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Abstract. We consider the problem of restoring blurred images affected by impulsive noise.
The adopted method restores the images by solving a sequence of constrained minimization
problems where the data fidelity function is the `1 norm of the residual and the constraint, chosen
as the image Total Variation, is automatically adapted to improve the quality of the restored
images. Although this approach is general, we report here the case of vectorial images where the
blurring model involves contributions from the different image channels (cross channel blur).
A computationally convenient extension of the Total Variation function to vectorial images is
used and the results reported show that this approach is efficient for recovering nearly optimal
images.

1. Introduction
We consider here the problem of restoring a multichannel image Y δ corrupted by blur and salt
and pepper noise. The problem is solved by a variational approach, minimizing an objective
functional where the data fidelity term is weighted by a suitable regularization term. This
formulation requires the choice of the regularization parameter which is very critical. Therefore
we consider the constrained formulation where the minimization of the data fidelity term is
constrained by a suitably defined regularization term. Salt and pepper noise is considered an
outlier which do not obey to the Gaussian noise model. Minimization of outliers effects can be
obtained by replacing the `2 in the data fidelity term by the `1 norm [1, 2, 3, 4]. Moreover the
combination of `1 data fidelity term with edge preserving regularizers has proven to be effective
[2, 5, 6, 7, 8]. In this paper, we adopt the Total Variation regularizer extended to Multichannel
images (MTV) [9]. We solve the deblurring-denoising problem by the following sequence of
constrained minimization problems:

minU‖HU − Y δ‖1 s.t. MTV (U) ≤ γj , j = 0, 1, . . . (1)

where H is the blurring kernel (here H 6= I), U is the exact image (unknown) to be recovered.
The initial smoothing term γ0 is obtained by the input data Y δ by a filtering procedure specific
for multichannel images. The successive terms of the sequence {γj}, j > 0, are updated by
an iterative method based on the residuals of (1). In this sense, the proposed method does
not depend on any regularization or constraint parameter and only the recorded data Y δ are
necessary as input. The problems (1) are solved in Lagrangian dual form by the algorithm
CL1TV presented in section 2. Some numerical experiments are reported in section 3, where the
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tests are performed on deblurring of color images, corrupted by cross-channel blur and salt and
pepper noise. Finally the conclusions are given in section 4.

2. The Constrained L1-TV Algorithm (CL1TV)
We now discuss our iterative algorithm, named the Constrained L1-TV Algorithm (CL1TV), that
computes a suitable set of values γj and solves the constrained problem (1) using the Lagrangian
dual form. We shall present the algorithm for the case of multichannel images with cross channel
blur.

2.1. Multichannel image restoration
Assume our observed p-channel image (with blur) is Y = [Y1, Y2, . . . , Yp], which is the sum
of convolutions of the blurring kernels Hn,k with the image channels Uk of the original image
U = [U1, . . . , Up]:

Yn =

p∑
k=1

Hn,k ∗ Uk, n = 1, . . . , p (2)

where each channel Yn ∈ RM×N , n = 1, . . . , p. For example, the blurring matrix of truecolor
images H has 3× 3 blocks (p = 3) where the diagonal blocks Hk,k, k = 1 . . . , 3 represent within-
channel blur, while the blocks Hn,k n 6= k represent the cross-channel blur, i.e. how the blur on
the n-th channel influences the k-channel. For a general p-channel image, we consider discrete
Multichannel Total Variation, as extension of the Total Variation for a grayscale image, defined
as follows:

MTV (U) =

M∑
j=1

N∑
i=1

(
|∇U |2i,j,1 + |∇U |2i,j,2 + · · ·+ |∇U |2i,j,p

)1/2
.

Forward difference formulas are used in |∇U |2 = U2
x + U2

y to approximate the derivatives.

2.2. Computation of the sequence γj
The starting value γ0 of the sequence of regularization constraints γj , j = 1, . . ., is defined as the

Multichannel Total Variation of a low pass filtered version U (F ) of the blurred noisy data. Such
a filtered image is computed by solving the following unconstrained problem:

U (F ) = argminU‖HU − Y δ‖1 + λFMTV (U), (3)

where λF is obtained by undersampling the sum of the spectra of the blurring matrices Hn,k

acting on each channel and taking the minimum of the Fourier coefficients. In the case of cross
channel blur, we assume that each submatrix Hi,j can be diagonalized by a unitary Fourier

matrix F : Hi,j = F ∗Ψ(i,j)F, i, j = 1, . . . p and we approximate H by a block diagonal matrix
H̄ where each diagonal block is

H̄i,i = F ∗Ψ̄(i)F, Ψ̄(i) =
1

p

p∑
j=1

Ψ(i,j), i = 1, . . . , p.

