statistics, Five simulations are performed for each of the eight experiments.

Datasets preprocessing

For the circular case, the grid dataset is composed by a 50(ρ)×50(θ)×40(τ ) grid, for a total
of 100000 points. The LHS dataset is also composed of 100000 points. For the elliptical case,
all independent variables are sampled in 6 points. The resulting grid dataset is thus composed by
6 × 6 × 6 × 6 × 6 × 6 × 6 = 279 936 points. The LHS dataset is composed of 300 000 points.
For both algorithms the considered datasets are divided into Train, Validation and Test sets. First
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a split between TrainValidation (80%) and Test (20%) is performed, and then the TrainValidation
set is further split into Train (80% of TrainValidation) and Validation (20% of TrainValidation) sets.
Therefore the final subdivision will be Train=64%, Validation=16% and Test=20% of the complete
dataset. The Train and validation sets are used during the evolutionary process while the test set
is used at the end to assess the overfitting degree of the obtained results on data never seen before.
For that reason, the results presented hereafter are obtained from the individuals that showed the
least overfitting. To do so, for each generation the individual with the best training fitness is saved.
From these individuals, the one with the best validation fitness is picked as it is the one with least
overfitting. This individual is then applied on the test data to obtain the results presented. In order
to properly apply the FIGP and FIMGGP, all the dataset were scaled with the min max approach.
i.e., each input feature was scaled from their original range to the [0,1] range using their min and
max values, and the output was scaled from the range [0, 40] to [0, 1] too.

Table 1 provides all relevant parameters for the FIGP and FIMGGP algorithms. The meaning
of all the parameters is detailed in the paper.10 Here, it can be pointed out that, given the differ-
ent dimensionality (and then difficulty) of the two cases, both algorithms were set to use a bigger
population for the elliptical transfer case, and the FIMGGP algorithm was also set to use a higher
number of genes.

Results

The plots shown hereafter depict the results obtained in terms of the evolution of fitness (RMSE)
during the training and validation phases, and R2 score of the models derived by means of the
procedure outlined above on the train, validation and test datasets. In the fitness evolution plots, the
inset depicts the last 200 generations to show whether or not the algorithm reached convergence.
The statistics are evaluated considering the five simulations performed for each experiment. Starting
from the coplanar circular transfer case, Figures 5b and 5a depicts the results of the FIGP with the
grid dataset while Figures 6b and 6a concerns the FIGP with the LHS dataset. Comparing these
results no significant difference in performance emerges when using the grid or LHS datasets.
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Figure 5: Results of the FIGP models on the circular transfer case with the grid dataset.

Figures 7b and 7a show the results of the FIMGGP on the circular transfer case with the grid
dataset while Figures 8b and 8a refer to the results obtained with the LHS dataset. Again, no
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Table 1: Settings for the FIGP and FIMGGP algorithms.

FIGP FIMGGP
Population Size 500 individuals (750 for the elliptical case)

Maximum Generations 1000
Stopping criteria Reaching maximum number of generations

Maximum number of genes / 10 (12 elliptical case)
Crossover probability 0.75 → 0.25

Low level Crossover probability / 0.7
Mutation probability 0.25 → 0.75
Evolutionary strategy µ+ λ

µ Population size
λ Population Size × 1.2

Number of Ephemeral constants 1
Limit Height 40 15
Limit Size 40 20

Selection Mechanism Inclusive Tournament
Double Tournament fitness size 2

Double Tournament parsimony size 1.6
Number Niches Length 6

Number Niches Fitness Training 6
Number Niches Fitness Validation 6

Tree creation mechanism Ramped half and half (min size=1, max size=4)

Mutation mechanisms
Uniform (55%), Shrink (5%),

Insertion (25%), Mutate Ephemeral (15%)
Crossover mechanism One point crossover

Primitives Set
+, −, ∗, add3, mul3, tanh, .2, log, exp,
sin, cos,

√
., tan, arcsin, arccos, arctan

Fitness measure RMSE
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Figure 6: Results of the FIGP models on the circular transfer case with the LHS dataset.
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significant difference is observable between the results obtained for datasets generated following
different procedures, but, as a remarkable result, performance of the FIMGGP appear significantly
better, when compared to those of the FIGP. The FIGP achieves a median R2 score of 0.974 on
the test set, while the FIMGGP achieves a median R2 score of 0.997. Moreover it is interesting
to notice that the FMIGGP did not reached convergence as shown in Figure 7a. A further relevant
aspect can be highlighted by observing the R2 scores on the train, validation and test sets for all
the experiments of the circular transfer case. Both the FIGP and FIMGGP showed no overfitting
since the R2 scores on the train, validation and test dataset are comparable in terms of median and
statistical distribution. This is a desirable behaviour in regression applications, since the models
derived must perform well also on unseen data.
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Figure 7: Results of the FIMGGP models on the circular transfer case with the grid dataset.
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Figure 8: Results of the FIMGGP models on the circular transfer case with the LHS dataset.

