An embedding technique in the study of word-representability of graphs

Sumin Huang ${ }^{\text {a }}$, Sergey Kitaev ${ }^{\text {b,*, }}$, Artem Pyatkin ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
${ }^{\text {c }}$ Sobolev Institute of Mathematics, Koptyug ave, 4, Novosibirsk, 630090, Russia

ARTICLEINFO

Article history:

Received 28 August 2023
Received in revised form 6 December 2023
Accepted 14 December 2023
Available online xxxx

Keywords:

Simplified de Bruijn type graph
Word-representability
Semi-transitive orientation
Homomorphism

Abstract

Word-representable graphs, which are the same as semi-transitively orientable graphs, generalize several fundamental classes of graphs. In this paper we propose a novel approach to study word-representability of graphs using a technique of homomorphisms. As a proof of concept, we apply our method to show word-representability of the simplified graph of overlapping permutations that we introduce in this paper. For another application, we obtain results on word-representability of certain subgraphs of simplified de Bruijn graphs that were introduced recently by Petyuk and studied in the context of word-representability.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Simplified de Bruijn graph and its subgraphs

Let $A(k)=\{0,1, \ldots, k-1\}$ be a k-letter alphabet. For any integers $n \geq 2$ and $m \geq 0$, let $A_{m}^{n}(k)$ be the following set of words over $A(k)$:

$$
A_{m}^{n}(k)=\left\{x_{1} x_{2} \ldots x_{n}: x_{i} \in A(k) \text { and }\left|x_{i}-x_{i+1}\right| \geq m\right\} .
$$

In particular, $A_{0}^{n}(k)$ is the set of all words over $A(k)$ of length n.
A de Bruijn graph $B(n, k)$ is a digraph with vertex set $A_{0}^{n}(k)$ having an arc from $x_{1} x_{2} \ldots x_{n}$ to $y_{1} y_{2} \ldots y_{n}$ if and only if $x_{i+1}=y_{i}$ for all $i \in\{1,2, \ldots, n-1\}$. De Bruijn graphs are a useful tool in combinatorics on words [8] and they find applications in several areas outside of mathematics, for example, in bioinformatics [10].

The notion of the simplified de Bruijn graph is introduced in [9], and we believe it to be a very natural and potentially useful tool in graph theory and its various applications. The simplified de Bruijn graph $S(n, k)$ is the simple graph obtained from $B(n, k)$ by removing orientations and loops and replacing multiple edges between a pair of vertices by a single edge. Denote by $S_{m}(n, k)$ the induced subgraphs of $S(n, k)$ with vertex set $A_{m}^{n}(k)$. See Fig. 1 for examples of just introduced objects.

[^0]

Fig. 1. From left to right: the graphs $B(3,2), S(3,2)$ and $S_{1}(3,2)$.

Fig. 2. From left to right: the graphs $P(3)$ and $S P(3)$.

1.2. Simplified graphs of overlapping permutations

The graph of overlapping permutations $P(n)$ is defined in a way analogous to the de Bruijn graph $B(n, k)$. However, here we require that the head and tail of adjacent permutations have their letters appear in the same relative order. Formally, the vertex set of $P(n)$ is the set of all n ! permutations of $\{1,2, \ldots, n\}$, and there is an arc from a permutation $x_{1} x_{2} \ldots x_{n}$ to a permutation $y_{1} y_{2} \ldots y_{n}$ if and only if, for each $2 \leq i<j \leq n$, either both $x_{i}<x_{j}$ and $y_{i-1}<y_{j-1}$ hold or both $x_{i}>x_{j}$ and $y_{i-1}>y_{j-1}$ hold. The graph $P(n)$ is instrumental in solving various problems related to permutations, for example, in constructing a universal cycle for permutations [1].

The simplified graph of overlapping permutations $S P(n)$ is obtained from $P(n)$ by removing orientations and loops and replacing multiple edges between a pair of vertices by a single edge. To our best knowledge, the notion of the simplified graph of overlapping permutations is introduced in this paper for the first time. See Fig. 2 for examples of just introduced objects.

1.3. Word-representability of graphs

The literature contains a substantial body of research papers focused on the theory of word-representable graphs, as evidenced by Refs. [4-6] and related works. These graphs are of interest due to their connections to algebra, graph theory, computer science, combinatorics on words, and scheduling [5]. Notably, word-representable graphs extend the scope of several important graph classes, including circle graphs, 3-colorable graphs, and comparability graphs. The ability to represent simplified de Bruijn graphs and simplified graphs of overlapping permutations using words could expand the range of potential applications for these graphs. This provides motivation for studying these graphs from the perspective of word-representability.

Two letters x and y alternate in a word w if after deleting in w all letters but the copies of x and y we either obtain a word $x y x y \cdots$ or a word $y x y x \cdots$ (of even or odd length). A graph $G=(V, E)$ is word-representable if and only if there exists a word w over the alphabet V such that letters x and $y, x \neq y$, alternate in w if and only if $x y \in E$. The unique
minimum (by the number of vertices) non-word-representable graph on 6 vertices is the wheel graph W_{5}, while there are 25 non-word-representable graphs on 7 vertices [5].

An orientation of a graph is semi-transitive if it is acyclic, and for any directed path $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}$ either there is no arc from v_{0} to v_{k}, or $v_{i} \rightarrow v_{j}$ is an arc for all $0 \leq i<j \leq k$. An induced subgraph on vertices $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ of an oriented graph is a shortcut if it is acyclic, non-transitive, and contains both the directed path $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}$ and the arc $v_{0} \rightarrow v_{k}$, that is called the shortcutting edge. A semi-transitive orientation can then be alternatively defined as an acyclic shortcut-free orientation. A fundamental result in the area of word-representable graphs is the following theorem.

Theorem 1 ([2]). A graph is word-representable if and only if it admits a semi-transitive orientation.
The following simple corollary of Theorem 1 is also instrumental for us.
Theorem 2 ([2]). Any 3-colorable graph is word-representable.
Directly related to our studies is the following theorem by Petyuk [9].
Theorem 3 ([9]). For positive integers n and k with $k \geq 3$,
(i) $S(n, 2)=S_{0}(n, 2)$ is word-representable;
(ii) $S(2, k)=S_{0}(2, k)$ is non-word-representable;
(iii) $S(3, k)=S_{0}(3, k)$ is non-word-representable.

We will provide a sketch of the proof of Theorem 3(i) in Section 2 in order to introduce our notation and color classes that will be used in this paper.

1.4. Results in this paper

In this paper, we continue the research on word-representability of the simplified de Bruijn graph initiated in [9], and extend the studies to the simplified graph of overlapping permutations. More specifically, the following conjecture is stated in [9]:

Conjecture 1. $S(n, k)$ is non-word-representable for $n \geq 4$ and $k \geq 3$.
Towards settling this conjecture it is natural to consider induced subgraphs of $S(n, k)$, such as $S_{m}(n, k)$, that have simpler structure but may still be non-word-representable. So, if $S_{m}\left(n, k^{\prime}\right)$ is non-word-representable for some m, n, k^{\prime} then $S_{m}(n, k)$ and hence $S(n, k)$, are non-word-representable for every $k \geq k^{\prime}$.

In order to study word-representability of $S_{m}(n, k)$, we use an embedding technique based on the well-known notion of graph homomorphisms (see, e.g. [3]). Let G and H be two graphs. Assume that there exists a mapping f from $V(G)$ to $V(H)$ preserving adjacency (i.e. if $u v \in E(G)$ then $f(u) f(v) \in E(H)$). Then such a mapping f is called a homomorphism (or just an embedding) from G to H. For instance, for a k-colorable graph G, its k-coloring induces a homomorphism from G to K_{k} (the complete graph of order k).

We found out that homomorphisms can be useful for finding potential semi-transitive orientations of G. To the best of our knowledge, this is the first use of the homomorphisms in the area of word-representable graphs (although the proof of Theorem 2 in [2] may be considered as a simplest application of this technique). Informally, the basic steps of the embedding technique (that will be indicated explicitly in the proofs of Theorem 4 and Lemmas 5-8) are as follows:
Step 1. Given a graph G, find a word-representable graph H such that there exists a homomorphism f from G to H. Based on a fixed acyclic orientation of H, orient all edges in G as in H (i.e. $u \rightarrow v$ in G if $f(u) \rightarrow f(v)$ in the oriented H). Clearly, we obtain an acyclic orientation of G.
Step 2. Find all directed paths $f\left(v_{0}\right) \rightarrow f\left(v_{1}\right) \rightarrow \cdots \rightarrow f\left(v_{k}\right), k \geq 3$, with $f\left(v_{0}\right) \rightarrow f\left(v_{k}\right)$ in the oriented H. We call such paths shortcutting paths. If no shortcutting paths exist in H, then the orientation of G is semi-transitive, and we terminate the procedure. For instance, Theorem 2 can be proved by embedding a 3-colorable graph into a triangle and orienting the triangle transitively.
Step 3. Analyze each shortcutting path found in Step 2. If none of them induces a shortcut in G then we obtain a desired semi-transitive orientation of G.

