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ABSTRACT
Phenotyping of major depressive disorder (MDD) can vary from study to study, which, together with heterogeneity 
of the disorder, may contribute to the inconsistent associations with neuroimaging features and underlie previous 
problems with machine-learning methods for MDD diagnostic applications. In this study, we examined the classi-
fication accuracy of structural and functional connectomes across different depressive phenotypes, including sep-
arating MDD subgroups into those with and without self-reported exposure to childhood trauma (CT) (one of the 
largest risk factors for MDD associated with brain development). We applied logistic ridge regression to classify 
control and MDD participants defined by six different MDD definitions in a large community-based sample 
(N = 14,507). We used brain connectomic data based on six structural and two functional network weightings and 
conducted a comprehensive analysis to (i) explore how well different connectome modalities predict different MDD 
phenotypes commonly used in research, (ii) whether stratification of MDD based on self-reported exposure to 
childhood trauma (measured with the childhood trauma questionnaire (CTQ)) may improve the accuracies, and (iii) 
identify important predictive features across different MDD phenotypes. We found that functional connectomes 
outperformed structural connectomes as features for MDD classification across phenotypes. The highest accuracy 
of 64.8% (chance level 50.0%) was achieved in the Currently Depressed (defined by the presence of more than five 
symptoms of depression in the past 2 weeks) sample with additional CTQ criterion using partial correlation func-
tional connectomes. The predictive feature overlap, measured using Jaccard index, indicated that there were neu-
robiological differences between MDD patients with and without childhood adversity. Further analysis of predictive 
features for different MDD phenotypes with hypergeometric tests revealed sensorimotor and visual subnetworks as 
important predictors of MDD. Our results suggest that differences in sensorimotor and visual subnetworks may 
serve as potential biomarkers of MDD.
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1.  INTRODUCTION

Major depressive disorder (MDD) is a disabling psychiat-
ric condition which affects a substantial proportion of the 
general population around the world. In the clinical set-
ting, diagnosis of MDD relies on clinical examination of 
signs and symptoms, and taking a detailed history from 
the patient and collateral sources. This necessarily 
involves a strong subjective element. These clinical fea-
tures are aligned against multiple diagnostic criteria, 
which in the case of MDD as defined by the Diagnostic 
and Statistical Manual of Mental Disorders - V (DSM-V) 
gives rise to more than 200 qualifying symptom combina-
tions (Østergaard et al., 2011; Zimmerman et al., 2015). 
This is further complicated in the research setting where 
different assessment tools are often used from one 
research study to another, particularly in larger studies 
where full clinical assessments are not possible, and this 
makes the diagnosis of MDD problematic. The use of dif-
ferent definitions of MDD likely exacerbates inconsisten-
cies in findings and may underlie problems with using 
imaging data to classify MDD accurately. Recently, the 
use of mental health questionnaire-based items to effi-
ciently categorise mood disorder allows researchers to 
thoroughly explore how depression phenotypes defined 
with different methods are associated with environmental 
risk factors, genetics, and neuroimaging measures. The 
large samples now available, together with increased 
computational capabilities and machine-learning tech-
niques, could be key to improving classification and are a 
step towards understanding depression heterogeneity 
and potential subtyping.

In the context of Genome Wide Association analyses, 
Howard et  al. (2018) investigated three definitions of 
MDD—broad depression, probable MDD, and Interna-
tional Classification of Diseases based MDD—in UK Bio-
bank (UKB) sample. They reported high genetic 
correlations among the three MDD phenotypes, indicat-
ing a potential core genetic component shared across 
the MDD definitions. They also found genetic associa-
tions that were specific to each MDD phenotype (Howard 
et al., 2018). Cai et al. (2020) presented five definitions of 
MDD in the same sample; three of the definitions were 
categorised as minimally phenotyped, and the other two 
were termed as strictly-defined according to clinical 
diagnostic criteria (Cai et al., 2020). The authors showed 
through clustering analysis that the broader definitions 
exhibited distinct patterns of associations with environ-
mental risk factors as compared to more strictly defined 
MDD. They also found that the stricter definitions of MDD 

