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Abstract

In this paper, we propose a two-stage image segmentation model based on structure
tensor and fractional-order regularization. In the first stage, we use the fractional-order
regularization to approximate the Hausdorff measure of the Mumford-Shah (MS) model.
The existence and uniqueness of the solution is proved and the alternating direction
implicit (ADI) scheme is used to find the solution of the modified MS model. In the
second stage, a thresholding is used to induce the segmentation of the target. The superior
performances of the proposed model are demonstrated by some comparative experimental
results with several state-of-art methods.
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1. Introduction

Image segmentation is an important topic in many scientific areas. It has been ex-
tensively studied and plays a significant role in many fields, such as atmospheric science,
medical imaging, computer sicence, etc [1-6]. The main goal of image segmentation is to
partition an image into several distinct constituents. During the past decades, numerous
models and algrithms have been extensively proposed for image segmentation [7-11]. In
the process of computing image segmentation models, the variational method has been
widely applied to minimize the energy functionals [12-15].

In 1989, Mumford and Shah proposed a typical region-based model called Mumford-
Shah model (MS model) [16], which was a landmark achievement in image segmentation
fields. The MS model formulated as:

Eys(u,T,Q) = 2 / (f — u)dz + / Vul2dz + Length(T), (1.1)
2 Jo 2 Jor

where ) C R? is a bounded open connected set and I' is a compact curve in €, A\ and
1 are positive parameters, f : 2 — R is the degraded image and v : 2 — R is the
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optimal piecewise continuous or piecewise constant approximation of the given image f,
Length(I") represents the length of I" which can be written as 1-dimensional Hausdorff
measure #1(T") in R2.

Based on framework (1.1), many modified versions of MS model [17-19] have been pro-
posed. Most of these works mainly focus on the simplification of MS model. For example,
the Chan-Vese model (CV model)[20] which segmented the image into two parts(i.e., back-
ground and foreground) and modelled the solution to be a piecewise constant function.
Furthermore, there are also some generalized versions of CV model, we refer the readers
to [21-23] for details. These methods perform well for certain image segmentation tasks.
However, they are easily trapped into local minimum because of its non-convexity. To
address this dilemma, convex approximation approaches have been proposed. Recently,
Cai et al. proposed a two-stage image segmentation strategy [24]. The strategy is divided
the segmentation task into two steps. The first step is essentially a image restoration
task, which aims to search for a smooth minimizer to estimate a clean image from the
degraded image. For this purpose, the smooth minimizer g is obtained by solving the
following variational problem:

mfﬁf(f — o) + ﬂ/ IVl dz +/ Vuldz (1.2)
9 2 Ja 2 Ja Q
where 7 is an identity operator or a blurring operator. The second step is image seg-
mentation which is done by thresholding u properly. The two-stage strategy and corre-
sponding improved model have remarkable virtues in image segmentation refer to [25-27]
for details.

Essentially, the improvement for (1.1) comes from the substitution of Length(I") with
a convex total variation (TV) regularization [, |Vu|dz. However, some applications [28-
30] have indicated that the model with non-convex regularization can recover sharp and
neat edges better. In order to achieve the better approximation for the Hausdorff measure
and preserve the boundary information of the object better, Wu et al. proposed another
two-stage strategy image segmentation based on nonconvex l; — [, approximation and
thresholding [31], by replacing the first stage in [25] with the following smoothing process:

infé/(f—,;zfufdx—irﬂ/ |Vu|2dx+/ VulPde, (1.3)

where 0 < p < 1.

Furthermore, in order to obtain the more accurate approximation for the Hausdorff
measure and utilize the information of the image, many researchers proposed several
schemes to substitute the regularization. Pang et.al introuced an adaptive weighted T'V?
regularization-based image denoising model [32]. Wu et.al developed a novel adaptive
total variation based image segmentation model [33]. The other researchers adopt the
fractional-order deritive to formulate the image processing problem [34-36]. In [37], Zhang
et al. introduced a fractional-order denoising model by replacing Vu in total variation
model with V*u. Han [38] proposed a tensor voting based fractional-order image denoising
model. In these models, V*u is the unique characteristic vector of image structure.
Motivated by [38], we propose a tensor voting based fractional-order image segmentation



model. The nonconvex approximation of the MS model of our method can be expressed
as the following:

A

inf—/(f—%u)de+Q/ |Vu|2dx+/c(x)|vo‘u|2dx, (1.4)
u 2 Q 2 Q Q

where the first term in (1.4) is the fidelity, the second term is I, regularization and the
third term is the tensor voting based fractional-order regularization. « is the fractioal

T
order and value is between 1 and 2, V*u = (%, gz—ff) Moreover, here the tensor
1 1
structure function c(x) is defined by
co(z) =k + e*[\muzlﬂuruzlﬂ, k>0, (1.5)

and pq(z), p2(x) are the eigenvalues of the structure tensor (ST)

T(z) = G, * <§7u> e - ( un () uiz(@) ) , (1.6)

02%u (B_u)2 Ulg(iﬁ) UQQ(ZB)
0x10x2 Oz

here GG, is Gaussian kernel.

As we all know, in the field of image processing, structure tensor is used to characterize
the information such as textures, corner and edge of image [40, 41]. Therefore, we intro-
duce a tensor voting function ¢(x) in our model to deal with the various characteristics in
different regions. Furthermore, V®u is the unique character vector of image structure. In
our model, we combine these two factors. In flat region, c¢(x) — k + 1, regulazation term
plays a major role. While on edge or corner c¢(x) — k, the fitting term begins to play a
dominant role. Utilize some good properties of discretized fractional-order derivatives, we
suppose that a € (1,2). To demonstrate the merits of the tensor voting based fractional-
order regularization term, we simulate the regularization term of the image in Figure 1.
I(x) are two given original images which are shown in the first column of Figure 1. The
structuer tensor and the fractional-order gradient of images are presented in the second
and third columns in Figure 2. We can see that the edges are more prominent. This
observations is the main motivation for us to add the term combined these two features
into our model.

The organization of the paper is as follows: in Section 1, some background on image
segmentation model is reviewed, and our tensor voting based fractional-order image seg-
mentation model is introduced. In Section 2, the existence and uniqueness of solution
of model (1.4) is proved. In Section 3, an alternating direction implicit (ADI) scheme of
model (1.4) is proposed. Numerical experiments are list in Section 4, which clearly exhibit
the performance of the proposed approach. Finally, the conclusions are summarized in
Section 5.

At the end of this section, we list the following notations and definitions used in this

paper:
o For x = (z1,22) € Q = (a1, b1) X (ag,by) and function f: Q — R, define

f(x) o 1 d \ T pme f@ (g p)
re  T(jo]+1—a) (dx) / md@ (1.7)
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Fig. 1: Structure tensor and fractional-order gradient of the images.

@) s 1 (d)[‘”“ /Mdt (18)

gz T([a]+1—a) \ dz; t — ;)0 le]
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where here and in what follows, I'(s) = f0+oo ¥ le™*dx, [-] is round down function,

fD(z,t) = f(t,22), fP(x,t) = f(a1,t) and i = 1,2.

« Division of Q: we define a spatial partition P, ; = (x;,y;) = (a1 +1ihy, by + jhe)(for all
i=0,1,--- ,Ny+1;7=0,1,--- , No+1) of image 2 and a time partition s, = kvy(for
all k =0,1,2,---,N) of interval [0, 7], where v = 7/N, h; = (ay — a1)/(N; + 1),
hy = (by — b1)/(N2 + 1).

o) =1, = (1 - 1%) P\

=) . NS ()
o OF fij= R > P ficig1gs 5?+fi,j = he > P fivie1j
=1 =1

LS @ LA
05 fij = ag 2o Pm Jigomiv, 052 fig = 55 22 pm fijmo1:
m=1 m=1

2. Existence and uniqueness of solution of model (1.4)

Then we prove the existence and uniqueness of solution of model (1.4). As to this
problem, we have the following result:

Theorem 2.1. Assume 0 < ¢y < ¢(z) < ¢1 < 400 for all x € Q, o is a linear bound
operator, then (1.4) admits a unique solution uw € HG ().