Remark. We can find all directed paths in Step 2, for instance, in the following way. Let M be the adjacency matrix of H, i.e. $a_{i j}=1$ if there is an arc from v_{i} to v_{j} in H and $a_{i j}=0$ otherwise. Then H contains a shortcutting path of length p from v_{i} to v_{j} with the shortcutting edge $v_{i} v_{j}$ if and only if both matrices M and its p th power M^{p} have positive elements in position (i, j).

Of course, Step 3 is not always applicable since there can be a homomorphism from a non-word-representable graph to a word-representable graph (for instance, a homomorphism from W_{5} to K_{4}). However, sometimes the approach works providing elegant proofs of word-representability for quite complicated graphs.

As an application of the embedding technique, we will prove the following two theorems.

Theorem 4. For any positive integer $n, S P(n)$ is word-representable.
Theorem 4 is proved in Section 3. In our proof of Theorem 4, the oriented H found in Step 1 contains no shortcutting paths.

Theorem 5. Let m, n, k be positive integers.
(i) For $n=2,3,4$ and $k \leq(n+1) m, S_{m}(n, k)$ is word-representable. Moreover, $S_{m}(2, k)$ is non-word-representable for $k \geq 3 m+1$.
(ii) For $n \geq 5$ and $k \leq 2 m n, S_{m}(n, k)$ is word-representable.

Theorem 5 is proved in Section 4 and in the Appendix.
In general, it is desirable that an orientation of H fixed in Step 1 is semi-transitive, which is the case in the proofs of Theorem 4 (mentioned above) and Lemmas 5, 6 and 8 (related to Theorem 5(ii)). However, this is not a necessary condition as is demonstrated by us in the proof of Lemma 7 in Section 4.4 (related to Theorem 5(ii)).

2. Preliminaries

In this section we provide simple (known) statements that are required for deriving our further results. The following lemma reveals relations among $S_{m}(n, k)$ for various m and k.

Lemma 1. For any positive integers m, n, k with $k \geq 2$, we have
(i) $S_{m}(n, k)$ is isomorphic to a subgraph of $S_{m}(n, k+1)$;
(ii) $S_{1}(n, k)$ is isomorphic to a subgraph of $S_{m}(n,(k-1) m+1)$.

Proof. It is clear that (i) holds. To prove (ii) consider the following embedding of $S_{1}(n, k)$ into $S_{m}(n,(k-1) m+1)$. For any vertex $\omega=x_{1} x_{2} \ldots x_{n}$ in $S_{1}(n, k)$, let $f(\omega)$ be the word of length n obtained by multiplying each letter of ω by m, that is, $f(\omega)=\left(m x_{1}\right)\left(m x_{2}\right) \ldots\left(m x_{n}\right)$. Since $x_{i} \leq k-1, f(\omega)$ is a vertex in $S_{m}(n,(k-1) m+1)$. Also, $\omega \omega^{\prime} \in E\left(S_{1}(n, k)\right)$ if and only if $f(\omega) f\left(\omega^{\prime}\right) \in E\left(S_{m}(n,(k-1) m+1)\right)$, which implies that (ii) holds.

We also need a proof of 3-colorability of $S_{0}(n, 2)$ that was found by Petyuk in [9]. Here we rewrite the original proof in a more convenient notation that will be of use for us later on.
A 3-colorability of $S_{0}(n, 2)$. We first introduce the following types of words:

- e_{1} (resp., e_{0}) represents words consisting of a positive even number of 1 s (resp., 0 s) only;
- o_{1} (resp., o_{0}) represents words consisting of an odd number of 1 s (resp., 0 s) only;
- a_{1} (resp., a_{0}) represents non-empty words beginning with 1 (resp., 0);
- b_{1} (resp., b_{0}) represents either words beginning with 1 (resp., 0) or an empty word.

Then the vertices in $S_{0}(n, 2)$ may be represented (in different ways) using this notation. The following observation is easy to verify.

Observation 1. Let w be a word representing a vertex in $S_{0}(n, 2)$ and let the word w^{\prime} be obtained from w by removing the first letter. Then
(i) if w has the form $e_{1} b_{0}$ (resp., $e_{0} b_{1}$) then w^{\prime} has the form $o_{1} b_{0}$ (resp., $o_{0} b_{1}$);
(ii) if w has the form $o_{1} b_{0}$ (resp., $o_{0} b_{1}$) then w^{\prime} has either the form $e_{1} b_{0}$ (resp., $e_{0} b_{1}$) or the form b_{0} (resp., b_{1}).

Consider two cases.
Case 1. n is even. In this case, each vertex of $S_{0}(n, 2)$ can be represented by exactly one of $\left\{e_{0} b_{1}, e_{1} b_{0}, o_{1} e_{0} a_{1}, o_{1} o_{0} b_{1}\right.$, $\left.o_{0} e_{1} a_{0}, o_{0} o_{1} b_{0}\right\}$, which is called the form of this vertex. Then we can color the vertices in $S_{0}(n, 2)$ based on their forms as follows:

Red : $e_{0} b_{1}, e_{1} b_{0} ; \quad$ Blue : $o_{1} e_{0} a_{1}, o_{1} o_{0} b_{1} ; \quad$ Green : $o_{0} e_{1} a_{0}, o_{0} o_{1} b_{0}$.
Case 2. n is odd. Similarly, we color the vertices in $S_{0}(n, 2)$ based on their forms as follows:
Red : $e_{0} a_{1}, e_{1} a_{0} ; \quad$ Blue : $o_{1}, o_{1} o_{0} a_{1}, o_{1} e_{0} b_{1} ; \quad$ Green : $o_{0}, o_{0} o_{1} a_{0}, o_{0} e_{1} b_{0}$.
Using Observation 1, it is not difficult to verify that in both cases there are no monochromatic edges (note that the vertices of the forms e_{1}, e_{0}, o_{1}, and o_{0} are unique and $S_{0}(n, 2)$ has no loops), and thus we obtain a proper 3-coloring of $S_{0}(n, 2)$.

3. Word-representability of $S P(n)$

In this section, we give a proof of Theorem 4 using the embedding technique. Note that $S P(1)$ is a single vertex while $S P(2)$ is a single edge. Both of these graphs are word-representable. Next, we consider the case of $n \geq 3$.

Step 1. Let $H=S_{0}(n-1,2)$. For any vertex $\omega=x_{1} x_{2} \ldots x_{n}$ in $S P(n)$, let $\tau(\omega)=y_{1} \ldots y_{n-1}$ be such that $y_{i}=0$ if $x_{i}>x_{i+1}$ and $y_{i}=1$ otherwise. Then $\tau(w)$ is a mapping from $V(S P(n))$ to $V\left(S_{0}(n-1,2)\right)$. Let us show that τ is a homomorphism. Assume that $\omega \omega^{\prime}$ is an edge in $E\left(S P(n)\right.$), where $\omega=x_{1} x_{2} \ldots x_{n}, \omega^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}$ and $\omega \rightarrow \omega^{\prime}$ is an arc in $P(n)$.

If $\tau(\omega)=y_{1} y_{2} \ldots y_{n-1}$, then $\tau\left(\omega^{\prime}\right)=y_{2} \ldots y_{n-1} y_{n}$ by definition of τ. Thus, if $\tau(\omega) \neq \tau\left(\omega^{\prime}\right)$, then there exists an edge between $\tau(\omega)$ and $\tau\left(\omega^{\prime}\right)$. However, $\tau(\omega)=\tau\left(\omega^{\prime}\right)$ implies that $y_{1}=\cdots=y_{n} \in\{0,1\}$ so that $\omega=\omega^{\prime} \in$ $\{123 \ldots n, n(n-1)(n-2) \ldots 1\}$, which is a contradiction with $\omega \neq \omega^{\prime}$. So $\tau(\omega)$ is adjacent to $\tau\left(\omega^{\prime}\right)$ in $S_{0}(n-1,2)$, as desired.

Let $R \cup B \cup G$ be a 3-coloring partition of $V\left(S_{0}(n-1,2)\right)$. Orient $S_{0}(n-1,2)$ so that any vertex in R is a source and any vertex in G is a sink.

