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in Open Games
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We improve the framework of open games with agency [4] by showing how the players’ counterfactual
analysis giving rise to Nash equilibria can be described in the dynamics of the game itself (hence
diegetically), getting rid of devices such as equilibrium predicates. This new approach overlaps almost
completely with the way gradient-based learners [6] are specified and trained. Indeed, we show
feedback propagation in games can be seen as a form of backpropagation, with a crucial difference
explaining the distinctive character of the phenomenology of non-cooperative games. We outline a
functorial construction of arena of games, show players form a subsystem over it, and prove that their
‘fixpoint behaviours’ are Nash equilibria.

1 Motivation

In narratology, diegetic is what exists or occurs within the world of a narrative [7] (such as dialog,
thoughts, etc.), as opposed to extra-diegetic elements which happens outside that world (such as voiceovers,
soundtrack, etc.). Open games represent the situations of classical game theory in a compositional and
purportedly ‘diegetic’ way, i.e. explicitly codifying the development of the game actions and payoff
distribution phases in their specification. Hedges proposed a framework in [12] which evolved first by
adopting the language of lenses [9], and then that of parametric lenses [3] to describe the bidirectional
flow of information in games. In their last iteration [4, 3], open games with agency are defined to be given
by three functions (for concreteness, we assume to work in Set):

playG : Ω×X → Y, coplayG : Ω×X ×R → S×

Ω

, εG : (Ω →

Ω

)→ PΩ. (1.1)

The set Ω represent strategies, X and Y states of the game, while R and S utility and ‘coutility’, respectively.
The play function has an obvious role, choosing a next state y ∈ Y (a move) given the current state x ∈ X
and according to a strategy ω ∈ Ω. Coplay is a bit more mysterious. If we think of S and R as the type of
utilities a player can expect to receive at the end of the game while at stage X and Y respectively, coplay
translates between these. Finally, εG is a selection function that encodes a player’s preferences: given a
valuation of strategies in

Ω

(called costrategies or intrinsic utility), εG returns the subset of strategies with
satisfactory outcome. This data defines a parametric lens [4]:

G = (Ω,

Ω

, εG , playG , coplayG ) : (X ,S)⇄ (Y,R). (1.2)

To analyse the game G , that is, to extract its Nash equilibria, we then close the game by specifying an
initial state x̄ ∈ X and a payoff function u : Y → R, and then apply εG to the composite x̄ #G #u.

Since open games have been introduced, similar models have been proposed for learners [6] and
Bayesian reasoners [22, 2], so that a general framework has been proposed in [3] to gather all these
examples of ‘cybernetic systems’.1 Despite having inspired this framework, open games remain quite
singular when compared to their siblings.

1Here we call ‘cybernetic’ systems having a distinguished part controlling the rest.
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First of all, their payoff dynamics lacks a well-defined role. This shows in the way coutilities,
costrategies and utilities are all different in theory but very rarely in practice, and coplay is very often
simply an identity or, even worse, a discard map, which makes hard motivating the existence of a backward
pass at all (see e.g. the translation process explained in [4]).

(a) (b)

Figure 1: On the left, a gradient-based learner defined as in [3, 6], and on the right, an open game with
agency as defined in [4].

Secondly, and crucially, the dynamics they express reflect the actions happening in the game but
not the game-theoretic analysis we are actually interested in. There’s no way to know which equilibria
an open game will converge to unless we pack-up the arena2 and then feed it to the selection function. All
of this happens outside of the dynamics of the game, hence extra-diegetically.

This issue grows into a serious conceptual flaw when we realize that according to the very notion of
‘system with agency’ proposed by the author and his collaborators in [3], ‘open games with agency’ have
no agents! In fact, agents are supposed to be systems modelled as morphisms plugged to the top boundary
of the arena whereas in open games with agency players’ preferences are embodied in the parameters,
which are mere objects (Figure 1a). Contrast this with gradient-based learners (Figure 1b) where gradient
descent, which implements the dynamics of an agent’s learning, is explicitly represented in the system.

Contributions. In this work we correct the aforementioned problems by describing the entirety of play,
payoff distribution and players’ counterfactual analysis diegetically, thus in the dynamics of the game
system itself.

We achieve this by introducing two fundamental innovations.
First, we observe that feedback propagating in an open game has to contain information about

the entirety of the payoff function of the game, hence we replace S and R in Figure 1a with PX and PY ,
where P is a specified payoff object. This allows to define coplay functorially from play as precomposition
with a partially-evaluated play. This simple mechanism is enough to reproduce the information on payoffs
available at each stage of a sequential or concurrent game. Moreover, we recognize the crucial role
of the lax monoidal structure of this functor, which can be blamed for the complexity of even small
game-theoretic situations.