Proof. Select a minimizing sequence {u*} € H§ (), then

co/ |VeuF P de < E(uf) = é/(%uk — f)?dx + Q/ \VukIde+/c(x)|Vauk]2dx < +o0.
0 2 Ja 2 Ja 0
(2.1)



That is, {u*} is bounded on BV(Q2). By [35], there exists a v € BV(Q) and a
subsequence {u*} which is still labeled by u* such that [[u* — ul;2q) — 0 and

/ Veur - wdr — / Ve - wdr Yw e C;°(£2). (2.2)
Q Q

/ Vu* - vdr — / Vu-vdr Vv e C5o (). (2.3)
Q Q

Let w = ¢V*u and v = Vu in (2.2) and (2.3), then there holds,

: }
/C|V0‘u| dr = lim / cVeuk - Voude < lim (/ c|V°‘uk|2d:B) (/ C|V°‘u|2da:> ,
Q k—+o0 Q k—+o0 Q Q

(2.4)

/|Vu| dr = hm /Vu -Vudz < hm (/\Vuk 2dm> (/ |Vu|2dx> . (2.5)
Q

Therefore, we have that

/c]VO‘uIQd:L’§1iminf/c|vauk]2da;, (2.6)
and
/|Vu]2dx§hmmf/ |Vu*|*dz. (2.7)

On the other hand, by the fact ||u* — u||2(q) — 0 and & is a linear bound operator,
we conclude || Z/uf — o/u| 12(0) — 0 because of the fact that

/Q(e;zfu—f)de—/ﬂ((Qf’uk — f)idx

_ / (" — au) (A + o —2f)dz
Q

<|| A uF — |2 (| 0" — fllr2@) + | /u — fllz2@) — 0. (2.8)

Note that here we use the fact ||/u® — f|r2@), [[#u — f|li2@) are bounded and
o7 u* — o ul|2) < ||| |[u* — ull L)
By (2.6), (2.7) and (2.8), we know that

E(u) < liminf E(u"). (2.9)

k—+4o0
This implies, there exists a u € H*(2) such that v = arg IEH(IQ) E(u).
ueHE
Uniqueness of solution follows from the strict convexity of E(u).
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3. Numerical algorithm for Fractional-order Image Segmentation Model

3.1. ADI scheme of the image segmentation model

In this section, we mainly focus on the numerical implementation of model (1.4). First,
we calculate Euler-Lagrange equation of problem (1.4):

Theorem 3.1. The Fuler-Lagrange equation of (1.4) can be written as
div®™ (¢V®u) 4+ ndiv (Vu) + A\/™ (u — f) = 0. (3.1)

Proof. Assume u € H§(S?) is perturbed along w € H§(f?), then

OwE(u) =2 /Q div® (eV*u) + ndiv (Vu) + \eZ™ (Fu — f)] - wdz. (3.2)

Note that here u,w € Fy'o(2) = Hg (€)[34-36] implies, 2945 |, cpo = 0, (k = 0,1,2,--- , [a];i =
1,2,3)(cf. Sobolev space in [34, 35]). That is, any function on F 70(€2) satisfies the ho-
mogeneous boundary conditions. This implies two important properties of fractional
derivatives we used to derive (3.2):

(i). In this sense, Riemann-Liouville derivatives, Grunwald-Letnikov derivatives and
Caputo derivatives are equivalent [37].

(ii). Integration by parts formula

/a b £(x) - a;]; (;)d:ci _ / b 8;25;”) F)de =123 (3.3)

It follows from the variational principle and (3.2) that
div®* (eV%u) 4+ ndiv (Vu) + A" (v — f) = 0. (3.4)
U

To solve (3.1), we use the gradient flow to update u to the steady state of following
fractional-order evolution equations:

%% +div® (V) +ndiv (Vu) + A" (Fu — f) = 0. (3.5)

0%u(z) 0% u(x)
oxy °  Oz*

For the purpose of solving (3.5) approximately, (k = 1,2) are approxi-

mated by(cf. [37, 42]):
0%u(Pi;)
oy

O u(P; ;)

= 0 u(Py) + Oh), S
k

— 5pu(Py) +O(h).  (36)

Furthermore, when a = 1, we can obtain V*u = Vu.To overcome the large computa-
tional cost and keep the stability of scheme, we use the alternative direction implicit(ADI)
scheme [35, 43] to solve (3.5).