Step 2. Orient all edges in $S P(n)$ as in $S_{0}(n-1,2)$ (i.e., $u \rightarrow v$ in $S P(n)$ if $\tau(u) \rightarrow \tau(v)$ in the oriented $S_{0}(n-1,2)$).
Since there are no shortcutting paths in the oriented $S_{0}(n-1,2)$, we obtain a desired semi-transitive orientation of $S P(n)$ (Step 3 is not needed). By Theorem 1, $S P(n)$ is word-representable.

4. Word-representability of $S_{m}(n, k)$

4.1. The case of $n=2$

Lemma 2. If $m \geq 1$ and $k \leq 3 m$ then $S_{m}(2, k)$ is word-representable.
Proof. For all pairs of adjacent vertices $x_{1} x_{2}$ and $y_{1} y_{2}$ in $S_{m}(2, k)$, orient the edge by the lexicographical order (i.e. we have $x_{1} x_{2} \rightarrow y_{1} y_{2}$ if $x_{1} x_{2}$ is lexicographically smaller than $y_{1} y_{2}$). It is clear that this orientation is acyclic. We claim that the oriented graph contains no directed path of length 3 , which implies that there are no shortcuts in this orientation and thus $S_{m}(2, k)$ is word-representable.

Indeed, suppose that there is a directed edge from $x_{1} x_{2}$ to $y_{1} y_{2}$ in $S_{m}(2, k)$. Then $x_{1} x_{2}$ is lexicographically smaller than $y_{1} y_{2}$, i.e. $y_{1} \geq x_{1}$. Moreover, either $x_{2}=y_{1}$ or $x_{1}=y_{2}$. If $x_{2}=y_{1}$ then $x_{2} \geq x_{1}$. By definition of $S_{m}(2, k)$, we have $x_{2}-x_{1} \geq m$, and so, $y_{1} \geq x_{1}+m$. If $y_{2}=x_{1}$ then, by a similar argument, $y_{1} \geq y_{2}+m=x_{1}+m$. Hence, in both cases, $y_{1} \geq x_{1}+m$. For $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\} \subseteq V\left(S_{m}(2, k)\right)$, suppose that there is a directed path $\omega_{1} \rightarrow \omega_{2} \rightarrow \omega_{3} \rightarrow \omega_{4}$ of length 3 . Then, the first letter of ω_{4} is at least $3 m$. However, since $k \leq 3 m$, any letter in A is at most $3 m-1$, a contradiction. So there are no directed paths of length 3 , as desired.

To finish the study of the case of $n=2$, it remains to prove that $S_{m}(2, k)$ is non-word-representable for $k \geq 3 m+1$. By Lemma 1(i), it is sufficient to show that $S_{m}(2,3 m+1)$ is non-word-representable, and by Lemma 1(ii), our aim is to prove that $S_{1}(2,4)$ is non-word-representable. Since this proof is a tedious case-analysis requiring certain special encodings, it is moved to the Appendix.

4.2. A bipartite subgraph of $S_{m}(n, k)$

In this section, we introduce some notations necessary for our proofs in the rest of the paper. Let

$$
A_{m}^{n}(k,<):=\left\{x_{1} x_{2} \ldots x_{n}: x_{i} \leq x_{i+1}-m, 1 \leq i \leq n-1\right\}
$$

and

$$
A_{m}^{n}(k,>):=\left\{x_{1} x_{2} \ldots x_{n}: x_{i} \geq x_{i+1}+m, 1 \leq i \leq n-1\right\}
$$

be, respectively, the sets of increasing and decreasing words in $A_{m}^{n}(k)$. We denote the subgraphs of $S_{m}(n, k)$ induced by $A_{m}^{n}(k,<)$ and $A_{m}^{n}(k,>)$ by $S_{m}^{<}(n, k)$ and $S_{m}^{>}(n, k)$, respectively. Then we claim that both $S_{m}^{<}(n, k)$ and $S_{m}^{>}(n, k)$ are trianglefree. Indeed, suppose $\omega_{1} \omega_{2} \omega_{3}$ is a triangle in $S_{m}^{<}(n, k)$. Let $\omega_{1}=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \leq x_{i+1}-m$. Since ω_{2} is adjacent to ω_{3}, their first letters must be different. Because $\omega_{1} \omega_{2}$ and $\omega_{1} \omega_{3}$ are edges in $S_{m}^{<}(n, k),\left\{\omega_{2}, \omega_{3}\right\}=\left\{x_{0} x_{1} \ldots x_{n-1}, x_{2} \ldots x_{n} x_{n+1}\right\}$ for some $x_{0} \leq x_{1}-m$ and $x_{n+1} \geq x_{n}+m$, which is a contradiction with $\omega_{2} \omega_{3} \in E\left(S_{m}^{<}(n, k)\right)$.

Lemma 3. $S_{m}^{<}(2,4 m)$ is bipartite.
Proof. Suppose that C is a shortest odd cycle in $S_{m}^{<}(2,4 m)$. Then C is chord-free. Orient the edges in C in the same way as they are oriented in de Bruijn graph $B(2,4 m)$ and denote the obtained directed graph by \vec{C}. Since $k=4 m$, the longest directed path in $B(2,4 m)$ (and hence in \vec{C}) is of length at most 2 .

If there are no directed paths of length 2 in \vec{C}, then \vec{C} is clearly an even cycle, a contradiction.

Suppose that $x y \rightarrow y z \rightarrow z w$ is a directed path of length 2 in \vec{C}. Then $x y$ and $z w$ are a source and a sink in \vec{C}, respectively. If the other neighbor of $x y$ in C, say $y a$, is a sink, then C contains the following path (arrows indicate the directions of the edges in \vec{C}):

$$
b y \rightarrow y a \leftarrow x y \rightarrow y z \rightarrow z w
$$

However, in this case, there is a chord by $\rightarrow y z$ in C, which is a contradiction. Thus, $x y$, or generally the head of any directed path of length 2 , is not adjacent to any sink. Similarly, the tail of any directed path of length 2 is not adjacent to any source. This implies that \vec{C} comprises of a series of alternate directed paths of length 2 . Then C is of even length, which is a contradiction.

Therefore $S_{m}^{<}(2,4 m)$ is bipartite, as desired.
Assume that A is a subset of $A_{m}^{n}(k)$. For any word ω in $A_{m}^{n-1}(k)$, the cluster with respect to ω is the subset of A comprised of all words that begin or end with ω. A cluster is non-trivial if it contains at least two vertices. The cluster graph $\mathcal{C}(A)$ of A is the graph whose vertex set is the set of all non-trivial clusters of A. There is an edge between two clusters in $\mathcal{C}(A)$ if and only if they have a common vertex in A. Note that $\mathcal{C}(A)$ is a subgraph of $S_{m}(n-1, k)$ provided $n \geq 2$. For example, if $A=\{0123,1234,2123,2345\}$, then the cluster with respect to 123 is $\{0123,1234,2123\}$, while the cluster with respect to 012 is $\{0123\}$, and the cluster with respect to 124 is the empty set. In this case, $\mathcal{C}(A)$ is a single edge with vertex set $\{123,234\}$.

Lemma 4. If $n \geq 2$ and $k \leq 2 m n$ then $S_{m}^{<}(n, k)$ is bipartite.
Proof. Since $S_{m}^{<}(n, k)$ is a subgraph of $S_{m}^{<}(n, k+1)$, it is sufficient to prove that $S_{m}^{<}(n, 2 m n)$ is bipartite. We apply the induction on n. By Lemma 3, $S_{m}^{<}(n, 2 m n)$ is bipartite for $n=2$. Assume that $S_{m}^{<}(n, 2 m n)$ is bipartite. Now we consider the graph $S_{m}^{<}(n+1,2 m(n+1))$.

Suppose that C is a shortest (and hence chord-free) odd cycle in $S_{m}^{<}(n+1,2 m(n+1))$ and the length of C is $2 t+1$. Direct the edges in C in the same way as they are oriented in de Bruijn graph $B(n+1,2 m(n+1))$ and obtain the directed graph \vec{C}. Let $\omega_{1}^{\prime} \omega_{1} \omega_{2} \omega_{2}^{\prime}$ be four consecutive vertices in C. Without loss of generality, assume that ω_{2} starts with ω and ends with ω^{\prime}, where ω and ω^{\prime} are both in $A_{m}^{n}(k,<)$. Based on the orientation of \vec{C}, we have the following observations.