exhibited higher heritability estimates, more specific 
genetic architecture, and differing patterns of genetic 
associations with the strictly defined phenotypes. In 
terms of analyses of functional brain imaging data, some 
studies have indicated that associations may be specific 
to different depressive symptoms. For example, rumina-
tion (Kühn et al., 2012; Wu et al., 2015; Zhu et al., 2012), 
helplessness and hopelessness (Peng et al., 2014; Yao 
et  al., 2009), and suicidal tendencies (Fan et  al., 2013;  
S. Zhang et al., 2016) were found to be associated with 
abnormal functional connectivity of different brain regions 
(Brakowski et al., 2017). While in structural brain imaging, 
MDD-related differences were found to be more consis-
tent across depression phenotypes. In a previous work, 
Harris et  al. (2022) studied the structural brain differ-
ences, measures for the whole brain (cortical thickness, 
cortical volume, and subcortical volume), cortical lobes, 
and white matter tract types (fractional anisotropy and 
mean diffusivity), for three main MDD definitions from 
self-report to clinical definitions in N = 39,300 UKB imag-
ing participants (Harris et al., 2022). The study found that 
the associations with white matter integrity were consis-
tent across depression phenotypes and that phenotype-
specific differences were more prominent in cortical 
thickness measures, despite small overall effect sizes. 
These studies primarily investigated the influence of phe-
notyping methods using univariate approaches. In con-
trast, multivariate analyses and machine learning (ML) 
approaches could provide additional insight by combin-
ing information of different features for diagnostic classi-
fication. So far, there has not been a large-scale study 
investigating the effect of depression phenotyping on the 
results of ML predictive modelling based on structural 
and functional connectivity data. We hypothesised that 
our investigated ML models would deploy different deci-
sion strategies (reflected in model coefficients), and iden-
tify different sets of important features for prediction of 
different depression phenotypes.

In addition to examining the effects of varying depres-
sion phenotyping methods, we here also examine the 
effect of stratifying depression by presence or absence of 
early life adversity. Previous studies have shown that 
early life adversity is associated with increased risk of 
developing psychiatric disorders, including depression in 
adulthood (Kuzminskaite et  al., 2021; Mandelli et  al., 
2015). Levels of childhood adversity have also been 
associated with subsequent severity of depression and 
anxiety symptoms (Huh et al., 2017) as well as abnormal 
brain connectivity in MDD (Grant et al., 2014; Yu et al., 
2019). Luo, Chen, Li, Wu, Lin, Yao, Yu, Wu, et al. (2022) 
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investigated functional connectivity differences between 
healthy controls (N = 80) and MDD cases with and with-
out childhood trauma (N = 31 and N = 30, respectively). 
Although both MDD groups had similar alterations in 
functional connectivity compared to controls, the 
changes appeared more prominent in cases with self-
reported childhood trauma. Specifically, MDD cases with 
self-reported childhood trauma exhibited a larger 
decrease in connectivity between the ventral attention 
network and sensorimotor network (Luo, Chen, Li, Wu, 
Lin, Yao, Yu, Wu, et al., 2022). These results suggest that 
MDD cases with self-reported childhood trauma may 
represent a more homogeneous subgroup of MDD, which 
could be more amenable to diagnostic classification 
using ML algorithms.

In this study, we investigated diagnostic classification 
of MDD using connectivity data from the UKB and logis-
tic ridge regression model. We tested the effects of MDD 
phenotyping on model performance and on the estimated 
model coefficients. We investigated prediction of six dif-
ferent definitions of MDD using two functional connec-
tome measures (partial correlation and full correlation 
matrices) and six structural connectome measures. For 
each diagnostic definition, we maintained a 1-to-1 ratio 
between cases and controls, with case and control par-
ticipants matched for age, sex, and intracranial volume 
(ICV), to enable objective comparison of classification 
accuracies across models. To investigate whether higher 
classification accuracies may be achieved for MDD sub-
groups defined by self-reported childhood trauma, we 
repeated the above analyses with only selected MDD 
participants passing the abbreviated CTQ score thresh-
old. Our main aims were (i) to compare ML classification 
performances between the different MDD definitions and 
different brain connectivity modalities, (ii) to investigate 
the effect of childhood trauma score thresholding on 
classification accuracies, (iii) to identify the important fea-
tures for classifying each MDD phenotype, based on 
model coefficients, that could potentially inform biologi-
cally/mechanistically distinct subgroups, and (iv) to 
define important brain subnetworks that may be useful 
for classifying MDD in general (i.e., important subnetwork 
changes that are common to different MDD phenotypes).

2.  MATERIALS AND METHODS

2.1.  Materials

Participants were recruited and brain imaging was com-
pleted as part of the UKB study. The six depression 

phenotypes were derived based on mental health que
stionnaire (MHQ) items. Five MHQ items were used to 
derive the abbreviated CTQ score.

2.1.1.  Participants

A subset of the UKB participants underwent brain MRI at 
the UKB imaging centre in Cheadle, Manchester, UK and 
in Newcastle, UK. The study was approved by the 
National Health Service Research Ethics Service (No. 11/
NW/0382) and by the UKB Access Committee (Project 
No. 4844 and No. 10279). Written consent was obtained 
from all participants.