When the elliptical transfer case is dealt with, Figures 9b and 9a present the results of the FIGP
models obtained with the grid dataset, whereas Figures 10b and 10a show the performance of models
obtained with the LHS dataset. By looking at the R2 score it can be observed how in this case results
obtained with the grid dataset are slightly better. The same conclusion can be drawn by looking at
Figures 11b and 12b, which depict the R2 scores of the models obtained with the FIMGGP on
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Figure 9: Results of the FIGP models on the elliptical transfer case with the grid dataset.

the grid and LHS datasets, respectively. Nevertheless, these improvements are marginal, provided
that the R2 score improves of 0.1 only. Apparently, a more regular structure of the grid can cover
the range of the input features better, compared to the LHS one, especially considering that, in
order to keep the total number of points in the dataset within reasonable limits for an acceptable
overall computation cost of the procedure, the number of sampled points within the interval of each
parameter needs to be small.

As for the circular transfer case, the FIMGGP performs better than the FIGP and produces models
with higher R2 scores, with an average 0.9 for the FIGP versus 0.93 for the FIMGGP. The results
obtained for the elliptical transfer case are worse than those obtained for the circular transfer case.
This is due to the greater complexity of the problem and the computational issues experienced in
order to tackle it. In fact, to achieve the same level of performance bigger datasets should be used
and the hyperparameters of both algorithms should be set to increase their performances, e.g. by
increasing the number of individuals in the population or the number of genes in the FIMGGP. Even
if this was considered and attempted, due to limitations in terms of computational capacities, the
dataset dimensions, as well as the population and the number of genes had to be limited and far
smaller than a more proper setting. This limitation is also the reason for a relevant discrepancy
between the train, validation and test R2 scores in Figures 11b and 12b, if compared with those
obtained in the other circular transfer cases. A slight overfitting is observed in the models produced
by the FIMGGP on the elliptical case with grid dataset, while the opposite is observed in the models
produced by the FIMGGP on the elliptical case with LHS dataset. More simulations should be
performed to improve the statistical relevance of the results.

As far as convergence of the algorithms is concerned, in the half of the experiments the algorithms
reached convergence, as highlighted by Figures 5a, 6a, 11a and 12a, that is, for the FIGP applied to
the circular transfer with both dataset and the FIMGGP applied to the elliptical transfer with both
dataset. In the remaining experiments, shown in Figures 7a, 8a, 9a and 10a, a slight decrease of
fitness is still observable at the end of the evolution, stopped by the prescribed maximum number of
generations. Therefore, an improvement in the results could be expected for the FIMGGP applied
to the circular transfer and the FIGP applied to the elliptical transfer. Nonetheless, more simulations
should be performed to have a better understanding of convergence trends.
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Figure 10: Results of the FIGP models on the elliptical transfer case with the LHS dataset.
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Figure 11: Results of the FIMGGP models on the elliptical transfer case with the grid dataset.
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Figure 12: Results of the FIMGGP models on the elliptical transfer case with the grid dataset.
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An example of an analytical expression is reported below, for the result obtained by the FIMGGP
for the circular case with the LHS dataset:

f = a1 ∗ x2 + a2 ∗ tanh
(
2.0 ∗ x3 + sin(cos(x

(1/2)
2 )) + sin(x3) + a3 ∗ x22

)
−a4 ∗ tanh

(
x2 + 3.0 ∗ x3 + x

(1/2)
3

)
+ a5 ∗ atan

(
a20 ∗ x1 ∗ exp

(
a6 ∗ x2 ∗ cos(x(1/2)3 )

))
+

a7 ∗ atan(x2) + a8 ∗ exp(x2)+

a9 ∗ x1 ∗
(
x3 + cos(x3) + sin

(
cos

(
(a10 ∗ x3 ∗ exp(x1))

(a11 ∗ exp(2.0 ∗ x1) ∗ x23 + 1.0)(1/2)

)))
+

a12 ∗ x1 ∗ atan
(
sin(cos(a19 ∗ x(3/2)2 ))