- At most one of $\left\{\omega_{1}, \omega_{2}\right\}$ is a sink or a source. Otherwise, without loss of generality, suppose that ω_{1} is a sink and ω_{2} is a source. Then both ω_{1} and ω_{2}^{\prime} begin with ω^{\prime}, while ω_{1}^{\prime} ends with ω^{\prime}. This implies that ω_{1}^{\prime} is adjacent to ω_{2}^{\prime} in $S_{m}^{<}(n+1,2 m(n+1))$, which is a contradiction.
- If ω_{2} is a sink then $\left\{\omega_{1}, \omega_{2}, \omega_{2}^{\prime}\right\}$ in C is the cluster with respect to ω.
- If ω_{2} is a source then $\left\{\omega_{1}, \omega_{2}, \omega_{2}^{\prime}\right\}$ is the cluster with respect to ω^{\prime}.
- If none of ω_{1} and ω_{2} is a sink or a source and $\omega_{1} \rightarrow \omega_{2}$ then $\left\{\omega_{1}, \omega_{2}\right\}$ is the cluster with respect to ω.
- If none of ω_{1} and ω_{2} is a sink or a source and $\omega_{2} \rightarrow \omega_{1}$ then $\left\{\omega_{1}, \omega_{2}\right\}$ is the cluster with respect to ω^{\prime}.

Let s be the total number of sinks and sources in \vec{C}. Then s must be even. Combining with the above observations, the cluster derived from consecutive vertices in C has size 3 if it contains a sink or a source and has size 2 otherwise. Thus, the cluster graph $\mathcal{C}(V(C))$ also contains a cycle C^{\prime} of length $2 t+1-s$ (recall that the length of C is $2 t+1$), which is still odd. We give an illustration of \vec{C} and $\mathcal{C}(V(C))$ for the graph $S_{1}^{<}(4,8)$ in Fig. 3. In this figure, since $t=7$ and $s=4$, the length of C^{\prime} is 11.

Now, let x be the smallest letter occurring in any word in $V(C)$. For any letter $x_{0} \in\{x, x+1, \ldots, x+m-1\}$, if $\omega=x_{0} x_{1} \ldots x_{n}$ is a word in $V(C)$ beginning with x_{0}, then $x_{1} \geq x_{0}+m \geq x+m$, and ω must be a source in \vec{C}. In this case, ω is in the cluster with respect to $x_{1} \ldots x_{n}$, which does not contain x_{0}. Thus, no word in C^{\prime} contains any letter in $\{x, x+1, \ldots, x+m-1\}$. Similarly, no word in C^{\prime} contains any letter in $\{y, y-1, \ldots, y-m+1\}$, where y is the largest letter in $V(C)$. Then, the alphabet comprised of all letters occurring in $V\left(C^{\prime}\right)$ has size at most $2 m(n+1)-2 m=2 m n$.

Note that the cluster graph $\mathcal{C}(V(C))$ is a subgraph of $S_{m}^{<}(n, 2 m(n+1))$. Then, C^{\prime} is isomorphic to a subgraph of $S_{m}^{<}(n, 2 m n)$, which is a contradiction to the induction hypothesis. Hence, any cycle in $S_{m}^{<}(n+1,2 m(n+1))$ is an even cycle and $S_{m}^{<}(n+1,2 m(n+1))$ is bipartite, as desired.

Remark. In Lemmas 3 and 4, the bounds on k are sharp because $S_{1}^{<}(2,5)$ contains an odd cycle

$$
01-12-23-34-13-01
$$

and $S_{1}^{<}(3,7)$ contains an odd cycle

$$
012-123-234-345-456-245-124-012
$$

Fig. 3. The oriented cycle \vec{C} and the cluster graph $\mathcal{C}(V(C))$ in $S_{1}^{<}(4,8)$.
4.3. Word-representability of $S_{m}(n, k)$ for odd $n \geq 3$

First, we show that Theorem 5(ii) holds for every odd $n \geq 5$.
Lemma 5. For any odd $n \geq 5$ and $k \leq 2 m n, S_{m}(n, k)$ is word-representable.
Proof. By Lemma $4, S_{m}^{<}(n, k)$ is bipartite, the parts of which are denoted by R_{1} and R_{2}. Let $\bar{R}_{1} \cup \bar{R}_{2}$ be a partition of $A_{m}^{n}(k,>)$, where

$$
\bar{R}_{i}=\left\{x_{n} x_{n-1} \ldots x_{1} \mid x_{1} x_{2} \ldots x_{n} \in R_{i}\right\} \text { for } i=1,2
$$

Then $S_{m}^{>}(n, k)$ is also bipartite with parts $\bar{R}_{1} \cup \bar{R}_{2}$.
For each vertex $\omega=x_{1} x_{2} \ldots x_{n}$ in $S_{m}(n, k)$, put $\tau(\omega)=y_{1} \ldots y_{n-1}$ where $y_{i}=0$ if $x_{i}>x_{i+1}$ and $y_{i}=1$ otherwise. Then τ is a mapping from $S_{m}(n, k)$ to $S_{0}(n-1,2)$. Also, recall that $S_{0}(n-1,2)$ is 3-colorable, whose vertices can be colored based on its forms introduced in Section 2:

Note that a word of the form $e_{0} b_{1}$ (resp. $e_{1} b_{0}$) can be either e_{0} or $e_{0} a_{1}$ (resp. e_{1} or $e_{1} a_{0}$). Here we separate these two cases. By the definition of $A_{m}^{n}(k,<)$ and $A_{m}^{n}(k,>)$, the form of $\tau(\omega)$ is e_{1} (resp., e_{0}) if and only if ω is a vertex in $R_{1} \cup R_{2}$ (resp., $\bar{R}_{1} \cup \bar{R}_{2}$).

Step 1. Let H be the underlying (undirected) graph with vertex set $\left\{R_{2}, \bar{R}_{2}, R^{\prime}, B, G\right\}$ in Fig. 4. Consider the following mapping f from $S_{m}(n, k)$ to H.

- If $\omega \in \underline{R}_{2}$ then $f(\omega)=\underline{R}_{2}$.
- If $\omega \in \bar{R}_{2}$ then $f(\omega)=\bar{R}_{2}$.
- If $\omega \in R_{1} \cup \bar{R}_{1}$ or the form of $\tau(\omega)$ is one of $\left\{e_{0} a_{1}, e_{1} a_{0}\right\}$ then $f(\omega)=R^{\prime}$.
- If the form of $\tau(\omega)$ is one of $\left\{o_{1} e_{0} a_{1}, o_{1} o_{0} b_{1}\right\}$ then $f(\omega)=B$.
- If the form of $\tau(\omega)$ is one of $\left\{o_{0} e_{1} a_{0}, o_{0} o_{1} b_{0}\right\}$ then $f(\omega)=G$.

Clearly, all sets of vertices of $S_{m}(n, k)$ mapped into the same vertex of H are independent. Since there are no edges between R_{2} and \bar{R}_{2}, f is a homomorphism from $S_{m}(n, k)$ to H. Then direct H as in Fig. 4.

Step 2. Note that the orientation of H is acyclic and contains only two shortcutting paths of length at least 3:

$$
R^{\prime} \rightarrow B \rightarrow R_{2} \rightarrow G ; R^{\prime} \rightarrow B \rightarrow \bar{R}_{2} \rightarrow G
$$

Now direct each edge in $S_{m}(n, k)$ as in H (i.e. $u \rightarrow v$ in $S_{m}(n, k)$ if $f(u) \rightarrow f(v)$ in H). It remains to prove that the orientation of $S_{m}(n, k)$ contains no shortcuts and hence it is semi-transitive.

Step 3. Suppose that there exists a directed path $\omega_{R^{\prime}} \rightarrow \omega_{B} \rightarrow \omega_{R_{2}} \rightarrow \omega_{G}$ with $f\left(\omega_{X}\right)=X$ for all $X \in\left\{R^{\prime}, B, R_{2}, G\right\}$, and the path introduces a potential shortcutting edge, that is, $\omega_{R^{\prime}} \rightarrow \omega_{\mathrm{G}}$.

Fig. 4. A graph H and its orientation.

Let $\omega_{R_{2}}=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \leq x_{i+1}-m$. Since n is odd and the forms of $\tau\left(\omega_{G}\right)$ and $\tau\left(\omega_{B}\right)$ start with o_{0} and o_{1} respectively, we have $\omega_{B}=x_{2} \ldots x_{n-1} x_{n} y$ and $\omega_{G}=z x_{1} x_{2} \ldots x_{n-1}$, where $y \leq x_{n}-m$ and $z \geq x_{1}+m$.