2.1.2.  Structural networks

At the time of processing, N = 9,858 participants with 
compatible T1-weighted and dMRI data were available 
from the UKB, and the structural connectomes for these 
participants were derived locally. A full description of 
structural connectome processing can be found in 
Buchanan et  al. (2020) and Yeung et  al. (2022). These 
processes are described briefly below.

All imaging data were acquired using a single Siemens 
Skyra 3 T scanner (Siemens Medical Solutions, Erlangen, 
Germany; see http://biobank​.ctsu​.ox​.ac​.uk​/crystal​/refer​
.cgi​?id​=2367). Details of the MRI protocol and preprocess-
ing are freely available (Alfaro-Almagro et al., 2018; Miller 
et  al., 2016). Each T1-weighted volume was parcellated 
into 85 distinct neuroanatomical Regions-Of-Interest (ROI) 
with FreeSurfer v5.3.0 and 34 cortical structures per hemi-
sphere were identified according to the Desikan-Killany 
atlas (Desikan et al., 2006). Brain stem, accumbens area, 
amygdala, caudate nucleus, hippocampus, pallidum, 
putamen, thalamus, and ventral diencephalon were also 
extracted with FreeSurfer. Whole-brain tractography was 
performed using an established probabilistic algorithm 
(BEDPOSTX/ProbtrackX; (Behrens et  al., 2007, 2003)) 
using criteria as described previously (Buchanan et  al., 
2020). Water diffusion parameters were estimated for FA, 
which measures the degree of anisotropic water molecule 
diffusion, and for MD, which measures the magnitude of 
diffusion. Neurite orientation dispersion and density imag-
ing (NODDI) provides more detailed characterisation of tis-
sue microstructure, and the measures derived from NODDI 
were: ICVF which measures neurite density; ISOVF which 
measures extracellular water diffusion; and OD which 
measures the degree of fanning or angular variation in neu-
rite orientation (H. Zhang et al., 2012). After aligning ROIs 
from T1-weighted to diffusion space, networks were then 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367
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constructed by identifying pairwise connections between 
the 85 ROIs and represented in the form of person-specific 
85× 85 adjacency matrices. Six network weightings were 
computed. Streamline count (SC) was computed by 
recording the total streamline count (uncorrected) between 
each pair of ROIs. In addition, five further network weight-
ings (FA, MD, ICVF, ISOVF, and OD) were computed by 
recording the mean value of the diffusion parameter in 
voxels identified along all interconnecting streamlines 
between each pair of ROIs.

In total, 8,183 participants (45.1–78.5  years of age, 
3,869 male) remained after participants were excluded 
following local quality checking or due to failure in pro-
cessing. Proportional-thresholding was used to keep 
only connections present in at least 2/3 of subjects 
(Buchanan et al., 2020; de Reus & van den Heuvel, 2013). 
6,247 out of 8,183  participants have completed the 
MHQ questionnaire.

2.1.3.  Resting-state functional networks

N = 19,831 participants underwent a resting-state func-
tional MRI (rs-fMRI) assessment and passed the quality 
check by the UKB. Out of 19,831 participants, 14,507 had 
completed the MHQ questionnaire.

The functional connectome matrices were derived by 
the UKB imaging project team. The detailed methods of 
the imaging processing for UKB can be found in previous 
protocol articles (Alfaro-Almagro et al., 2018; Miller et al., 
2016). The processes are described briefly below.

From raw rs-fMRI scans to the correlation and partial 
correlation matrices, the data went through steps of data 
preprocessing, parcellation using group independent 
component analysis (ICA), and connectivity estimation 
with FSL packages (http://biobank​.ctsu​.ox​.ac​.uk​/crystal​
/refer​.cgi​?id​=1977) by the UKB imaging team. The prepro-
cessing steps were completed in the following sequence: 
motion correction, grand mean intensity normalisation, 
high-pass temporal filtering, echo-planar image unwarp-
ing, gradient distortion correction unwarping, and finally 
removal of structured artifacts (Miller et al., 2016). A group 
level ICA was carried out on the first 4,100 participants 
and the spatial ICA mask was applied to the fMRI scans, 
parcellating the brain into 100 components. 45 of the 100 
components were identified as noise components and 
were removed. The time-series data for remaining nodes 
was then used to calculate functional connectivity 
between node pairs. The full correlation matrices were 
computed using normalised temporal correlation of the 
time-series between each pair of nodes. As for the partial 

correlation matrices, these were computed using partial 
Pearson correlation with an L2 regularisation applied (rho 
set as 0.5 for Ridge Regression in FSLNets). All r-scores 
were then Fisher-transformed into z-scores. This resulted 
in two 55 x 55 correlation matrices (correlation and partial 
correlation) of functional connectivity for each participant. 
The list of good nodes can be found in: http://https://www​
.fmrib​.ox​.ac​.uk​/datasets​/ukbiobank​/group​_means​/edge​
_list​_d100​.txt. An interactive website displaying group-
mean maps for each component can be found in: http://
www​.fmrib​.ox​.ac​.uk​/datasets​/ukbiobank​/group​_means​
/rfMRI​_ICA​_d100​_good​_nodes​.html. A connectome map 
of the nodes can be found in: http://www​.fmrib​.ox​.ac​.uk​
/datasets​/ukbiobank​/netjs​_d100/.