Secondly, we describe how players are embodied inside the game by their selection functions, which
are now expressed as parts of a ‘reparameterisation’ describing each player’s optimization dynamic. This
fully realizes what was already intued in [14] (‘agents are their selection function’) and in the drawings in
[3, §6], and vindicates the ideas behind open games with agency introduced in [4]. In fact we find out

2The arena of an open game with agency is the parametric lens left after forgetting about the selection function.
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the workhorse of open games with agency, the Nash product of selection functions, decomposes in three
elementary parts, the key one being ‘just’ monoidal product of lenses.

We then show how this story shares many formal analogies with (a refinement of) gradient-based
learners. There is a formal analogy between loss covectors and payoff functions, reverse derivatives
and functorially-determined coplays, ‘raising indices’ (in the differential-geometric sense) and selection
functions. Ultimately this traces out the contours of an abstract/synthetic theory of backpropagation.

Acknowledgements. We thank Jules Hedges, Philipp Zahn, Neil Ghani and Bruno Gavranović for their
helpful suggestions and enthusiasm towards this work. A special mention goes to Bruno’s insistence in
pointing out the conceptual flaws in the use we made of selection functions in open games with agency, as
well as the numerous conversations we had together on the topic, which eventually lead me to this work.
Finally, we thank the ACT22 reviewers for their patience in reviewing an early version of this manuscript.

2 Diegetic open games

We start by describing our proposed notion of diegetic open games. As anticipated, the key idea is to
recognize that in a strategic game, players have to observe the entirety of their payoff functions with other
players’ actions taken into account. This is done by fixing utility, coutility and intrinsic utility types to
be of the form PY , PX and PΩ, representing entire payoff functions. Then such functions are propagated
through the game in a way which is formally identical to backpropagation in learners, and thus amenable
to the same mathematical treatement. Thus coplayG is actually functorially determined from playG , as a
kind of reverse derivative.

2.1 Preliminaries

Fix a finitely complete category S . The category DLens(S ) of dependent lenses over S has objects
given by pairs of an object Y : S and a map p : R → Y , and maps given by diagrams of the form:

S R×Y X R

X X Y
f

pf ∗(p)

f ♯

⌟ (2.1)

In the internal language of S [21], these maps can be denoted as f : X →Y and f ♯x : (x : X)×R f (x)→ Sx.
The full subcategory of DLens(S ) spanned by those p which are projections is the category of simple
lenses over S , Lens(S ). The f ♯ part of simple lenses has type X ×R → S.

Dependent lenses can be built from any indexed category F : S op → Cat, in which case we denote
them by DLens(F). A detailed definition and intuition is given in [23].

The 2-category Para(S ) [3, §2] is the strictification of the bicategory whose objects are given by
objects of S , morphisms X to Y by a choice of parameter Ω : S and a map f : Ω×X → Y , and 2-
morphisms (Ω, f )⇒ (Ξ,g) : X → Y by maps Ω → Ξ making the obvious triangle commute (see loc. cit.,
though we have reversed the direction of 2-cells here), which are called reparameterisations. Composition
of morphisms (Ω, f ) : X → Y and (Ξ,g) : Y → Z is given by

(Ξ×Ω,Ξ×Ω×X
Ξ× f−−→ Ξ×Y

g−→ Z) (2.2)
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This makes it associative only up to coherent isomorphism, hence the strictification. Same applies to the
identites, which are given by (1,1×X πX→ X).

Notice the construction of Para(S ) only used the cartesian monoidal structure of S . In fact such a
construction is functorial over cartesian monoidal categories. Given a lax monoidal functor [15, Definition
1.2.14] F : S →T , with laxators ℓX ,Y : F(X)×F(Y )→ F(X ×Y ), we get a lax 2-functor [15, Definition
4.1.2] Para(F) : Para(S )→ Para(T ) defined on objects as F and on a morphisms (Ω, f ) : X → Y as

Para(F)(Ω, f ) = (F(Ω),F(Ω)×F(X)
ℓΩ,X−−→ F(Ω×X)

F( f )−−→ Y ). (2.3)

Since ℓΩ,X is, in principle, not invertible, this means Para(F) preserves composition only up to coherent
non-invertible morphism. Explicitly, there is a reparameterisation Para(F)(Ω, f ) # Para(F)(Ξ,g) ⇒
Para(F)((Ω, f ) # (Ξ,g)), given by ℓΞ,Ω. Likewise applies to preservation of identities. The well-
definedness of these reparameterisations followz from the axioms of lax monoidal structure ℓ [15, Diagram
1.2.14].

2.2 Building arenas

We now describe the most simple form of games, deterministic, complete information games, with our
new machinery.