This equation can be written as
1 aun—i-l

2 s
—i—gdiv (Vu) + gdiv (Vu™) + A * ™ — \a* f = 0. (3.7)

1 1
+ §diva* (cVru™) + édivo‘* (eV*u™)

Suppose &7 is a positive definite matrix whose singular value decomposition is &/ =
USVT, where U,V are two orthogonal matrices. Therefore, we have that &/7.o/ =
(USVHTUSVT =V SUTUSVT =V SVT = VSVIVSVT = (VSVT) . Let M =VSVT,
then we conclude that @/7.27/ = M? That is,

n+1 n 1

Ui = Ui

27 + 5 [5;:_(61'73‘(5(11_) + 7751+(517) + 53_,_(@'73‘(53_) + 7762+((52,):| (UZ;H + UZ])

—I—)\(Mm)gunﬂ - )\(%Tf)id‘ =0 (38)

ZM]

Adding some higher order terms on the left side of (3.8), yields

1 1
x {; + VAM;j + 07 (ci05) + n51+<61_>} {; + VAM;; + 03, (ci05 ) + n52+<52—>} uift =
T _ s I n
32 =ttt — 00| |2 88t ) i 0 + M)
(3.9)
Therefore, we obtain the following ADI scheme of model (1.4):
3 [+ VM + 07, (500 ) + ndvy (01)] i) = B, 3.10)
[% + VM + 05, (1505 ) + 7752+(52f)] “Z;rl =%,

v
(3.10) can be reformulated into the following matrix form:

where F7 = 3 [1 = 0 (ci505) = 0o (810)] |2 = 08, (c008) = ndas (05)] w47 )iy

nt+i n
& [(% + \/XM”> In, + BJ} vV, *=H]},

ol (3.11)
(24 VAM) I, + A Up = G2,
n n n n l
Where\/;- + (ul—;z? 2—;27"' 7UNT§)T Un+1 = (ufi_l?u?;l?"' ) ;H]\—é) Hn = (Flng’Fngv'”
07, Gf*? — (ujj u”j ,uzNQ) Bj = CTCj, A = DI'D;, C; = A, LNl, D, =

A LN27 Is(S = Ny, Nz) denotes the unit matrix of order S, A; = diag(\/c1, \/C2; - - - 4 /ch,])

= d@ag(\/Cz—l, \/Cz RV ci,NQ)a
(a)

/—\

AY ol o - 0 1 po 0 - 0
pé) A SRR b g po e O
b = e |
:053) LN, e Y péa) PNi—1 PNi—2 '+ P1 PO
Pz\(i) ,05314 s PNy PNi—1 P2 L1



I IR e a0l
pga) pga) P(()a) 0 P2 pr po -+ 0O

Ly, = % : : VRO + : S :
Pg\?)—l Pg\?)—g e Pga) P(()a) PNa—1 PNy—2 ~° P1 Po

p]\?; )0]\(;;_1 ,Oga) pga) PN, PNa—1 = P2 A1

Remark 3.1. In algorithm of [37], it is expected to compute the inverse of a Ny X Ny order
matriz. However, this costs too much computer memory and time. ADI scheme (3.11)
divides 2D problem into several 1D problems. This scheme not only keeps the stability of
algorithm and saves much computer memory(cf. [36]), but also can be extended to 3D
image segmentation problems. In 3D case, the advantage of this scheme can be even more
obvious. This is the main motivation for us to design the numerical scheme (3.11).

3.2. Thresholding

In this stage, the segmentation results can be obtained by separating the u which is
the smooth approximation in the first stage. We should to calculate the threshold values
to segment u into K parts. Here, we use the K-means clustering method. We firstly
normalize the smooth image u. The pixel values of u are restricted to @ € [0, 1]. Suppose
YU LU UY e = Q. The cluster center p; can be calculated by

ka udx
ka dx

Without loss of generality, let p; < po < --- < pg. Then, the thresholds are given by:

e = (k=1,2,---,K) (3.12)

p= Pl =12 K- ) (3.13)
Using the thresholding value, we can obtained the kth segments of u by

Based on these notations, the ADI scheme of the tensor voting based fractional-order
image segmentation algorithm can be summarized as follows Algorithm 1.

4. Numerical Experiments

In this section, we conduct numerical experiments to show the efficiency of the tensor
voting based fractional-order image segmentation algorithm proposed in Section 3. The
numerical tests are performed using MATLAB (R2021a) with Windows 10 (64bit) and
Intel Core i7-8550U CPU @ 1.80 GHz and 8G of RAM.