2.1.3.1.  Mapping functional subnetworks.  The 55 
brain regions (network nodes) are clustered into six 
groups according to group mean full correlation matri-
ces. We referred these clusters of ICA nodes as func-
tional subnetworks, and the clusters were consistent 
with previous studies (Buckner et al., 2009; Dosenbach 
et al., 2007; Ji et al., 2019; Reineberg et al., 2015; Uddin 
et al., 2019; Yeo et al., 2011). The clusters approximately 
represent the sensorimotor (SMN; orange), visual net-
work (VN; blue), executive control and attention network 
(EC_AN; green), cingulo-opercular network (CON; pur-
ple), default mode network (DMN; red), and extended 
DMN (eDMN; brown).

Figure 1A shows the six functional subnetworks, and 
Figure  1B shows the reference 7-network parcellation 
proposed by Yeo et al. (2011). The VN, SMN, and DMN 
roughly map to the corresponding functional subnet-
works in the 7-network parcellation. The EC_AN roughly 
maps to the dorsal attention network as well as parts of 
the ventral attention network and the FPN in the 7-network 
parcellation. The CON and eDMN approximately map to 
the ventral attention network and the FPN in the 7-network 
parcellation.

2.1.4.  Depression phenotypes

A total of 157,357 participants from the UKB completed 
an online Mental Health Questionnaire (MHQ) including 
self-report, clinical lifetime disorder status, and experi-
ences of psychiatric symptoms for specific disorders. 
Davis et al. (2020) presented a detailed implementation for 
constructing the depression phenotypes from the mental 
health questionnaire (MHQ) items for UKB (Davis et  al., 
2020). A number of them have comparatively loose crite-
ria (which may imply mildly depressed) compared with the 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977
http://https://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/edge_list_d100.txt
http://https://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/edge_list_d100.txt
http://https://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/edge_list_d100.txt
http://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d100_good_nodes.html
http://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d100_good_nodes.html
http://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d100_good_nodes.html
http://www.fmrib.ox.ac.uk/datasets/ukbiobank/netjs_d100/
http://www.fmrib.ox.ac.uk/datasets/ukbiobank/netjs_d100/
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others. Some of the depression definitions have a large 
portion of participant overlap. Here, the overlap refers to 
participants satisfying case criteria for more than one 
MDD phenotype. We decided to choose one representa-
tive (Ever depressed depression phenotype) for the mildly 
depressed definitions. For the moderate-to-severe MDD 
phenotypes with a large portion of participant overlap, we 
chose the more severe definitions (Depression Medicated, 
Ever Severely Depressed, Currently Depressed, and 
Recurrent Depression). Participants who have taken anti-
depressants in the past were defined as cases for the 
Depression Medicated phenotype. Ever Depressed was 
based on Composite International Diagnostic Interview 
(CIDI) diagnostic criteria, where those who reported hav-
ing at least five depressive symptoms with at least one 
core symptoms in the past (i.e., having a CIDI severity 
score of at least 5) were defined as cases for this defini-
tion. Cases of Ever Severely Depressed had a CIDI sever-

ity score of 8 with current symptoms absent. Currently 
Depressed cases were those who satisfied the criteria for 
Ever Depressed and also reported current symptoms. 
Cases of Recurrent Depression had experienced more 
than one depressive episodes. We also included another 
MDD definition, Probable Moderate/Severe Depression, 
described in Smith et  al. (2013). Participants who had 
experienced at least one two core symptoms for at least 
2 weeks and have seen a general practitioner / psychia-
trist were defined as cases for Probable Moderate/Severe 
Depression. In total, we investigated six different depres-
sion phenotypes and the detailed descriptions of criteria 
are in Supplementary Material S1.1, Table S1.

2.1.5.  Childhood adversity

The abbreviated CTQ score is derived from a subset of 
five childhood trauma-related questionnaire items, which 

Fig. 1.  (A) The six functional subnetworks identified in the current study. (B) the reference 7-network parcellation (Yeo 
et al., 2011), figure adapted from Yeo et al. (2011). The VN, SMN, and DMN roughly map to the corresponding functional 
subnetworks in the 7-network parcellation. The EC_AN roughly maps to the dorsal attention network as well as parts of 
the ventral attention network and the FPN in the 7-network parcellation. The CON and eDMN approximately maps to the 
ventral attention network and the FPN in the 7-network parcellation.
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is the same set of items used in Davis et al. (2020). The 
item description and scoring system are provided in 
Supplementary Material S1.2. Based on research indi-
cating that an aggregated trauma score may provide a 
better marker of risk for adverse outcomes than individ-
ual items (Hughes et  al., 2017), we took the average 
score from the five CTQ items as the final abbreviated 
CTQ score, which was similar to Warrier and Baron-Cohen 
(2021). We then investigated the effect of abbreviated 
CTQ score thresholding on model performance and 
model coefficients.