)
+ a13 ∗ x1 ∗ x(1/2)3 + a14 ∗ x3 ∗ atan

(
a15 ∗ x(3/2)2

)
+

a16 ∗ x1 ∗
(
x3 + sin(x3) +

1

(a17 ∗ exp(2.0 ∗ atan(exp(x2))) ∗ sin(x3)2 + 1.0)(1/2)

)
+ a18

with
a1 = 0.087360387809065978559353027321777
a2 = 0.50730323464088744600530844763853
a3 = 5.8207
a4 = 0.10236149627635197922881360454994
a5 = −0.049151188058235671662909993528956
a6 = 5.8207
a7 = −0.28280097835513151594000191835221
a8 = 0.087360387809065978559353027321777
a9 = 0.37386358151020654405627396954515
a10 = 37.81091457
a11 = 1429.6652606198382849
a12 = −0.023731194133736366325138078536838
a13 = −1.4027793666815768780509188218275
a14 = 0.006536365068816417552011177605209
a15 = 56.79198783
a16 = 0.35836947399350699283715471210598
a17 = 95.19709761
a18 = −0.39835856783426271121584250067826
a19 = 5.8207
a20 = 5.8207

Critical cases

When the implementation of accurate meta-models is the aim of the work, metrics such as the
RMSE and R2 can only give a partial indication of the real suitability of the model, because
particular structures may actually be missing in the data-sets. To better check the suitability of the
GP meta-models, a series of random internal cuts, from a random xd0 point to another random xd1
point in the problem parameter space, have been performed and the GP models compared to the
actual model for the circular case (edge points for the cuts are reported in Table 2). This preliminary
analysis showed that:

12

Approximate estimates of orbit transfer cost for efficient mission analysis and design



• in most cases the meta-models produced by the multi-gene GP match well the actual model
(Fig. 13a shows an example for ∆VTot vs ρ along CutA), missing narrow local minima,
such as those seen on the left side of Fig. 14a and Fig. 15a, related to cuts CutB and CutC,
respectively;

• in most cases, the usually simpler meta-models produced by the single-gene GP match suffi-
ciently well the actual model (Fig. 13b shows an example for ∆VTot vs ρ along CutA), but
they also miss narrow local minima, such as those on the left side of Fig. 14b and Fig. 15b,
related to cuts CutB and CutC, respectively.

Table 2: Initial and final points for three representative cuts for domain exploration

CutA xd0 = [13.3612946231533, 5.48312713605869, 16.881832765281]
xd1 = [12.4102673117917, 5.56708052182314, 2.95221227958872]

CutB xd0 = [16.6046594692667, 3.91721535154401, 12.1465971896452]
xd1 = [0.620812707156099, 6.0168096200283, 9.62617572884094]

CutC xd0 = [8.4550486096238, 0.674865437728657, 8.69763560472183]
xd1 = [0.386246441681431, 6.27656301355617, 17.9354245735156]

(a) FIMGGP model trained with LHS data (b) FIGP model trained with LHS data

Figure 13: Behaviour of the GP models for the internal cut Case2 - x1(ρ) view

(a) FIMGGP model trained with LHS data (b) FIGP model trained with LHS data

Figure 14: Behaviour of the GP models for the internal cut Case1 - x1(ρ) view

CONCLUSIONS AND FUTURE WORK

Use of Genetic Programming (GP) for training a Symbolic Regressor is investigated as a tool
for the identification of analytical metamodels, which estimate velocity increment required by orbit
maneuvers between coplanar circular and elliptical orbits as a function of geometric parameters
which describe the initial and target orbits. Several approaches were tested for both circular and
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(a) FIMGGP model trained with LHS data (b) FIGP model trained with LHS data

Figure 15: Behaviour of the GP models for the internal cut Case3 - x1(ρ) view

elliptical orbit cases, with different GP algorithms (single gene and multi-gene GPs) and dataset grid
techniques (regular grid vs Latin Hypercube Sampling), for a total of 8 experiments. The effects
of the sampling techniques appears as marginal, although a slight improvement in performance is
observed for regular sampling on the more complex elliptic transfer case. Conversely, multi-gene
GPs outperforms the single gene GPs in all the considered tests, although in all cases, fine structures,
such as local narrow minima, are missed. Future work will address the extension of the approach to
more complex operational scenarios, including plane change maneuvers and the use of low-thrust
propulsion system. As far as performance of the training algorithm is concerned, further study is
required for improving numerical aspects of the algorithm in order to deal with larger datasets, for
better sampling the parameter space of the problem.
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