Fixing a payoff object P (often P = RN , with N the number of players), to a map f : X → Y we can
associate the map P f : PY → PX given by precomposition with f . This defines a functor P(−) : Set→ Setop,
which we can lift to a lax monoidal functor

P∗ : Set −→ Lens(Set) (2.4)

sending f : X → Y to ( f ,π2 #P f ) : (X ,PX)⇄ (Y,PY ). Abusing notation, we’ll denote by P∗ f both this
lens and its backward part, and same with objects: P∗X := PX . Notice landing in lenses is crucial to
give P∗ a lax monoidal structure: while its unitor η : (1,1)⇄ (1,P), given by (1, !P) would be definable
anyway; the laxator (1X ,Y ,nX ,Y ) : (X ,P∗X)⊗ (Y,P∗Y )⇄ (X ×Y,P∗(X ×Y )), which we call Nashator, is
defined by partial evaluation at the residuals:

nX ,Y : X ×Y ×P∗(X ×Y )−→ P∗X ×P∗Y

(x̄, ȳ,u) 7−→ ⟨u(−, ȳ), u(x̄,−)⟩
(2.5)

Ideally, this functor promotes a play function into a lens obtained by canonically adding a ‘coplay’
function; but since play functions are actually parametric, we need to apply Para to P∗ to obtain the lax
2-functor

Para(P∗) : Para(Set)−→ Para(Lens(Set)) (2.6)

so that a play function (Ω,playG ) : X → Y is turned into a full-blown parametric lens:

Para(P∗)(Ω,playG ) = (Ω,P∗
Ω, (1Ω,X ,nΩ,X) # (playG ,P

∗playG )) (2.7)

where the backward part of the right hand side boils down to

Para(P∗)(Ω,playG )
♯ : Ω×X ×P∗Y −→ P∗

Ω×P∗X

(ω̄, x̄,u) 7−→ ⟨uΩ, uX⟩ where uΩ = u(playG (x̄,−))

uX = u(playG (−, ω̄))

(2.8)
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This definition is the workhorse of diegetic open games. Notice how uX encapsulates ω̄ as a fixed
parameter, so that an opponent receiving such function later has that strategy fixed. Dually, uΩ has x̄ fixed
so the player playing at this stage can probe u by varying their own strategy but not the state the game,
something determined, in turn, by other players’ strategies.

Remark 2.1. A word is due regarding the opportunity of fixing a payoff object P for all games. This
actually defeats the point of compositionality, as games with a different number of players would naturally
require a different payoff object, and this without even mentioning how ‘dangerous’ it is to allow all
players to observe everybody else’s payoff! In fact, one can develop a better version of the theory we
describe here in which Set is replaced by a category of ‘objects with payoffs’, so that we restore freedom
in the payoff object we use for each game. For expositional reasons, here we stick to the simpler version
in which P is fixed.

Example 2.2 (Pure sequential game). Consider a very simple game in which two players make one move
each, in succession. The first player has strategy space Ω and play function (Ω,playG ) : X → Y , whereas
the second player has strategies Ξ and play (Ξ,playH ) : Y → Z:

Figure 2

Figure 2 depicts the parametric lens Para(P∗)(Ω,playG ) #Para(P∗)(Ξ,playH ). This is what we call
the arena of the game.

Suppose a x̄ ∈ X and a u ∈ P∗Z are given, so as to close the open input horizontal wires in Figure 2.
These two pieces of data amount to a so-called context for the game, and mathematically correspond to a
further (trivially parameterised) lens (x̄, !P∗X) : (1,1)⇄ (X ,P∗X) and (!Z,u) : (Z,P∗Z)⇄ (1,1).

Then the remaining parametric lens has type (Ξ×Ω,P∗Ξ×P∗Ω,A ) : (1,1)⇄ (1,1), which one can
easily prove being equivalent to a function Ξ×Ω → P∗Ξ×P∗Ω. Following x̄ and u around the arena, one
can see what this function is given by

(ξ̄ , ω̄) 7→ ⟨uΞ, uΩ⟩ where uΞ = λξ .u(playH (ξ ,playG (x̄, ω̄))

uΩ = λω .u(playH (ξ̄ ,playG (x̄,ω))
(2.9)

These two functions are thus giving, to each player, all the information needed to compute their optimal
strategies given the other player’s strategy. Para(P∗) makes these payoff functions emerge automatically
from the information flow of lenses and from the careful use of Nashators.

Payoff costates. As we’ve seen in the latter example, an arena needs, eventually, to be closed by a
context. The data of an initial state is not particularly interesting, but we need to spend a few words on
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the construction of payoff costates. Until now, open games shared the definition of payoff function with
traditional strategic games: a payoff costate (Z,P)⇄ (1,1) encodes exactly the information of a payoff
function Z → P. Now, however, a costate has to emit not just the the payoff corresponding to a given
outcome of the game, but the entire payoff function.

The most direct way to do so is to have a payoff function u : Z → P being promoted to a costate
constu : (Z,P∗Z)⇄ (1,1) in Lens(Set) by

constu = P∗u # (!P,const id) (2.10)

where const id : P → PP is the constant map picking the identity of P. This costate effectively ignores the
outcome of the game, and returns u regardless. Alternatively, if P has the structure of a group, we can
keep the information about the outcome and define

∆u = P∗u # (!P,curr(−)) (2.11)

where curr(−) : P → PP is the curried subtraction of P. This effectively composes to the costate corre-
sponding to the function

∆u : Z −→ P∗Z

z̄ 7−→ λ z.(u(z)−u(z̄)).
(2.12)

which is a sort of ‘discrete differential’ of u. Eventually this would get to players as a continuation
describing their possible increment in payoff as a function of their deviation. In traditional game theory ∆u
is known as regret [16, §3.2]. We believe it to be more conceptually convicing than the constant costate,
especially as we compare games with other cybernetic systems in Section 3.