Four different abbreviated CTQ score thresholds 
(None, 0.2, 0.4, and 0.6) corresponding to the 50th, 70th, 
and 80th quantile, were applied solely on the MDD sam-
ples (i.e., MDD cases falling below the CTQ threshold 
were excluded from the subgroup). The use of different 
thresholds can help verify the relationship between CTQ 
severity cut-off and classification accuracies. Table  1 
shows the sample size of MDD cases for each definition 
and for each abbreviated CTQ score threshold.

Although the six different MDD phenotyping methods 
were conceptually different, they were not distinct from 
each other. The Ever Depressed, Ever Severely 
Depressed, Currently Depressed, and Recurrent Depres-
sion phenotypes were defined using CIDI criteria. The 
Ever Depressed represented the milder depression type 
and the other three phenotypes were almost subsets of 
this milder definition. Moreover, in 50% to 70% of the 
cases, most of the other phenotypes were defined as 
cases for the Recurrent Depression phenotype. Table 2 
shows the pairwise overlaps among the phenotypes. The 
diagonal entries show the number of cases that are 
unique to the phenotype. Details of the intersections 
between MDD phenotypes are shown in Figure 2.

2.2.  Methods

2.2.1.  Classification model

Previous neuroimaging ML studies indicate that classical 
ML models achieved accuracy comparable to Deep 
Learning (DL) models (He et al., 2020). Moreover, work by 
Schulz et  al., (2020) indicate that simple linear models 
were just as competitive as non-linear models, some-
times even outperforming non-linear models, in predict-
ing common phenotypes from brain scans (Schulz et al., 
2020). We have found similar results in a previous study 
of structural connectomes that ridge regression tends to 
be more consistent than other models in terms of model 
coefficients (Yeung et  al., 2022). Therefore, a logistic 

ridge regression model was chosen for classification 
modelling in the current study.

2.2.2.  Feature inputs

In this study, the inputs to the classification model are the 
vectorised upper triangular non-zero entries of the con-
nectivity matrices (Number of features: functional con-
nectivity, N = 1,485; structural connectivity, N = 2,210). 
We additionally examined combined inputs of functional 
and structural connectivity to the models, where one of 
the six structural modalities is stacked on one of the two 
functional modalities to give a long vector of connectivity 
features (Number of features, N = 3,695). The combina-
tions give 12 sets of combined connectivity features.

2.2.3.  Regularisation parameter optimisation

In order to find the optimal regularisation parameter, λ, 
we tested different values ranging from 1×10−3 to 1×103. 
The λ that optimised validation accuracies at each itera-
tion of the inner loop was chosen, so the λs are different 
for each fold, each MDD definition, and each connectivity 
modality.

2.2.4.  Case-control matching and correction for confounders

We aimed to run classification models with a 1-to-1 ratio 
between cases and controls for each of the six MDD phe-
notypes. Those who are not defined as cases in any of 
the 17 MDD definitions (derived from Davis et al. (2020) 
and Smith et  al. (2013)) formed the full healthy control 
sample (Full-HC). For each case participant from the six 
MDD-phenotype samples, we selected a control from the 
Full-HC matched by sex, with the smallest difference in 
age and in ICV. In the case with CTQ thresholding, the 
CTQ criterion was applied to the MDD samples first 
before case-control matching so that the classification 
models always run on a sample with a 1-to-1 ratio 
between MDD cases and healthy controls.

Following the above stringent criteria (particularly with 
minimal differences in ICV), we confirmed that there was 
exactly one matched control for each case, and therefore 
none of the control samples were drawn at random. The 
study focused on MDD and therefore, participants with 
other major neurological or psychiatric disorders (namely 
schizophrenia, bipolar, dissociative identity disorder, 
autism, intellectual disability, Parkinson’s disease, multi-
ple sclerosis, or cognitive impairment) were excluded.
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2.2.5.  Experimental setup

We ran a nested cross-validation (CV) to evaluate the per-
formance. In the nested 5-fold CV, the training data (5/6 
folds) of each of the six iterations of the outer 6-fold cross-
validation were split into 5 folds. Connectome features 

were z-normalised based on training data. The optimal 
model, which achieved the highest validation accuracy, 
was chosen in each of the inner iterations. Therefore, this 
amounts to a total of 30 evaluations of classification accu-
racies. The split was carefully done so that the cases and 

Fig. 2.  Venn diagram visualisation for the intersections between each MDD phenotypes. Drug = Depression Medicated, 
Ever = Ever Depressed, Ever.Severe = Ever Severely Depressed, Current = Currently Depressed, Recurrent = Recurrent 
Depression without Bipolar Disorder, MDD.narrow = Probable Moderate/Severe Depression.