Algorithm 1 Tensor based fractional-order image segmentation algorithm based on ADI
scheme (3.7)
Input: a1, az, b1, bz, 7, N1, Na, N.

Stage 1:
Initiallization: Given initial values u); = f; ;.
for n =1:N do

(1) Let uy; be known data at time ¢ = ¢,,. Solving linear systems (3.11) to obtain u?;rl
fori=1,2,--+ ,Ny,j=1,2-- Ny

(2) Check the stop condition. If satisfied, stop and update the smoothing approxima-

tion image to u™*!, else set n =n + 1 and return to (1).
return ufvj fori =0,1,--- , Ny, 7 =0,1,--- , Ny and we obtain the final smoothing
approximation image result u".

Stage 2:

Choose K, use the K-means method to get p; and the segments Q;,(i = 1,2,--- , k) using
(3.13) and (3.14).
Output: Phases ;,(i = 1,2,--- , k)

4.1. Parameters Setting

In the proposed image segmentation Algorithm 1, there are three important parame-
ters: a, A and 7. In oder to choose the optimal value of these parameters, we use some
quantitative indicators such as Segmentation Accuracy (SA), Precision, Recall, F1-Score
(F1), Kappa coefficient (k) and Jaccard Similarity (JS). These indicators can be calcu-
lated by the stand confusion matrix which are exhibited in Table.1. The test images are
choosed from the Weizamann segmentation dataset. These indicators are defined as the
following;:

1. Segmentation Accuracy (SA):

TP+TN
A= 4.1
5 TP+TN+ FP+ FN (4.1)
2. Precision: Tp
P=—— 4.2
TP+ FP (42)
3. Recall: Tp
= 4.
o TP+ FN (43)
4. F1-Score (F1)
2PR
F1= 4.4
P+ R (44)
where P and R represent Precision and Recall, respectively.
5. Kappa coefficient (k)
A—-P, TP+ FN)(TP+ FP FP+TN)(FN+TN
H:S—, with P, = TP+ TP+ FP)+ (FP+TN) +TN) (4.5)
1-P, ('P+TN + FP+ FN)?



imagel image2 imaged

Fig. 2: Test images: Choose from the Weizmann dataset. Imagel: Tree; Image 2: balloon; Image 3:
Partorre.

Confusion matrix True
Positive  Negative
Predict  Positive TP FP
Negative FN TN

Table 1: Confusion matrix

6. Jaccard Similarity (JS)

|S1 M Sy
JS(S1,52) = ——— 4.6
( 1 2) |Sl U 5«2| ( )
where 57 is the region segmentated by the proposed algorithm and S5 is the corresponding
region in the ground truth. |- | repersents the number of pixels in image area.

As mentioned in section 2, we suppose « € (1,2), we test the value of o from 1.2 to
1.9. The results of the six indicators which are estimated by our algorithm are exhibited
in Figure 3. It is obviously that when a = 1.6, the test images can obtain the best
segmentation results.

In order to test the values of A and 7, we choose a cleaning image which is shown
in Figure 4(a). We use the Matlab codes to create blur operator: “fspecial(‘motion’, 50,
30)” and “fspecial(‘disk’, 20)”. The blur images are shown in Figure 4(b) and 4(c). We
test the value of A from 10 to 150. Some results are shown in Figure 4(d)-(i). Figure 4(j)
is the ground truth. We can observed that when A\ > 60 our method can chieve the best
results. So we choose the A from the interval [80, 120] empirically. In the following tests,
we only show the segmentation results with A = 100. Then we test the parameter n from
1 to 10. From the results, we can see the contours of objects are almost unchanging. It
indicates that our method is robust with the the parameter 7. In the following tests, we
choose n =1.

When use the blur operator “fspecial(‘motion’, 60, 45)”, the parameters are set as:
a =24, A =200 and n = 1, we can also obtain the right segmentation results. It proves
that our method can still work when o > 2 .