2.3 Adding players

Once an arena is built, we can add players in it. At this stage, we only deal with the ‘vertical’ part of a
game, i.e. we draw above the arena (which constitutes the ‘horizontal’ part of a game). Here’s where
we specify how players team up, what they observe about each others’ strategies and payoffs and, most
importantly, how players process all this information to update their strategies.

The first thing to notice is that, since Para(P∗) is not strongly functorial, lifting the whole play
function to an arena in one fell swoop versus lifting it piece by piece makes a difference in how players
end up being segregated in coalitions. In fact, if playG : X → Y and playH : Y → Z are parameterised by
Ω and Ξ respectively, then Para(P∗)(playG #playH ) is parameterised by (Ξ×Ω, P∗(Ξ×Ω)) whereas
Para(P∗)(playG ) #Para(P∗)(playH ) is parameterised by (Ξ×Ω, P∗Ω×P∗Ξ).

Effectively, Para(P∗)(playG #playH ) represents a game featuring a coalition of two players with
strategy space Ξ×Ω (hence acting as one player), while Para(P∗)(playG ) #Para(P∗)(playH ) represents
a game with two competing players, with strategy spaces, respectively, Ω and Ξ.

The difference stems from the way feedback is received by players, and in their possible deviations.
In the first case, the two players can evaluate joint deviations since their feedback has type Ξ×Ω → P.
In the second case, the two players can only evaluate unilateral deviations, because they receive two
feedbacks Ω → P and Ξ → P obtained by fixing either player’s strategy. We turn the first to the latter
by reparameterising along the Nashator nΞ,Ω : (Ξ×Ω,P∗Ξ×P∗Ω)⇒ (Ξ×Ω,P∗(Ξ×Ω)). Thus, when
used as a reparameterisation, the Nashator breaks down coalitions of players.

Example 2.3 (Sequential game). Suppose we extend Example 2.2 with another move by the first player
(decided by the same staregy space Ω, hence the copy in Figure 3. Contrary to the previous case, if we
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lifted the three play functions separately and then composed, we would have ended up splitting player one
into two players: the long-range correlation between the first and third stage of the game forces us to lift
the arena monolithically, as depicted in Figure 3.

We then reparameterise along ∆Ω to clone the strategies of the first player into the third stage, and
only then use nΩ,Ξ to make sure players are split into two different coalitions.

Figure 3

Remark 2.4. Observe coalitions can always be broken canonically, but there’s no canonical way to form
them. This is to be expected, since creating coalitions requires non-canonical agreements on how to
distribute payoffs among its members (so-called imputations [16, Chapter 8]).

Finally, the last bit of the game specification concerns the process each player uses to turn the feedback
they receive into strategic deviations. Usually, payoffs are numerical and players seek to maximize them.
A bit more generally, players have some preferences encoded by a selection function ε : P∗Ω → PΩ. We
warn the reader that P∗Ω = PΩ is the set of P-valued function to Ω, while PΩ is the powerset of Ω.

A selection function fits very well in the setting we devised so far, since it has (almost) the type of the
backward part of a lens sel : (Ω,PΩ)⇄ (Ω,P∗Ω). We thus call such a lens a selection lens.
Remark 2.5. Notice the object (Ω,PΩ) can be considered the ‘state boundary’ for the player system, in
the sense of [19], and betrays an implicit non-determinism in the game system. In fact, we can generalize
away from sets by replacing the powerset monad P : Set → Set with other (commutative) monads, like
the Giry monad on measurable spaces (yielding stochastic games) or the tangent space monad on smooth
spaces (yielding differential games).
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Remark 2.6. The backward part of a selection lens is actually of the form sel : Ω×P∗Ω → PΩ, hence
a parametric selection function. This suggests that Ω is even more than a set of strategies, it represents
the epistemic type of a player in the sense of Harsanyi [11], that is, an element ω ∈ Ω encodes not only
the way a player plans to play but also their preferences (for instance, their aversion to risk). Harsanyi’s
games of incomplete information, at the moment codified in the framework of open games in [1], can
potentially benefit a lot from the new ideas we introduced here.

2.4 Games as systems

Let’s wrap up the construction we sketched so far. The first step to specify a game is to fix the players
involved (N) and their payoff type P. The arena is built canonically from a play function playG : Ω×X →Y ,
where Ω = Ω1 ×·· ·×ΩN is the product of a strategy space per player, X is a type of initial states and Y
a type of possible final outcomes of the game. Given this, we apply Para(P∗) to playG , and get back a
parametric lens (Ω,P∗Ω,A ) : (X ,P∗X)⇄ (Y,P∗Y ), the arena.
Remark 2.7. One might object that an initial state x̄ ∈ X and a utility function constu (or ∆u) deserve
to be part of the arena too, but experience tells this data is something to provide only when we want to
move on to the analysis of the game, since closing an arena prematurely hinders further composition. The
difference between a closed and an open arena is remindful of the subtle difference between a normal
(resp. extensive) form and a normal (resp. extensive) form game: the latter is the data of the first plus a
utility function.