Table 2.  The number of pairwise overlapping cases (with percentage of overlap showing in bracket) among the six 
different MDD phenotypes.

Drug Ever Ever severe Current Recurrent MDD narrow

Drug 198 (28.2%) 460 (13.8%) 119 (22.5%) 58 (29.0%) 364 (18.9%) 191 (21.2%)
Ever 460 (65.4%) 1058 (31.8%) 528 (99.8%) 199 (99.5%) 1918 (99.6%) 592 (65.6%)
Ever Severe 119 (16.9%) 528 (15.9%) 0 (0.0%) 75 (37.5%) 357 (18.5%) 140 (15.5%)
Current 58 (8.3%) 199 (6.0%) 75 (14.2%) 0 (0.0%) 157 (8.2%) 66 (7.3%)
Recurrent 364 (51.8%) 1918 (57.7%) 357 (67.5%) 157 (78.5%) 3 (0.2%) 458 (50.8%)
MDD narrow 191 (27.2%) 592 (17.8%) 140 (26.5%) 66 (33.0%) 458 (23.8%) 264 (29.3%)
Total 703 (100%) 3323 (100%) 529 (100%) 200 (100%) 1926 (100%) 902 (100%)

The diagonal entries show the number of cases that are unique to the phenotype. Drug = Depression Medicated, Ever = Ever Depressed, 
Ever Severe = Ever Severely Depressed, Current = Currently Depressed, Recurrent = Recurrent Depression without Bipolar Disorder, MDD 
Narrow = Probable Moderate/Severe Depression.
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important features between/within subnetworks, and S 
be the matrix representing the number of possible edges 
between/within subnetworks is given by:

 
Sij =

ni × nj      if i ≠ j,

ni ni −1( ) / 2     if i = j.

⎛

⎝
⎜
⎜

and the p-value matrix, HyperGeom, from the hypergeo-
metric test is given by,

 	

HyperGeomij =

k=0

Oij

∑
Sij
k

⎛

⎝
⎜
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⎠
⎟
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⎟
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⎟
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

3.  RESULTS

3.1.  Depression classification performances based on different 
connectome modalities without CTQ threshold

We applied logistic ridge regression based on structural 
and functional imaging features to classify the six MDD 
phenotypes identified above. Figure 3 shows the classifi-
cation results for different MDD phenotypes based on 
different connectome modalities and the exact numbers 
are shown in Supplementary Materials S2, Table S2(a) - 
(h). The chance-level accuracy of all the classifiers below 
is 50%.

In terms of functional connectomes, for correlation 
functional connectivity (Corr), the model classifications 
for all six MDD definitions had comparable performances, 
with test accuracies ranging from 53.1% to 54.6%. As for 
partial correlation functional connectivity (pCorr), the 
mean test accuracies for Depression Medicated (57.7%) 
and Currently Depressed (60.2%) outperformed the other 
definitions. The test accuracies for the other four defini-
tions ranged from 52.6% to 55.2%.

For structural connectomes, the classification accu-
racies for the test sets (overall range: 49.9–60.0%) were 
mostly lower than those based on functional connec-
tomes. ICVF gave slightly better overall MDD classifica-
tion test accuracies (≥52.7%) than the other five network 
weights (≥49.9%). Similar to findings with functional 

control maintained a 1-to-1 ratio with age, sex, and ICV 
matched for any of the training, validation, and test set. Test 
accuracies were averaged across the folds to get perfor-
mance estimates.

2.2.6.  Identifying important features

Model coefficients tell us about feature importance in 
classification tasks and help us identify the features 
associated with the specific MDD definition of interest. A 
simple way to compare feature importance is to observe 
the magnitudes of the beta coefficients. However, beta 
coefficients were data-specific and the ranking by beta 
coefficients may not be generalisable to new data.

In order to identify the features that were truly import-
ant, we believed that there were two necessary conditions:

	 1.	 The feature should be consistently in the top 50%, 
by coefficient magnitudes, in all of the 30 models 
trained in the nested CV.