4.2. Numerical segmentations

4.2.1. Image segmentation with different level of noise

In this expriment, we test our method on the artificial image with different noise level.
As shown in Figure 5(a), 5(b) and 5(c), the image is added the Gaussian noises with mean
0 and variances 0.01, 0.015 and 0.02, respectively. Figure 5(d) and 5(e) are two synthetic
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Fig. 3: Six indecators of different values of a on test images.
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(a)Orignal image
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(dA=20,p=1
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(h)A=100; p =1
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(e)A=60;p=1
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fA=100;p=1

=6lpu=1

(j)Ground truth

Fig. 4: Segmentation results of two blur operators with different values of A and 7.
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Fig. 5: Segmentation results of noisy images.

Algorithm Js F1 Recall  Precision  SA K
CV 0.8421 0.9143 0.8621  0.9733  0.9781 0.9081
LBF 0.3402 0.4144 0.4852  0.5164  0.4488 0.7759

SPGCS | 0.9123 0.9029 0.8643 0.9723  0.9778 0.9049
LGDF | 0.6573 0.7076 0.8213 0.8636  0.8510 0.8569
CCS 0.8315 0.9080 0.8582  0.9764  0.9726 0.8945
NAT 0.8441 0.9155 0.8643  0.9784  0.9784 0.9031
OUR 0.8476 0.9175 0.8682  0.9748  0.9789 0.9055

Table 2: Six indecators of the segmentation results shown in Figure 13.

images with noise. All the segmentation resuts are exbibited in figure 5(f) to 5(j). We can
see that our model segments all the objects very well which indicates that our method is
stable and robust with respect to the noise.

4.2.2. Image segmentation with weak boundaries

To futher comfirm the robustness and superiority of our method, we test our method
on four images with different modalities. Figure 6(a) is a artificial synthetic image with
the object like the letter "U”. We can found that there is weak boundary in the lower left
conner of "U”. Figure 6(e), 6(i) and 6(m) are a militray infrared image, a medical image
and a biomedical image respectively. All these images are intensity inhomogeneity, weak
boundaries and low contract. The images in second column of Figure 6 are the restoration
images. The segmentation results and the contours are demonstrsted in the third and
fourth columns of figure 6. Our proposed model performs the satifatory segmentation
results of all the images.

4.8. Comparison Fxperiments
4.8.1. Comparison with methed of [24] and method of [31]

In this experiment, we compare the proposed model with two classical two-stage seg-
mentation algorithms proposed by [24] and [31]. We denote them as CCS and NAT.

13



(m)

Fig. 6: Segmentation results of images with weak boundary and low constract.

Algorithm Js F1 Recall Precision ~ SA K

CV 0.3402 0.3781 0.2107  0.4041  0.1683 0.7045
LBF 0.4888 0.4687 0.5479  0.5764  0.4983 0.7759
SPGCS | 0.3060 0.3158 0.2643  0.3723  0.1778 0.7049
LGDF | 0.9551 0.9771 0.9663  0.9881  0.9939 0.9735
CCS 0.9498 0.9742 0.9640 0.9931  0.9931 0.9703
NAT 0.9510 0.9749 0.9625 0.9933  0.9784 0.9710
OUR 0.9557 0.9774 0.9687  0.9948  0.9940 0.9739

Table 3: Six indecators of the segmentation results shown in Figure 14.
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Fig. 7: The comparison between CCS, NAT and the proposed method on blur opertor “fspecial(‘motion’,
20, 45)".
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Fig. 8 The comparison between CCS, NAT and the proposed method on blur opertor “fspe-
cial(‘Gaussian’, [15,15], 15)”.
Algorithm Js F1 Recall Precision  SA K
(A4 0.9231 0.9051 0.9313 0.9246 0.9912 0.9629
LBF 0.3712 0.4372 0.4687 0.6209 0.6414 0.6525
SPGCS | 0.9073 0.9104 0.8936  0.9198  0.9526 0.8786
LGDF 0.6804 0.6781 0.6041 0.6447 0.6850 0.6525
CCS 0.9709 0.9852 0.9746 0.9919 0.9919 0.9797
NAT 0.9676 0.9835 0.9732 0.9910 0.9910 0.9773
OUR 0.9702 0.9847 0.9760 0.9960 0.9916 0.9789

Table 4: Six indecators of the segmentation results shown in Figure 15.
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Fig. 9: The comparison between CCS, NAT and the proposed method on blur opertor “fspe-

cial(‘average’,20)”.
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Fig. 10: The comparison between CV, LBF, SPGCS, LGDF, CCS, NAT and the proposed method on

kidney vessel.
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Fig. 11: The comparison between CV, LBF, SPGCS, LGDF, CCS, NAT and the proposed method on

part of vessel.

h

Fig. 12: The comparison between CV, LBF, SPGCS, LGDF, CCS, NAT and the proposed method on
the military infrared image of car.