Once the game arena has been built, we assemble the system of players over it. Usually, such a lens
will be of the form (

⊗N
i=1 seli) # nΩ1,...,ΩN , where seli : (Ωi,PΩi) ⇄ (Ωi,P∗Ωi) are N selection lenses.

Notice such a lens has domain (Ω,PΩ1 ×·· ·×PΩN), so we precompose it with
N

∏
i=1

(−) : (Ω,PΩ)⇄ (Ω,PΩ1 ×·· ·×PΩN), (2.13)

which is the identity on the forward part and cartesian product3 in the backward part (see again Figure 3).
We denote the resulting lens (Ω,PΩ)⇄ (Ω,P∗Ω) as G , and this constitutes a diegetic open game in

Set. Abstractly, we can consider this is a ‘system with boundary A ’ (Figure 4), and any such system can
rightfully be called a game.

Figure 4: The look of a generic diegetic open game, as a system G living over an arena A .

We stress this lens deserves to be called a system since its left (‘top’ in the drawings) boundary has a
canonical form: the deviations PΩ canonically associated to the given strategy profiles Ω (what Myers
calls changes in [19]).

3Or better, the canonical lax monoidal structure of the powerset endofunctor.
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Nash equilibria. So far, we never mentioned Nash equilibria. We have claimed that the way we have
woven together the various pieces of a game reproduces, diegetically, the counterfactual analysis players
do in a non-cooperative strategic game.

To see why our claim holds, let’s analyze a game system constructed from a normal form (N,Ω),
following the above recipe. Here N is a finite set of players and Ω = Ω1 ×·· ·×ΩN .

Since normal forms dispense completely with dynamical information, the associated arena will
be trivial: we set X = 1, Y = Ω4 and play(N,Ω) := πΩ : Ω× 1 → Ω. Hence the arena of the game is
A(N,Ω) = Para(RN∗

)(play(N,Ω)).
Now we focus on players. In a traditional non-cooperative game, they simply maximize their payoff,

so that player i acts according to the selection lens

seli = (1Ωi ,λ (ω̄i,u).argmaxR ui) : (Ωi,PΩi)⇄ (Ωi,RN×Ωi). (2.14)

We package this into a systems of players

G(N,Ω) = ∏
N
i=1(−) #

(
N⊗

i=1

seli

)
#nΩ1,...,ΩN : (Ω,PΩ)⇄ (Ω,RN×Ω). (2.15)

The translation of (N,Ω) is then given by the parametric lens (Ω,PΩ,G ∗
(N,Ω)A(N,Ω)) : (1,1)⇄ (Ω,RN×Ω)

obtained by plugging G(N,Ω) on the top boundary of A(N,Ω).

Theorem 2.8. Let (N,Ω = Ω1 ×·· ·×ΩN ,u : Ω → RN) be an N-players, strategic game in normal form
[16, Definition 1.2.1]. Let G ∗(A(N,Ω) # constu) be its translation to a diegetic open game, as described
above, where constu has been in defined in (2.10). Let G(Ω,u) : Ω → PΩ be the set-valued function
corresponding to such a closed parametric lens. Then a strategy profile ω̄ ∈ Ω is a Nash equilibrium for
(Ω,u) if and only if ω̄ ∈ G(Ω,u)(ω̄).

Proof. The set-valued function equivalent to G is obtained by following around a given strategy profile
ω̄ ∈ Ω along the arena, which doesn’t need any other input by virtue of being closed:

G(Ω,u)(ω̄) = {ω | ∀i ∈ N,ωi ∈ argmaxR(nΩ(ω̄,u)i))} (2.16)

= {(ω1, . . . ,ωN) | ∀i ∈ N,∀ω
′
i ∈ Ωi, ui(ω̄1, . . . ,ωi, . . . ω̄N)≥ ui(ω̄1, . . . ,ω

′
i , . . . ω̄N)}

In other words, this is the set of best responses to the strategy profile ω̄ . By definition, Nash equilibria are
fixpoints of the best response function.

In forthcoming work, we describe a principled, general framework to extract Nash equilibria as
‘behaviours’ of the system G over the arena A , in the style of [18, 19]. Specifically, we show that Nash
equilibria coincide, unsurprisingly, with non-deterministic fixpoints of such systems, i.e. simulations
of the trivial game. Most importantly, from such a characterization we can automatically deduce the
compositionality of equilibria which is the key strength of open games. In other words, we can show how
equilibria of a composite game can be expressed in simple terms of the equilibria of its parts.