	 2.	 The feature should always have the same coeffi-
cient sign in all of the 30 models trained in the 
nested CV.

2.2.7.  Identifying important subnetworks

The majority of biological findings in MDD are of small 
effects. Evaluation based on aggregated coefficient mag-
nitudes extracted from MDD predictive models is there-
fore fraught with statistical uncertainty. Therefore, in this 
study, we compared the number of important features (as 
defined above) within a subnetwork (or between two sub-
networks) to the number expected by random chance. 
The use of a hypothesis testing offers a more objective 
measure to assess the importance of a functional sub-
network than a simple aggregation of model coefficients. 
To check whether there are significantly more/less import-
ant features being distributed to certain subnetworks in 
the connectomes is equivalent to testing hypothesis 
about probability of success/failure. In most situations, 
the binomial test is a suitable candidate. However, select-
ing a feature subset involves sampling without replace-
ment and the probabilities of success among the 
subnetworks are no longer independent. It is therefore 
more appropriate to use the hypergeometric test for 
hypothesis testing. Let N be the number of nodes, ni be 
the size of subnetwork i, Ne = N N −1( )/2 be the number 
of possible edges in the connectome, K be the total num-
ber of important features identified for an MDD pheno-
type, O be the matrix representing the number of 
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connectomes, the classification performance for Cur-
rently Depressed phenotype was the best among all 
other phenotypes for all network weights (56.8–60.0%), 
with the exception of SC and OD (53.4%).

3.2.  Depression classification performances for currently 
depressed phenotype based on different connectome modalities  
with CTQ threshold

It was found that different connectome modalities gener-
ally achieved best test accuracies for the Currently 
Depressed phenotype, and improvements in classifica-
tions were mostly found in models with CTQ threshold at 
0.4, see Supplementary Materials S2, Table S2(a) - (h). 
Figure  4 shows the test accuracies for Currently 
Depressed phenotype based on different connectome 
modalities with and without CTQ threshold.

With CTQ threshold, the pCorr gave the best test 
accuracy (64.8%), with an improvement of 4.6% from the 
model without CTQ threshold. The MDD classification 
test accuracies based on Corr improved from 54.4% to 
58.6%. The model based on OD and ISOVF also saw sig-
nificant improvement, with test accuracy rising from 

53.4% to 57.4% and from 57.6% to 60.9% respectively. 
Higher accuracies were also seen in other modalities 
except for MD and ICVF.

Furthermore, the more severe phenotype (where there 
were also fewer number of cases) usually exhibited higher 
accuracies. By checking over all the depression pheno-
types and at different levels of CTQ threshold, we 
observed negative correlations between test accuracies 
and sample size, and the correlations were statistically 
significant (i.e., p-value < 0.05) for most of the structural 
and functional connectivity modalities except for SC,  
OD, and ISOVF (Corr: r = −0.5152; pCorr: r = −0.4491; 
MD: r = −0.4140; FA: r = −0.5145; SC: r = −0.2244; OD: 
r = −0.4021; ISOVF: r = −0.2554; ICVF: r = −0.5514).

Moreover, we note that the female-to-male ratio was 
approximately 2:1 in all the MDD definitions, see Table 1. 
We sought to verify if the classification modelling of 
MDD could benefit from sex stratified models. Since the 
model performance based on functional connectomes 
was generally better than those based on other modali-
ties, we additionally built sex-specific MDD classifica-
tion models based on functional connectomes. The 
same experimental setup was used for male and female 

Fig. 3.  Bar plot for MDD phenotypes (without Childhood Trauma Questionnaire (CTQ) threshold scores) classification 
accuracies (mean percentage with error bars showing the standard error) with functional connectomes for the test sets. 
Drug = Depression Medicated, Ever = Ever Depressed, Ever Severe = Ever Severely Depressed, Current = Currently 
Depressed, Recurrent = Recurrent Depression without Bipolar Disorder, MDD Narrow = Probable Moderate/Severe 
Depression, Corr = functional correlation connectivity, pCorr = functional partial correlation connectivity, MD = mean 
diffusivity, FA = fractional anisotropy, SC = streamline count, OD = orientation dispersion, ISOVF = isotropic volume 
fraction, ICVF = intra-cellular volume fraction.
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MDD classification models. Details of the test accura-
cies are in Supplementary Materials S2.1, Table S3. It 
was found that the original models performed better 
than the sex-specific ones.

3.3.  Depression classification performances for currently 
depressed phenotype based on combined connectivity

We further investigated the added value of structural con-
nectivity to functional connectivity in classification model-
ling of MDD. Figure 5 shows the classification performances 
for Currently Depressed phenotypes based on the 12 sets 
of combined connectivity at different CTQ thresholds. The 
samples here were restricted to the participants with both 
functional and structural connectivity data available, and 
therefore were different from the samples used in the 
above section. Results showed that adding structural con-
nectivity to Corr boosted the test accuracies (improved by 
0.9 - 5.9%, averaged across CTQ thresholds), and the 
improvements were more prominent for ISOVF (+ 5.8%) 
and ICVF (+ 5.9%). On the other hand, the added value of 
structural connectivity to pCorr was not clear. Improve-
ment was only seen with FA and ICVF. Due to the differ-
ences in nature of the connectivity (i.e., dynamic vs static), 
functional and structural connectomes were investigated 
separately in the following.