Since $\omega_{R^{\prime}}$ is adjacent to ω_{G}, we have either $\omega_{R^{\prime}}=w z x_{1} \ldots x_{n-2}$ or $\omega_{R^{\prime}}=x_{1} \ldots x_{n-1} w$ for some w. Since $n \geq 5$, in the former case the form of $\tau\left(\omega_{R^{\prime}}\right)$ is $e_{0} e_{1}$, or $o_{1} o_{0} e_{1}$, while in the latter case, it is either $o_{1} o_{0}$ or e_{1}. In either case, the form of $\tau\left(\omega_{R^{\prime}}\right)$ belongs to the set $F_{1}=\left\{o_{1} o_{0}, o_{1} o_{0} e_{1}, e_{0} e_{1}, e_{1}\right\}$. On the other hand, $\omega_{R^{\prime}}$ is adjacent to ω_{B}, and hence either $\omega_{R^{\prime}}=u x_{2} \ldots x_{n}$ or $\omega_{R^{\prime}}=x_{3} \ldots x_{n} y u$ for some u. In the former case, the form of $\tau\left(\omega_{R^{\prime}}\right)$ is either e_{1} or $o_{0} o_{1}$, while in the latter case it may be $e_{1} e_{0}$ or $e_{1} o_{0} o_{1}$. Then, the form of $\tau\left(\omega_{R^{\prime}}\right)$ belongs to the set $F_{2}=\left\{o_{0} o_{1}, e_{1} e_{0}, e_{1} o_{0} o_{1}, e_{1}\right\}$. Clearly, $F_{1} \cap F_{2}=\left\{e_{1}\right\}$. But if the form of $f\left(\omega_{R^{\prime}}\right)$ is e_{1}, then $\omega_{R^{\prime}}=x_{1} \ldots x_{n-1} w=u x_{2} \ldots x_{n}=x_{1} x_{2} \ldots x_{n}=\omega_{R_{2}}$, a contradiction.

So, there exists no shortcut induced by $\left\{\omega_{R^{\prime}}, \omega_{B}, \omega_{R_{2}}, \omega_{G}\right\}$. Similarly, there are no shortcuts induced by $\left\{\omega_{R^{\prime}}, \omega_{B}, \omega_{\bar{R}_{2}}, \omega_{G}\right\}$. Hence, the orientation of $S_{m}(n, k)$ is shortcut-free and therefore it is semi-transitive. By Theorem $1, S_{m}(n, k)$ is wordrepresentable for all odd $n \geq 5$ and $k \leq 2 m n$.

We prove the remaining case of $n=3$ in the following lemma.
Lemma 6. For $k \leq 4 m, S_{m}(3, k)$ is word-representable.
Proof. By Lemma 1, it is sufficient to show that $S_{m}(3,4 m)$ is word-representable. Let A, B and C be the following subsets of $A_{m}^{3}(4 m,<)$:

$$
\begin{aligned}
& A:=\left\{x_{1} x_{2} x_{3} \in A_{m}^{3}(4 m,<): 0 \leq x_{1} \leq m-1 \text { and } 3 m \leq x_{3} \leq 4 m-1\right\} ; \\
& B:=\left\{x_{1} x_{2} x_{3} \in A_{m}^{3}(4 m,<): m \leq x_{1} \leq 2 m-1 \text { and } 3 m \leq x_{3} \leq 4 m-1\right\} ; \\
& C:=\left\{x_{1} x_{2} x_{3} \in A_{m}^{3}(4 m,<): 0 \leq x_{1} \leq m-1 \text { and } 2 m \leq x_{3} \leq 3 m-1\right\}
\end{aligned}
$$

Since $x_{3}-x_{1} \geq 2 m$ for $x_{1} x_{2} x_{3} \in A_{m}^{3}(4 m,<), A \cup B \cup C$ is a partition of $A_{m}^{3}(4 m,<)$. Note that any vertex in A is an isolated vertex in $S_{m}^{<}(3,4 m)$ and all edges in $S_{m}^{<}(3,4 m)$ are between B and C. Let $R_{1}=A \cup B$ and $R_{2}=C$. Then $S_{m}^{<}(3,4 m)$ is bipartite with parts $R_{1} \cup R_{2}$. Let $\bar{R}_{1} \cup \bar{R}_{2}$ be a partition of $A_{m}^{n}(4 m,>)$, where

$$
\bar{R}_{i}=\left\{x_{3} x_{2} x_{1} \mid x_{1} x_{2} x_{3} \in R_{i}\right\} \text { for } i=1,2 .
$$

Then, $S_{m}^{>}(3,4 m)$ is also bipartite with parts $\bar{R}_{1} \cup \bar{R}_{2}$.
Step 1. Define a mapping from $S_{m}(3,4 m)$ to the graph H in Fig. 4 as follows. Let $w=x_{1} x_{2} x_{3}$ be a vertex of $S_{m}(3,4 m)$.

- If $\omega \in R_{2}$, then $f(\omega)=R_{2}$.
- If $\omega \in \bar{R}_{2}$, then $f(\omega)=\bar{R}_{2}$.
- If $\omega \in R_{1} \cup \bar{R}_{1}$ then $f(\omega)=R^{\prime}$.
- If $x_{2} \geq x_{1}+m$ and $x_{2} \geq x_{3}+m$, then $f(\omega)=B$.
- If $x_{2} \leq x_{1}-m$ and $x_{2} \leq x_{3}-m$, then $f(\omega)=G$.

Step 2. Direct $S_{m}(3,4 m)$ as in H. Again, note that H contains only two shortcutting paths of length at least 3:

$$
R^{\prime} \rightarrow B \rightarrow R_{2} \rightarrow G ; R^{\prime} \rightarrow B \rightarrow \bar{R}_{2} \rightarrow G
$$

Step 3. Suppose that there exists a directed path $\omega_{R^{\prime}} \rightarrow \omega_{B} \rightarrow \omega_{R_{2}} \rightarrow \omega_{G}$ with $f\left(\omega_{X}\right)=X$ for all $X \in\left\{R^{\prime}, B, R_{2}, G\right\}$, and the path introduces a potential shortcutting edge, that is, $\omega_{R^{\prime}} \rightarrow \omega_{\mathrm{G}}$. Assume that $\omega_{R_{2}}=x_{1} x_{2} x_{3}$ with $x_{1}+m \leq x_{2} \leq x_{3}-m$. According to the forms of ω_{B} and ω_{G}, we have $\omega_{B}=x_{2} x_{3} z$ and $\omega_{G}=y x_{1} x_{2}$ where $x_{1}+m \leq y$ and $z \leq x_{3}-m$. Since $\omega_{R^{\prime}}$ is adjacent to ω_{B}, we have $\omega_{R^{\prime}}=v x_{2} x_{3}$ for some $v \leq x_{2}-m$ or $\omega_{R^{\prime}}=x_{3} z v$ for some $v \leq z-m$. Since $\omega_{R^{\prime}}$ is adjacent to ω_{G}, we

Fig. 5. A graph H and its orientation.
have $\omega_{R^{\prime}}=x_{1} x_{2} u$ for some $u \geq x_{2}+m$ or $\omega_{R^{\prime}}=u y x_{1}$ for some $u \geq y+m$. So, two cases are possible. If $\omega_{R^{\prime}}=x_{1} x_{2} u=v x_{2} x_{3}$ then $v=x_{1}, u=x_{3}$ and $\omega_{R^{\prime}}=x_{1} x_{2} x_{3}=\omega_{R_{2}}$, a contradiction. If $\omega_{R^{\prime}}=u y x_{1}=x_{3} z v$ then $v=x_{1}, u=x_{3}$ and $z=y$, i.e. $\omega_{R^{\prime}}=x_{3} y x_{1}$. Note that $\omega_{R^{\prime}} \in \bar{R}_{1}$ and hence $x_{1} y x_{3}$ is a word in R_{1}. However, since $\omega_{R_{2}}=x_{1} x_{2} x_{3} \in R_{2}, 0 \leq x_{1} \leq m-1$ and $2 m \leq x_{3} \leq 3 m-1$. This implies $x_{1} y x_{3}$ should be in R_{2} but not in R_{1}, a contradiction.

So, there are no shortcuts induced by $\left\{\omega_{R^{\prime}}, \omega_{B}, \omega_{R_{2}}, \omega_{G}\right\}$. Similarly, there are no shortcuts induced by $\left\{\omega_{R^{\prime}}, \omega_{B}, \omega_{\bar{R}_{2}}, \omega_{G}\right\}$. Hence, the orientation of $S_{m}(3,4 m)$ is shortcut-free and therefore it is semi-transitive. By Theorem $1, S_{m}(3,4 m)$ is word-representable, as desired.