By undersampling the power spectrum we compute the filter parameters βi as:

βi = min
1≤k≤N

∣∣∣∣∣(FY δ
i )k·M

Ψ̄
(i)
k·M

∣∣∣∣∣ , i = 1, . . . , p (4)

and define λF = min1≤i≤p βi. For each channel i, we have that |(FY δ
i )`| decay faster than

|(Ψ̄(i))`| (` = 1, . . . , k ·M) until they level off when the noise starts to dominate [10]. Hence
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we take the minimum value in (4) to limit as much as possible the influence of noise. Then
γ0 = MTV (U (F )).

We experimentally observe that the residual function r(γ) = ‖HU(γ) − Y δ‖1 decreases for
increasing values of γ (for γ less than an optimal value γ̃). In particular r(γ) steeply decreases
when γ � γ̃ and becomes flat around γ̃. We can define an increasing sequence γj , j = 1, . . . r,
and compute γj by applying a kind of cross validation method, minimizing the residual r(γ). In
practice, checking the slope of the residual curve, we compute γj with the following relation:

γj = γj−1(1 + P ), if |r(γj)− r(γj−1)| > Ptol|(γj − γj−1)| (5)

where Ptol is an assigned tolerance. Let γs be the exit value of (5) then, if the slope is still
negative, the adaptation procedure is stopped (γr = γs). Otherwise, if the slope in γs is greater
than Ptol, then a backtracking procedure (BCKTRK) is performed in the interval [γs−1, γs), by
using (5) with P = P/2 and j = s.

Algorithm 2.1 (Output: γr).

Compute λF and compute U (F ) by solving (3). γ0 = MTV (U (F )). j=0;
repeat

j = j + 1; γj = γj−1(1 + P )
Dj = (r(γj)− r(γj−1))/(γj − γj−1)

until Dj < −Ptol
if Dj < Ptol

γr = γj
else

a = γj−1, b = γj
compute γr = BCKTRK(a, b).

end

In our experiments, Ptol = 10−4, P = 0.1.

2.3. Solution of the L1-TV subproblem
For each γ = γj the constrained problem (1) is solved using its Lagrangian dual form:

max
λ

min
U
L(U, λ), L(U, λ) ≡ ‖HU − Y δ‖1 + λ (MTV (U)− γ) . (6)

Imposing the first order conditions ∇λL(U, λ) = 0, we compute the solution (λ̂, Û) of (6) by
solving:

find λ̂ s.t. MTV (Û(λ))− γ = 0 where Û ≡ U(λ̂) is the solution of

min
U
‖HU − Y δ‖1 + λ (MTV (U)− γ) (7)

The monotonicity property of MTV (U(λ))− γ allows us to solve the nonlinear equation:

MTV (U(λ))− γ = 0 (8)

by a hybrid bisection+secant method [11] yielding a sequence {λk} converging to the root

λ̂. Usually few bisection iterations are necessary (ks ' 3) to guarantee the convergence of the
secant iterations and globally less than 10 iterations are performed by the hybrid method when
stopped by the following criterion:

|MTV (U (k))− γ| < τr|MTV (U (0))− γ|+ τa or |λk − λk−1| < τa or k > maxit (9)
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with τr = τa = 10−3 and maxit = 15 in our experiments. By solving (7) with λ = λk, we

obtain a sequence U (k) = U(λk) converging the solution Û . Using MTV an efficient and fast
method for solving (7) is the fast alternating minimization algorithm proposed in [9] (FTVD4).
However, different solvers could be applied to (7), related to different extensions of the TV to
multichannel images. The procedure for solving a subproblem (1) is outlined in Algorithm 2.2.