4Note usually this set is called A for actions, but we prefer to keep notation consistent.
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3 Diegetic feedback as backpropagation

The conceptual story behind the diegetic representation of feedback in games is not at all specific to them.
On the contrary, it opens a window on a broader conceptual story linking the categorical description of
cybernetic systems featuring a ‘backpropagation-like’ feedback dynamics (which is most of them, notable
exception being open servers [25]). Here we outline how gradient-based learners [6] share the same
abstract features, in a striking example of category theory enabling a rigorous description of a previously
only informal analogy.

In gradient-based learning, a smooth function X →Y is learned by optimizing a model f : Ω×X →Y
smoothly parameterised by the variable ω ∈ Ω. Conceptually, this is only possible because differential
structure leaks information about the loss ℓ : Y ×Y → R ‘in a neighbourhood’ of (y, f (ω,x)), and this can
be used to evaluate which changes in parameter the learner should implement to improve. Hence it is
paramount that ℓ is known ‘locally’, and not just pointwise. In practice, the value of ℓ at (y, f (ω,x)) is not
even used! Only the covector d f (ω,x)ℓ(y,−) is needed.

This covector is then backpropagated across the various components of the learner until a covector on
Ω is obtained. As for games, this backpropagation mechanism is effortlessly assembled by deploying the
functor

T ∗ : Smooth −→ DLens(VecR) (3.1)

sending each manifold X to its cotangent vector bundle T ∗X → X (the fiberwise dual of its tangent
bundle) and each map f : X →Y to its reverse derivative, i.e. pullback of covectors along f [24], naturally
expressed as a dependent lens ( f ,T ∗ f ) : (X ,T ∗X)⇄ (Y,T ∗Y ).5

Remark 3.1. In [6], a functor very similar to T ∗ is obtained from the structure of reverse differential
category (RDC) on the base category, but Smooth is not such a category. Therefore, in ibid. the authors
confine themselves to its wide subcategory Euc of Euclidean spaces. In light of our findings for games,
it seems that considering functors S → DLens(S ) splitting the view fibration to be more fundamental
than reverse differential structure in the sense of [5]. Already in [5, §4] and [6, Proposition 2.12], it is
shown how reverse differential structures can be encoded as sections of the view fibration of lenses, with
extra conditions account for the ‘additivity’ necessary in the framework of RDCs. It seems reasonable,
therefore, to reformulate RDCs as particularly nice instances of section of feedbacks, dualizing that of
section of changes defined by Myers in [18, 19].
Remark 3.2. The functor T ∗ is strong monoidal and thus is associated to a pseudofunctor Para(T ∗)
that promotes a smooth parametric function straight into a backpropagating model. Compare this with
the functor Para(P∗), whose laxity is, ultimately, the source of the many interesting phenomena in
non-cooperative strategic games. The fact T ∗ is not lax is attributable to the additive structure involved in
each fiber of a cotangent bundle, whereby T ∗(X ×Y )∼= T ∗(X +Y ).

In [20] the authors consider what amounts to a different lax monoidal structure on T ∗, one with respect
to the fiberwise tensor product of vector bundles.6 That structure is strictly lax, like that of P∗. Indeed, the
resulting learners behave as if they are ‘competing’, and this is found to be better adapted for training
GANs, as their game-theoretic interpretation would suggest.

Once an arena L := Para(T ∗)(Ω, f ) has been defined, the dynamic of an agent (which is what
really deserves the name of ‘learner’) actually doing the learning is given by a gradient flow lens
GF : (Ω,T Ω)⇄ (Ω,T ∗Ω) which defines a system over L , by reparameterisation (as in Figure 1b). The

5Specifically, the codomain of T ∗ is the category of dependent lenses [23] obtained from the indexed category of smooth
R-vector bundles VecR : Smoothop → Cat.

6This also entails replacing VecR with its subfunctor of vector bundles and fiberwise linear maps.
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backward part of such a lens is a fiberwise linear morphism (−)♯ : T ∗Ω → T Ω. The most common way
such a morphism arises is when Ω is endowed with a Riemannian metric g, in which case (−)♯ (known
as ‘raising indices’ [24]) selects the direction of steepest ascent associated to a covector, so that u♯ is
argmaxv∈Tω Ω u(v)/∥v∥g for a given u ∈ T ∗

ω Ω.

As highlighted in Table 1, (−)♯ is formally analogous to a selection function sel : Ω×P∗Ω → PΩ,
which indeed has the same role for games. This is corroborated by the type signatures of GF and sel, both
going from an object of ‘states and feedbacks’ to an object of ‘states and changes’.

games gradient-based learners
strategies

Ω
parameters

Ω

deviations
PΩ

vectors
T Ω

payoff functions
P∗Ω := PΩ

covectors
T ∗Ω

precomposition
P∗ f : X ×P∗Y → P∗X

reverse derivative
T ∗ f : f ∗(T ∗Y )→ T ∗X

selection function
sel : Ω×P∗Ω → PΩ

sharp (iso)morphism
(−)♯ : T ∗Ω → T Ω (of vector bundles over Ω)

Table 1

What might look odd is the asymmetry between PΩ and Ω in the signature of sel, something not
present in (−)♯. Indeed, if Ω is the set of ‘states’ of a player, then there is a dissimilarity between T ∗Ω

being the set of R-valuations of T Ω and P∗Ω being the set of valuations on PΩ. This discrepancy requires
a bit more scaffolding to be explained, but intuitively it amounts to observing T ∗Ω is the set of linear
valuations on T Ω, an likewise, when we consider only maps f : PΩ→ P that satisfy f (A) =∑a∈A f ({a}),
these are determined by maps Ω → P.