4.4. Word-representability of $S_{m}(n, k)$ for even $n \geq 4$

First, we show that Theorem 5(ii) holds for any even $n \geq 6$.
Lemma 7. For even $n \geq 6$ and $k \leq 2 m n, S_{m}(n, k)$ is word-representable.
Proof. By Lemma 4, $S_{m}^{<}(n, k)$ is bipartite, and we denote its parts by B_{1} and B_{2}. Let $G_{1} \cup G_{2}$ be a partition of $A_{m}^{n}(k,>)$, where

$$
G_{i}=\left\{x_{n} x_{n-1} \ldots x_{1} \mid x_{1} x_{2} \ldots x_{n} \in B_{i}\right\} \text { for } i=1,2
$$

Then $S_{m}^{>}(n, k)$ is also bipartite with parts $G_{1} \cup G_{2}$.
For a vertex $\omega=x_{1} x_{2} \ldots x_{n}$ in $S_{m}(n, k)$, let $\tau(\omega)=y_{1} \ldots y_{n-1}$ where $y_{i}=0$ if $x_{i}>x_{i+1}$ and $y_{i}=1$ otherwise. Then τ is a mapping from $S_{m}(n, k)$ to $S_{0}(n-1,2)$. Recall that in the case of even n the color classes of $S_{0}(n-1,2)$ are as follows:

```
Red : }\mp@subsup{e}{0}{}\mp@subsup{a}{1}{},\mp@subsup{e}{1}{}\mp@subsup{a}{0}{\prime;}\quad\mathrm{ Blue: }\mp@subsup{o}{1}{},\mp@subsup{o}{1}{}\mp@subsup{o}{0}{}\mp@subsup{a}{1}{},\mp@subsup{o}{1}{}\mp@subsup{e}{0}{}\mp@subsup{b}{1}{\prime;}\quad\mathrm{ Green : }\mp@subsup{o}{0}{},\mp@subsup{o}{0}{}\mp@subsup{o}{1}{}\mp@subsup{a}{0}{},\mp@subsup{o}{0}{}\mp@subsup{e}{1}{}\mp@subsup{b}{0}{}
```

Note that the form of $\tau(\omega)$ is o_{1} (resp., o_{0}) if and only if ω is a vertex in $B_{1} \cup B_{2}$ (resp., $G_{1} \cup G_{2}$).
Step 1. Let H be the underlying graph with the vertex set

$$
\left\{R_{1}, R_{2}, B_{1}, B_{2}, B_{3}, B_{4}, G_{1}, G_{2}, G_{3}, G_{4}\right\}
$$

in Fig. 5. Consider the following mapping f from $S_{m}(n, k)$ to H.

- If the form of $\tau(\omega)$ is $e_{0} a_{1}$ then $f(\omega)=R_{1}$.
- If the form of $\tau(\omega)$ is $e_{1} a_{0}$ then $f(\omega)=R_{2}$.
- If $\omega \in B_{1}$ then $f(\omega)=B_{1}$.
- If $\omega \in B_{2}$ then $f(\omega)=B_{2}$.
- If the form of $\tau(\omega)$ is $o_{1} o_{0} a_{1}$ then $f(\omega)=B_{3}$.
- If the form of $\tau(\omega)$ is $o_{1} e_{0} b_{1}$ then $f(\omega)=B_{4}$.
- If $\omega \in G_{1}$ then $f(\omega)=G_{1}$.
- If $\omega \in G_{2}$ then $f(\omega)=G_{2}$.
- If the form of $\tau(\omega)$ is $o_{0} o_{1} a_{0}$ then $f(\omega)=G_{3}$.
- If the form of $\tau(\omega)$ is $o_{0} e_{1} b_{0}$ then $f(\omega)=G_{4}$.

Clearly, all sets of vertices of $S_{m}(n, k)$ mapped into the same vertex of H are independent. For any vertex ω mapped into $G_{1} \cup G_{2}, \tau(\omega)$ has the form o_{0}; so, it may be adjacent only to a vertex ω^{\prime} for which $\tau\left(\omega^{\prime}\right)$ has the form $o_{1} e_{0}$, or $e_{0} o_{1}$, or o_{0}. So, a neighbor of ω can only be mapped into $G_{1} \cup G_{2} \cup R_{1} \cup B_{4}$. Similarly, a neighbor of a vertex from $B_{1} \cup B_{2}$ can only be
mapped into $B_{1} \cup B_{2} \cup R_{2} \cup G_{4}$. Also, if ω was mapped in G_{3} then $\tau(\omega)$ has the form $o_{0} o_{1} a_{0}$ and for each of its neighbor ω^{\prime}, $\tau\left(\omega^{\prime}\right)$ has the form $e_{0} a_{1}$, or $o_{1} o_{0} a_{1}$, or $o_{1} a_{0}$. So, ω^{\prime} must be in $R_{1} \cup B_{3} \cup B_{4}$. By similar arguments, any neighbor of a vertex from B_{3} is mapped into $R_{2} \cup G_{3} \cup G_{4}$.

Finally, if ω was mapped in G_{4} then $\tau(\omega)$ has the form $o_{0} e_{1} b_{0}$ and for each of its neighbor $\omega^{\prime}, \tau\left(\omega^{\prime}\right)$ has the form $e_{0} a_{1}$, or $e_{1} a_{0}$, or o_{1}, or $o_{1} o_{0} a_{1}$. In either case, ω^{\prime} was not mapped into B_{4}. So, f is a homomorphism from $S_{m}(n, k)$ to H. Then direct H as in Fig. 5.

Step 2. Note that there are four shortcutting paths in H :

$$
\begin{array}{ll}
G_{2} \rightarrow R_{1} \rightarrow G_{1} \rightarrow B_{4} ; & G_{2} \rightarrow R_{1} \rightarrow G_{3} \rightarrow B_{4} \\
G_{4} \rightarrow B_{1} \rightarrow R_{2} \rightarrow B_{2} ; & G_{4} \rightarrow B_{3} \rightarrow R_{2} \rightarrow B_{2}
\end{array}
$$

Note that the shortcutting paths in the right column are shortcuts. Direct the edges of $S_{m}(n, k)$ as in H. Since the orientation of H is acyclic, the orientation of $S_{m}(n, k)$ is also acyclic. We have to verify that the orientation contains no shortcuts.

Step 3. Suppose that there exists a directed path $\omega_{G_{2}} \rightarrow \omega_{R_{1}} \rightarrow \omega_{G_{1}} \rightarrow \omega_{B_{4}}$ with $f\left(\omega_{X}\right)=X$ for $X \in\left\{G_{2}, R_{1}, G_{1}, B_{4}\right\}$, and the path introduces a potential shortcutting edge, that is, $\omega_{G_{2}} \rightarrow \omega_{B_{4}}$. Assume $\omega_{G_{2}}=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \geq x_{i+1}+m$. Since the form of $\tau\left(\omega_{R_{1}}\right)$ is $e_{0} x_{1}$ and $\omega_{G_{2}} \omega_{R_{1}} \in E\left(S_{m}(n, k)\right), \omega_{R_{1}}=x_{2} \ldots x_{n} y$ with $y \geq x_{n}+m$. Since $\omega_{R_{1}} \omega_{G_{1}} \in E\left(S_{m}(n, k)\right)$, $\omega_{G_{1}}=x_{1}^{\prime} x_{2} \ldots x_{n}$ with $x_{1}^{\prime} \geq x_{2}+m$ and $x_{1}^{\prime} \neq x_{1}$. Then we have $\omega_{B_{4}}=z x_{1}^{\prime} x_{2} \ldots x_{n-1}$ with $z \leq x_{1}^{\prime}-m$. However, $\omega_{G_{2}} \omega_{B_{4}} \in E\left(S_{m}(n, k)\right)$ if and only if $x_{1}=x_{1}^{\prime}$. Thus, $\omega_{G_{2}} \omega_{B_{4}} \notin E\left(S_{m}(n, k)\right)$, a contradiction.

Then, we consider the shortcutting path $G_{2} \rightarrow R_{1} \rightarrow G_{3} \rightarrow B_{4}$. Suppose that there exists a directed path $\omega_{G_{2}} \rightarrow \omega_{R_{1}} \rightarrow$ $\omega_{G_{3}} \rightarrow \omega_{B_{4}}$ with $f\left(\omega_{X}\right)=X$ for $X \in\left\{G_{2}, R_{1}, G_{3}, B_{4}\right\}$ and also $\omega_{G_{2}} \rightarrow \omega_{B_{4}}$. Assume $\omega_{G_{2}}=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \geq x_{i+1}+m$. Then we have $\omega_{R_{1}}=x_{2} \ldots x_{n} y$ and $\omega_{G_{3}}=x_{3} \ldots x_{n} y z$ with $y \geq x_{n}+m$ and $z \leq y-m$. However, since $n \geq 6$, no neighbor of $\omega_{G_{3}}$ was mapped into B_{4}, a contradiction.