Algorithm 2.2 (CL1TV – Input: γj , H, Y δ, λ0,ks; output: U, λ).

compute U (0) solving (7) with λ = λ0 using FTVD4 function
k = 0 % Solution Computation
repeat

k = k + 1
Apply a hybrid bisection-secant method for solving MTV (U(λk))− γ = 0

compute U (k) solving (7) with λ = λk using FTVD4 function
until exit condition (9)

U = U (k).

3. Numerical Results
In this section we present some numerical results obtained with the proposed CL1TV method
in the deblurring of color images. The tests have been performed in Matlab 2012a. In all the
experiments, the maximum number of allowed CL1TV iterations is 5 and the maximum number
of bisection-secant iterations is 10. The blurred noisy images Y δ are obtained by applying the
blurring kernel H to the test image U∗ and by adding salt and pepper noise. In our experiments,
we consider two levels of noise: medium noise and high noise, where the number of corrupted
pixels in Y δ is 40% and 80%, respectively. The following cross-channel blurring matrix has been
used:

H =

 .7G(21, 11) .15G(21, 11) .15G(21, 11)
.1G(21, 11) .8G(21, 11) .1G(21, 11)
.2G(21, 11) .2G(21, 11) .6G(21, 11)

 . (10)

where G(h, σ) is a Gaussian function of size h = 21 pixels and variance σ = 11 pixels. The quality
of the reconstructed images is evaluated through the relative error: E = ‖U∗−Ũ‖2/‖U∗‖2 where
U∗ and Ũ are the exact and reconstructed image, respectively. We show the results on two color
images:

• the I1 photographic image in figure 1;

• the I2 synthetic image of figure 2.

(a) Original (b) Noisy blurred (high noise) (c) Restored

Figure 1: Original, blurred (high noise) and restored images I1.

In figure 3 we report the relative errors (figures (a) and (c)) and the L1 residuals (figures (b)
and (d)) as functions of the parameter γ for I1. We have obtained the plots by considering a
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(a) Original (b) Noisy blurred (medium noise) (c) Restored

Figure 2: Original, blurred (medium noise) and restored images I2.

set of equispaced values γi in the interval [8.103, 2.104] (sufficiently larger than [γ0, γs]) and by
solving problems of the form (1) with the proposed CL1TV method. From the plots (a) and (c)
(medium and high noise, respectively) we see that the computed solution is very close to the best
possible with the considered model. This means that the estimate of γ made by our algorithm
is good. Figures (b) and (d) show that the residual really decreases and then becomes flat near
the best value of γ; confirming the validity of method (5) based on the computed residual r(γ).
We remind that the relative errors reported in figures (a) and (c) are not used in the algorithm
for choosing γ, but they are shown only to confirm the validity of the proposed method. In
table 1 we report some numerical results obtained with the CL1TV method. It is evident that the
relative error is strongly reduced from the recorded image (E0) to the computed image (Er).
The computational time is proportional to the number of FTVD iterations (implementing the
Alternating Directions algorithms).

Test (nl) E0 Er itγ itλ itFTV D
I1 40% 0.477 0.139 5 33 15768
I1 80% 0.600 0.145 5 24 10941
I2 40% 0.306 0.050 5 37 5670
I2 80% 0.4166 0.051 5 27 4021

Table 1: CL1TV algorithm results. E0 is the relative error of the recorded image, Er the relative
error of the restored image, itγ the number of elements of the sequence γi, itλ the total number
of iterations of the bisection and secant methods, itFTV D the total number of iterations of the
FTVD method.

4. Conclusions
In this paper we proposed the CL1TV iterative method for automatic restoration of blurred
noisy images corrupted by impulsive noise. The method only requires the recorded image and
the blurring kernel as input. The algorithm solves a sequence of constrained minimization
problems where the objective function is the `1-norm of the residual and the constraint function
is the Total Variation (extended for vectorial images). The experiments carried on some images
proved that the method efficiently recovers nearly optimal results; hence they are encouraging
for further tests in deblurring and other linear inverse problems in imaging, such as tomographic
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(a) (b)

(c) (d)

Figure 3: Relative errors (a)(c) and L1 residuals (b)(d) for the tests with medium 40% noise (a)(b) and high
80% noise (c)(d).

reconstruction. In future work we will compare our approach to other methods proposed in the
literature and test different algorithms for the solution of the unconstrained problem (7).
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