Let us remark on another aspect, regarding discretization of such systems. Usually learners are
trained with gradient descent, not gradient flow, due to the evident impossibility of actually performing an
infinitesimal step in the gradient direction. Thus an important role is played by the exponential map of the
Riemannian manifold of parameters, since it allows to move for a definite length along a given direction.
To us, this amounts to another lens expα : (Ω,Ω×Ω)⇄ (Ω,T Ω) on top of a learner, whose backward
part (ω : Ω)×TωΩ → Ω is indeed given by moving for an interval of time α along the geodesic.Doing
this turns the differential system GF into the deterministic and discrete GD described in [6]. In fact, this
can be seen as a general move from differential to discrete given by a forward Euler integration scheme,
similar to what is described in [17].

Similarly can be done for games: the analogous structure would be that of a P-algebra.7 Concretely,
this map collapses the multiple possibilities of deviations to a choice of a next strategy to ‘try’. This can
be used to define a lens analogous to expα that transforms a non-deterministic system into a deterministic
one.

7Algebra of the P endofunctor, not necessarily the monad.
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4 Conclusions

In this work we described a new approach to the specification of compositional games in the style of open
games [10, 4]. It corrects some of the conceptual shortcomings of open games with agency, and uncovers
deeper analogies with gradient-based learners and, speculatively, a wider range of cybernetic systems.

The new approach provides a way to specify a game using machinery analogous to reverse-mode
automatic differentiation, abstractly given by a functor P∗ : Set → DLens(Set). We observed how the lax
monoidal structure of such functor plays a profound role in determining the dynamics of non-cooperative
games, by hiding ‘cooperative’ information.

We have shown how classical strategic games can be naturally represented as non-deterministic
systems over their arenas, systems given by the dynamics of players observing their payoffs and pondering
if and how to deviate from their current strategy. The resulting parametric lens is hence a full realization
of the ideas in [14, 4, 3], and brings the framework of categorical cybernetics (born with [3]) closer to that
of categorical systems theory (detailed in [18, 19]).

Future directions. The new ideas brought about in this paper are not fully formed yet. In preparing this
work, three more follow-up works naturally spawned.

The first, which has already been anticipated at the end of Section 2, concerns laying down a proper
general theory of specification and simulation of cybernetic systems, in the wake of Myers’ work on
dynamical systems [18, 19]. In the first place, this would allow to extract Nash equilibria from diegetic
open games in a principled and compositional way, with practical implications in the way these are
computed. Secondly, using analogous tools we would then be able to talk about simulations of games
and more generally of non-equilibrium trajectories of game dynamics. Lastly, we will have in place a
unifying notion of ‘morphism of open games’, which from preliminary discussions with Hedges, seems to
reproduce the most important features of those in [13] and [10].

The second work concerns the pure game-theoretic aspects of this new definition. Can we improve
the toolset of compositional game theory by leveraging a more accurate reproduction of the dynamics
involved? We believe the answer to be yes, with exciting connections to the topic of Bayesian games [11]
and learning theory for games [8].

The third work is an exploration of the ideas roughly outlined in Section 3, with the aim of crystallizing
the analogy between learners and games. Such an abstract theory of backpropagation would formalize the
intuitive picture whereby such systems come with a notion of ‘type of states’ on which a ‘type of changes’,
a ‘type of scalars’ depend, which together give rise to a ‘type of feedbacks’ obtained as valuations of the
first in the latter.
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[6] Geoffrey S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson & Fabio Zanasi (2022): Categorical
Foundations of Gradient-Based Learning. In Ilya Sergey, editor: Programming Languages and Systems,
Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 1–28, doi:10.1007/978-3-
030-99336-8 1.

[7] Merriam-Webster.com Dictionary: Diegetic. Available at https://www.merriam-webster.com/

dictionary/diegetic.

[8] Drew Fudenberg, Fudenberg Drew, David K. Levine & David K. Levine (1998): The theory of learning in
games, 1 edition. 2, MIT press.

[9] Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional game theory. In:
Proceedings of the 33rd annual ACM/IEEE symposium on logic in computer science, pp. 472–481,
doi:10.1145/3209108.3209165.

[10] Neil Ghani, Clemens Kupke, Alasdair Lambert & Fredrik Nordvall Forsberg (2018): A compositional treatment
of iterated open games. Theoretical computer science 741, pp. 48–57, doi:10.1016/j.tcs.2018.05.026.