By similar arguments, no shortcut was mapped into the shortcutting paths $G_{4} \rightarrow B_{1} \rightarrow R_{2} \rightarrow B_{2}$ and $G_{4} \rightarrow B_{3} \rightarrow$ $R_{2} \rightarrow B_{2}$. Hence, the orientation of $S_{m}(n, k)$ is shortcut-free and therefore it is semi-transitive. By Theorem $1, S_{m}(n, k)$ is word-representable for all even $n \geq 6$ and $k \leq 2 m n$.

The remaining case of $n=4$ is proved in the following lemma.
Lemma 8. For $k \leq 5 m, S_{m}(4, k)$ is word-representable.
Proof. By Lemma 1, it is sufficient to show that $S_{m}(4,5 m)$ is word-representable. Let A, B and C be the following subsets of $A_{m}^{4}(5 m,<)$:

$$
\begin{aligned}
& A:=\left\{x_{1} x_{2} x_{3} x_{4} \in A_{m}^{4}(5 m,<): 0 \leq x_{1} \leq m-1 \text { and } 4 m \leq x_{4} \leq 5 m-1\right\} \\
& B:=\left\{x_{1} x_{2} x_{3} x_{4} \in A_{m}^{4}(5 m,<): m \leq x_{1} \leq 2 m-1 \text { and } 4 m \leq x_{4} \leq 5 m-1\right\} \\
& C:=\left\{x_{1} x_{2} x_{3} x_{4} \in A_{m}^{4}(5 m,<): 0 \leq x_{1} \leq m-1 \text { and } 3 m \leq x_{4} \leq 4 m-1\right\}
\end{aligned}
$$

Since $x_{4}-x_{1} \geq 3 m$ for $x_{1} x_{2} x_{3} x_{4} \in A_{m}^{4}(5 m,<), A \cup B \cup C$ is a partition of $A_{m}^{4}(5 m,<)$. Note that any vertex in A is an isolated vertex in $S_{m}^{<}(4,5 m)$ and all edges in $S_{m}^{<}(4,5 m)$ are between B and C. Let $B_{1}=A \cup B$ and $B_{2}=C$. Then $S_{m}^{<}(4,5 m)$ is bipartite with parts $B_{1} \cup B_{2}$. Let $G_{1} \cup G_{2}$ be a partition of $A_{m}^{4}(5 m,>)$, where

$$
G_{i}=\left\{x_{4} x_{3} x_{2} x_{1} \mid x_{1} x_{2} x_{3} x_{4} \in B_{i}\right\} \text { for } i=1,2
$$

Then $S_{m}^{>}(4,5 m)$ is also bipartite with parts $G_{1} \cup G_{2}$.
Steps 1, 2. In what follows, we use the same notation as in Lemma 7 but a different orientation of H given in Fig. 6. Direct $S_{m}(4,5 m)$ as in H and note that H contains only two shortcutting paths of length at least 3:

$$
R_{1} \rightarrow G_{2} \rightarrow G_{1} \rightarrow B_{4} ; R_{2} \rightarrow G_{4} \rightarrow B_{2} \rightarrow B_{1}
$$

Step 3. Suppose that there exists a directed path $\omega_{R_{1}} \rightarrow \omega_{G_{2}} \rightarrow \omega_{G_{1}} \rightarrow \omega_{B_{4}}$ with $f\left(\omega_{X}\right)=X$ for all $X \in\left\{R_{1}, G_{2}, G_{1}, B_{4}\right\}$, and the path introduces a potential shortcutting edge, that is, $\omega_{R_{1}} \rightarrow \omega_{B_{4}}$. By definitions of G_{2} and G_{1}, assume that $\omega_{G_{2}}=x_{2} x_{3} x_{4} x_{5}$ and $\omega_{G_{1}}=x_{1} x_{2} x_{3} x_{4}$, where $x_{i} \geq x_{i+1}+m, 4 m \leq x_{1} \leq 5 m-1$ and $0 \leq x_{5} \leq m-1$. Then, we have $\omega_{R_{1}}=x_{3} x_{4} x_{5} y$ with $y \geq x_{5}+m$ and $\omega_{B_{4}}=z x_{1} x_{2} x_{3}$ with $z \leq x_{1}-m$. However, $\omega_{R_{1}}$ is not adjacent to $\omega_{B_{4}}$ in $S_{m}(4,5 m)$, a contradiction. So there are no shortcuts induced by $\left\{\omega_{R_{1}}, \omega_{G_{2}}, \omega_{G_{1}}, \omega_{B_{4}}\right\}$.

Suppose now that there exists a directed path $\omega_{R_{2}} \rightarrow \omega_{G_{4}} \rightarrow \omega_{B_{2}} \rightarrow \omega_{B_{1}}$ with $f\left(\omega_{X}\right)=X$ for all $X \in\left\{R_{2}, G_{4}, B_{2}, B_{1}\right\}$ and also $\omega_{R_{2}} \rightarrow \omega_{B_{1}}$. Assume that $\omega_{B_{1}}=x_{2} x_{3} x_{4} x_{5}$ and $\omega_{B_{2}}=x_{1} x_{2} x_{3} x_{4}$, where $x_{i} \leq x_{i+1}+m, 4 m \leq x_{5} \leq 5 m-1$ and $0 \leq x_{1} \leq m-1$. Then, we have $\omega_{R_{2}}=x_{3} x_{4} x_{5} y$ with $y \leq x_{5}-m$ and $\omega_{G_{4}}=z x_{1} x_{2} x_{3}$ with $z \geq x_{1}+m$. But then $\omega_{R_{2}}$ is not adjacent to $\omega_{G_{4}}$ in $S_{m}(4,5 m)$, a contradiction. So, there are no shortcuts induced by $\left\{\omega_{R_{2}}, \omega_{G_{4}}, \omega_{B_{2}}, \omega_{B_{1}}\right\}$. Hence, the orientation of $S_{m}(4,5 m)$ is shortcut-free and therefore it is semi-transitive. By Theorem $1, S_{m}(4,5 m)$ is word-representable, as desired.

Fig. 6. A graph H and its orientation.

5. Conclusion

In this paper, we introduce a novel approach to study word-representability of graphs with the help of homomorphisms. In the proof of Theorem 4, we find a homomorphism from $S P(n)$ to a 3 -colorable graph $S_{0}(n-1,2)$. In the proof of Theorem 5, we find a homomorphism from $S_{m}(n, k)$ to a graph with 5 vertices (for odd n) or a graph with 10 vertices (for even n).

As the result, we have proved:

- For $n=2, S_{m}(2, k)$ is word-representable if and only if $k \leq 3 m$;
- For $n=3, S_{m}(3, k)$ is word-representable if $k \leq 4 m$;
- For $n=4, S_{m}(4, k)$ is word-representable if $k \leq 5 m$;
- For $n \geq 5, S_{m}(n, k)$ is word-representable if $k \leq 2 m n$.

We leave it as an open problem whether or not the "if" in the last three statements can be replaced by "if and only if".

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments.

Appendix. Proof of non-word-representability of $S_{1}(2,4)$

Our proof uses the following lemmas.
Lemma 9 ([7]). Suppose that an undirected graph G has a cycle $C=x_{1} x_{2} \cdots x_{m} x_{1}$, where $m \geq 4$ and the vertices in $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ do not induce a clique in G. If G is oriented semi-transitively, and $m-2$ edges of C are oriented in the same direction then the remaining two edges of C are oriented in the opposite direction.

Lemma 10 ([7]). If G is word-representable and u is an arbitrary vertex in G, then there exists a semi-transitive orientation of G with source u.

The proof is a tedious case-analysis with many similar procedures. So, we use some encoding for them that allows to shorten the text drastically. By a "line" of a proof we mean a sequence of instructions that directs us in orienting a partially oriented graph and necessarily ends with detecting a shortcut. Each line of the proof is marked by its number in bold font. There are four types of instructions:

- "B" followed by " $X \rightarrow Y$ (Copy Z)" reads "Branch on edge $X Y$ ". This means that we make a copy of the current graph (it is called Copy Z), direct the edge $X \rightarrow Y$ and proceed further. Note that Copy Z will be considered later with an opposite orientation $Y \rightarrow X$.
- "MC" followed by a number X means "Move to Copy X ". Each line except for the first one must start with this instruction. Moreover, this instruction is always followed by " $Y \rightarrow X$ " that orients a branching edge in the opposite way.