Algorithm Js F1 Recall Precision  SA K

Ccv 0.9021 0.9105 0.9347 0.9141  0.9239 0.9331
LBF 0.5390 0.5647 0.4859  0.5111  0.5229 0.5759
SPGCS ] 0.9096 0.9119 0.9243  0.8923  0.9278 0.9049
LGDF | 0.6804 0.6909 0.7211  0.7810  0.7314 0.7177
CCS 0.9110 0.9520 0.9889  0.9241  0.9800 0.9505
NAT 0.9089 0.9436 0.9873  0.9220  0.9749 0.9500
OUR 0.9175 0.9570 0.9896  0.9264  0.9888 0.9506

Table 5: Six indecators of the segmentation results shown in Figure 16.
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Fig. 13: The comparison between CV, LBF, SPGCS, LGDF, CCS, NAT and the proposed method on
rice with noise.
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Fig. 14: The comparison between CV, LBF, SPGCS, LGDF, CCS, NAT and the proposed method on
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Fig. 15: The comparison between CV, LBF, SPGCS, LGDF, CCS, NAT and the proposed method on
natural image of Balloon.

Fig. 16: The comparison between CV, LBF, SPGCS, LGDF, CCS, NAT and the proposed method on
natural image of Partorre.
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Fig. 17: The comparison between CV, LBF, SPGCS, LGDF, CCS, NAT and the proposed method on
natural image of Eagle.

We also use Matlab codes to create the different blur operators: “fspecial(‘motion’; 20,
45)” ) “fspecial(‘Gaussian’, [15,15], 15)” and “fspecial(‘average’,20)”. The parameters of
the operators are bigger than they set in algorithms [24] and [31]. The parameters of the
algorithms are choosed the same values as: A = 100 and n = 1. The segmentation results
are shown in Figure 7-9. Our method has an improved ability to deal with the images
with different blur.

4.8.2. Segmentation Images with weak boundary and low contrast

In this section, we apply the proposed method and the compared methods on the same
images with weak boundary and low contrast. The compared methods are the state-of-
the-art methods: CV[20], LBF [44], SPGCS [45], LGDF [46], CCS [24] and NAT [31].
As can be seen in Figure 10-13, Figure 10(a) is a magnetic resonance image of kidney
blood vessels, Figure 11(a) is a biomedical image of part of blood vessel, Figure 12(a) is
a military infrared image of a car. The boundaries of the objects are blurry and vague.
Figure 13(a) is a classical image in image processing. It is an image of rice with noise. We
can see from figure 10, only the CCS, NAT and our method can segment the right objects.
When the paprameters are set the same and the thresholds are calculated automaticly.
Only our method can achieve the desirable segmentation result. The segmentation results
of other three images are exhibited in Figure 10-13. We can find that the proposed method
delineates the boundaries of objects accurately.

4.3.3. Segmentation Natural Images

To futher demonstrate the superiority of our method, we perform experiments on
natural images with ground truth. We also use the values of indicators to demonstrate
the effectiveness of our method. The parameters are choosed suitable and fixed for these
experimental images. The results are shown in Figure 14-17. The LBF and LGDF
proved too much undesired scattered structures in the results. All the values of index are
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presented in Table 2-5. It can be seen that our proprsed method provides the highest
values compared to other approaches. Thus, our method is more reliable and stable for
different natural images.

5. Conclusion

In this article, we develop a tensor voting based fractional-order image segmentation
model. We introduce an effective global regularization term combined the structure ten-
sor and fractional gradient which can smooth the details and preserve the characteristic
structures of images. Our method inherits the merits of two-stage strategy which can
improve the efficiency and performance during the restoration stage and segmentation
stage. The minimization problem is solved by an ADI scheme which can split 2D problem
into several uncondintionally stable 1D problem. Our method is low computational cost
one which can be considered as the accelerated algorithm of other numerical schemes. Nu-
merical experimental results on the synthetic, medical and natural images domonstrate
the proposed method outpeforms several current advanced segmentation methods.
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