[11] John C. Harsanyi (1967): Games with incomplete information played by “Bayesian” players, I–III Part I. The
basic model. Management science 14(3), pp. 159–182, doi:10.1287/mnsc.14.3.159. Publisher: INFORMS.

[12] Jules Hedges (2016): Towards compositional game theory. Ph.D. thesis, Queen Mary University of London.

[13] Jules Hedges (2018): Morphisms of open games. Electronic Notes in Theoretical Computer Science 341, pp.
151–177.

[14] Jules Hedges, Paulo Oliva, Evguenia Shprits, Viktor Winschel & Philipp Zahn (2017): Higher-order decision
theory. In: International Conference on Algorithmic Decision Theory, Springer, pp. 241–254, doi:10.1007/978-
3-319-67504-6 17.

[15] Niles Johnson & Donald Yau (2021): 2-dimensional Categories. Oxford University Press, USA,
doi:10.1093/oso/9780198871378.001.0001.

[16] Kevin Leyton-Brown & Yoav Shoham (2008): Essentials of Game Theory: A Concise Multidisciplinary
Introduction. Morgan & Claypool, doi:10.1007/978-3-031-01545-8.

[17] Sophie Libkind, Andrew Baas, Evan Patterson & James Fairbanks (2022): Operadic Modeling of Dy-
namical Systems: Mathematics and Computation. Electronic Proceedings in Theoretical Computer Sci-
ence 372, pp. 192–206, doi:10.4204/EPTCS.372.14. Available at http://arxiv.org/abs/2105.12282.
ArXiv:2105.12282 [math].

[18] David Jaz Myers (2021): Double Categories of Open Dynamical Systems (Extended Abstract). Electronic
Proceedings in Theoretical Computer Science 333, pp. 154–167, doi:10.4204/EPTCS.333.11. Available at
http://arxiv.org/abs/2005.05956. ArXiv:2005.05956 [math].

[19] David Jaz Myers (2022): Categorical Systems Theory. Available at http://davidjaz.com/Papers/
DynamicalBook.pdf. (Work in progress).

[20] Florian Schaefer & Anima Anandkumar (2019): Competitive Gradient Descent. In: Advances in Neural
Information Processing Systems, 32, Curran Associates, Inc. Available at https://proceedings.neurips.
cc/paper/2019/hash/56c51a39a7c77d8084838cc920585bd0-Abstract.html.

[21] Michael Shulman (2021): Homotopy Type Theory: The Logic of Space. Cambridge University Press, p. 322,
doi:10.1017/9781108854429.009.

https://doi.org/10.4204/EPTCS.372.16
http://arxiv.org/abs/2105.06763
https://doi.org/10.4230/LIPIcs.CSL.2020.18
https://doi.org/10.1007/978-3-030-99336-8_1
https://doi.org/10.1007/978-3-030-99336-8_1
https://www.merriam-webster.com/dictionary/diegetic
https://www.merriam-webster.com/dictionary/diegetic
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1016/j.tcs.2018.05.026
https://doi.org/10.1287/mnsc.14.3.159
https://doi.org/10.1007/978-3-319-67504-6_17
https://doi.org/10.1007/978-3-319-67504-6_17
https://doi.org/10.1093/oso/9780198871378.001.0001
https://doi.org/10.1007/978-3-031-01545-8
https://doi.org/10.4204/EPTCS.372.14
http://arxiv.org/abs/2105.12282
https://doi.org/10.4204/EPTCS.333.11
http://arxiv.org/abs/2005.05956
http://davidjaz.com/Papers/DynamicalBook.pdf
http://davidjaz.com/Papers/DynamicalBook.pdf
https://proceedings.neurips.cc/paper/2019/hash/56c51a39a7c77d8084838cc920585bd0-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/56c51a39a7c77d8084838cc920585bd0-Abstract.html
https://doi.org/10.1017/9781108854429.009


158 Diegetic Representation of Feedback in Open Games

[22] Toby St Clere Smithe (2021): Compositional Active Inference I: Bayesian Lenses. Statistical Games. Available
at https://arxiv.org/abs/2109.04461.

[23] David I Spivak (2019): Generalized Lens Categories via functors F : C op → Cat. Available at https:
//arxiv.org/abs/1908.02202.

[24] Michael Spivak (1973): A comprehensive introduction to differential geometry. Bulletins of the American
Mathematical Society 79, pp. 303–306, doi:10.1090/S0002-9904-1973-13149-0.

[25] Andre Videla & Matteo Capucci (2022): Lenses for Composable Servers. Available at https://arxiv.org/
abs/2203.15633.

https://arxiv.org/abs/2109.04461
https://arxiv.org/abs/1908.02202
https://arxiv.org/abs/1908.02202
https://doi.org/10.1090/S0002-9904-1973-13149-0
https://arxiv.org/abs/2203.15633
https://arxiv.org/abs/2203.15633

	Motivation
	Diegetic open games
	Preliminaries
	Building arenas
	Adding players
	Games as systems

	Diegetic feedback as backpropagation
	Conclusions