Fig. 7. $S_{1}(2,4)$. The bold numbers are the labels of vertices in $S_{1}(2,4)$.

- One or two "O" followed by " $X_{i} \rightarrow Y_{i}$ " together with "(C " followed by a cycle " $Z_{1}-\cdots-Z_{k}$)". This instruction means "Orient the listed edges $X_{i} \rightarrow Y_{i}$ since otherwise the cycle $Z_{1}-\cdots-Z_{k}$ either becomes directed or contradicts Lemma 9.
- "S: $X_{1}-\cdots-X_{k}$ " means "Verify that the path $X_{1}-\cdots-X_{k}$ " induces a shortcut with the shortcutting edge $X_{1} \rightarrow X_{k}$. This instruction concludes each line of the proof.

We refer to [7] for more details on the format of the proof below.
The proof: We label the vertices in $S_{1}(2,4)$ in brackets in bold in Fig. 7. By Lemma 10, without loss of generality, assume vertex 6 is a source in a semi-transitive orientation. The rest of the proof goes as follows.

1. B8 $\rightarrow 12$ (Copy 2) B1 $\rightarrow 10$ (Copy 3) B7 $\rightarrow 12$ (Copy 4) $\mathrm{O} \rightarrow 1$ (C1-7-12-6) O2 $\rightarrow 10$ O7 $\rightarrow 2$ (C1-10-2-7) O8 $\rightarrow 2$ (C2-8-12-7) S:6-8-2-10
2. MC4 $12 \rightarrow 7$ O1 $\rightarrow 7$ (C1-7-12-6) O8 $\rightarrow 2$ O2 $\rightarrow 7$ (C2-8-12-7) O2 $\rightarrow 10$ (C1-10-2-7) S:6-8-2-10
3. MC3 $10 \rightarrow 1$ B7 $\rightarrow 12$ (Copy 5) O7 $\rightarrow 1$ (C1-7-12-6) B9 $\rightarrow 10$ (Copy 6) O9 $\rightarrow 5$ O5 $\rightarrow 1$ (C1-10-9-5) O5 $\rightarrow 8$ (C1-6-8-5) $\mathrm{O} 5 \rightarrow 11(\mathrm{C} 1-6-11-5) \mathrm{O} \rightarrow 11(\mathrm{C} 5-11-9) \mathrm{O} \rightarrow 2 \mathrm{O} \rightarrow 8(\mathrm{C} 2-9-5-8) \mathrm{O} \rightarrow 7(\mathrm{C} 2-8-12-7) \mathrm{O} \rightarrow 4 \mathrm{O} \rightarrow 1(\mathrm{C} 1-7-2-4) \mathrm{O} 4 \rightarrow 11$ (C1-5-11-4) S:9-2-4-11
4. MC6 $10 \rightarrow 9 \mathrm{O} 12 \rightarrow 9(\mathrm{C} 6-12-9-10) \mathrm{O} 2 \rightarrow 9 \mathrm{O} \rightarrow 2(\mathrm{C} 2-9-12-7) \mathrm{O} \rightarrow 9 \mathrm{O} \rightarrow 5$ (C2-9-5-7) O5 $\rightarrow 1$ (C1-10-9-5) O5 $\rightarrow 8$ (C1-6-8-5) S:5-8-12-9
5. MC5 $12 \rightarrow 7$ O1 $\rightarrow 7$ (C1-7-12-6) $\mathrm{O} 10 \rightarrow 2$ O2 $\rightarrow 7$ (C1-10-2-7) O8 $\rightarrow 2$ (C2-8-12-7) O8 $\rightarrow 5$ O5 $\rightarrow 7$ (C2-8-5-7) $01 \rightarrow 5$ (C1-6-8-5) O10 $\rightarrow 9$ O9 $\rightarrow 5$ (C1-10-9-5) O9 $\rightarrow 2$ (C2-9-5-7) O9 $\rightarrow 12$ (C2-9-12-7) S:6-10-9-12
6. MC2 $12 \rightarrow 8$ B1 $\rightarrow 10$ (Copy 7) B7 $\rightarrow 12$ (Copy 8) O7 $\rightarrow 1$ (C1-7-12-6) O2 $\rightarrow 10$ O7 $\rightarrow 2$ (C1-10-2-7) O2 $\rightarrow 8$ (C2-8-127) $\mathrm{O} 5 \rightarrow 8 \mathrm{O} \rightarrow 5(\mathrm{C} 2-8-5-7) \mathrm{O} \rightarrow 1(\mathrm{C} 1-6-8-5) \mathrm{O} \rightarrow 10 \mathrm{O} \rightarrow 9(\mathrm{C} 1-10-9-5) \mathrm{O} \rightarrow 9$ (C2-9-5-7) O12 $\rightarrow 9$ (C2-9-12-7) S:6-12-9-10
7. MC8 $12 \rightarrow 7$ O1 $\rightarrow 7$ (C1-7-12-6) B9 $\rightarrow 10$ (Copy 9) $09 \rightarrow 12$ (C6-12-9-10) O9 $\rightarrow 2$ O2 $\rightarrow 7$ (C2-9-12-7) 09 $\rightarrow 5$ O5 $\rightarrow 7$ (C2-9-5-7) O1 $\rightarrow 5$ (C1-10-9-5) O8 $\rightarrow 5$ (C1-6-8-5) S:9-12-8-5
8. MC9 $10 \rightarrow 9 \mathrm{O} \rightarrow 9 \mathrm{O} \rightarrow 5(\mathrm{C} 1-10-9-5) \mathrm{O} \rightarrow 5(\mathrm{C} 1-6-8-5) \mathrm{O} 11 \rightarrow 5(\mathrm{C} 1-6-11-5) \mathrm{O} 11 \rightarrow 9(\mathrm{C} 5-11-9) \mathrm{O} \rightarrow 9 \mathrm{O} \rightarrow 2$ (C2-9-5-8) O7 $\rightarrow 2$ (C2-8-12-7) $04 \rightarrow 2$ O1 $\rightarrow 4$ (C1-7-2-4) O11 $\rightarrow 4$ (C1-5-11-4) S:11-4-2-9
9. MC7 $10 \rightarrow 1$ B7 $\rightarrow 12$ (Сору 10) O7 $\rightarrow 1$ (C1-7-12-6) O2 $\rightarrow 8$ O7 $\rightarrow 2$ (C2-8-12-7) O10 $\rightarrow 2$ (C1-10-2-7) S:6-10-2-8
10. MC10 $12 \rightarrow 7 \mathrm{O} 1 \rightarrow 7(\mathrm{C} 1-7-12-6) \mathrm{O} 10 \rightarrow 2 \mathrm{O} 2 \rightarrow 7(\mathrm{C} 1-10-2-7) \mathrm{O} 10 \rightarrow 3 \mathrm{O} \rightarrow 8(\mathrm{C} 2-8-12-7) \mathrm{S}: 6-10-2-8$

References

[1] F. Chung, P. Diaconis, R. Graham, Universal cycles for combinatorial structures, Discrete Math. 110 (1992) 43-59.
[2] M.M. Halldórsson, S. Kitaev, A. Pyatkin, Semi-transitive orientations and word-representable graphs, Discrete Appl. Math. 201 (2016) 164-171.
[3] P. Hell, J. Nešetřil, Graphs and Homomorphisms, in: Oxford Lecture Series in Mathematics and Its Applications, vol. 28, Oxford University Press, 2004.
[4] S. Kitaev, A comprehensive introduction to the theory of word-representable graphs, Lecture Notes in Comput. Sci. 10396 (2017) 36-67.
[5] S. Kitaev, V. Lozin, Words and Graphs, Springer, 2015.
[6] S. Kitaev, A. Pyatkin, Word-representable graphs: a survey, J. Appl. Ind. Math. 12 (2) (2018) 278-296.
[7] S. Kitaev, H. Sun, Human-verifiable proofs in the theory of word-representable graph. arXiv:2110.05405v2.
[8] M. Lothaire, Combinatorics on Words, in: Encyclopedia of Mathematics and its Applications, vol. 17, Addison-Wesley Publishing Co., Reading, Mass, 1983.
[9] A.V. Petyuk, On word-representability of simplified de Bruijn graphs. arXiv:2210.14762.
[10] P.A. Pevzner, H. Tang, M.S. Waterman, An Eulerian path approach to DNA fragment assembly, Proc. Natl. Acad. Sci. 98 (17) (2001) 9748-9753.

[^0]: * Corresponding author.

 E-mail addresses: sumin2019@sina.com (S. Huang), sergey.kitaev@strath.ac.uk (S. Kitaev), artem@math.nsc.ru (A. Pyatkin).