3.4.  Comparing important edges with and without CTQ threshold

As mentioned in the Methods, we used the two criteria 
(i.e., feature coefficients consistently with top 50% in 
magnitude ranking and with same sign across the CV 
models) to identify important features for the specific 
MDD phenotype for each imaging modality. In general, 
we found that the number of important features identified 
was positively and significantly correlated with models’ 
test accuracies for most of the functional and structural 
connectome weights, except for ICVF (Corr: r = 0.6553; 
pCorr: r = 0.6544; MD: r = 0.4599; FA: r = 0.6932; SC: 
r = 0.6118; OD: r = 0.5685; ISOVF: r = 0.4786; ICVF: 
r = 0.2647), and was negatively and significantly cor-
related with the sample size for most of the functional 
and structural connectome weights, except for pCorr 
(Corr: r = −0.6617; pCorr: r = −0.0630 ; MD: r = −0.5830; 
FA: r = −0.8149; SC: r = −0.8398; OD: r = −0.8021; ISOVF: 
r = −0.6563; ICVF: r = −0.5931). Since the CTQ threshold 
at 0.4 generally performed the best out of the three 
thresholds, we chose to compare the important features 
from models without CTQ threshold and models with 
CTQ threshold at 0.4.

Table 3 shows the number of important edges identified 
for each of the depression phenotypes and for each con-
nectome modality as well as the number of feature overlaps 

Fig. 4.  Bar plot for currently depressed phenotype (with and without Childhood Trauma Questionnaire (CTQ) threshold 
scores) classification accuracies (mean percentage with error bars showing the standard error) with different connectome 
modalities for the test sets. Corr = functional correlation connectivity, pCorr = functional partial correlation connectivity, 
MD = mean diffusivity, FA = fractional anisotropy, SC = streamline count, OD = orientation dispersion, ISOVF = isotropic 
volume fraction, ICVF = intra-cellular volume fraction.
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(a) Currently depressed phenotype (at different Childhood Trauma Questionnaire (CTQ) threshold scores) classification 
accuracies (mean percentage with error bars showing the standard error) based on the combination of correlation 
functional connectome and each structural connectivity weight for the test sets.

Fig. 5.  Currently depressed phenotype (at different Childhood Trauma Questionnaire (CTQ) threshold scores) 
classification accuracies (mean percentage with error bars showing the standard error) based on the combination of 
functional connectome and each structural connectivity weight for the test sets. FC = functional connectome, None = no 
structural connectivity added to the model, MD = mean diffusivity, FA = fractional anisotropy, SC = streamline count, OD = 
orientation dispersion, ISOVF = isotropic volume fraction, ICVF = intra-cellular volume fraction. Note that the samples here 
are restricted to the participants with both functional and structural connectivity data available.

(b) Currently depressed phenotype (at different Childhood Trauma Questionnaire (CTQ) threshold scores) classification 
accuracies (mean percentage with error bars showing the standard error) based on the combination of partial correlation 
functional connectome and each structural connectivity weight for the test sets.
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Table 3.  Number of important features identified by the models for different depression phenotypes (with and without 
CTQ threshold at 0.4) based on different connectome modalities.

MDD phenotype Drug Ever Ever severe Current Recurrent MDD narrow

# Important Feature (without CTQ threshold) 36 10 32 60 16 36
# Important Feature (with CTQ threshold 0.4) 38 29 30 63 22 58
Number of Overlap 10 7 11 23 4 13
Jaccard index 0.1563 0.2188 0.2157 0.2300 0.1176 0.1605

(a) CORRELATION FUNCTIONAL CONNECTOME

MDD phenotype Drug Ever Ever severe Current Recurrent MDD narrow

# Important Feature (without CTQ threshold) 73 88 48 76 99 48
# Important Feature (with CTQ threshold 0.4) 68 27 50 79 34 55
Number of Overlap 23 13 22 35 18 13
Jaccard index 0.1949 0.1275 0.2895 0.2917 0.1565 0.1444

(b) PARTIAL CORRELATIONS FUNCTIONAL CONNECTOMES

MDD phenotype Drug Ever Ever severe Current Recurrent MDD narrow

# Important Feature (without CTQ threshold) 89 51 62 89 51 68
# Important Feature (with CTQ threshold 0.4) 97 58 80 95 79 112
Number of Overlap 34 13 27 51 19 18
Jaccard index 0.2237 0.1354 0.2348 0.3835 0.1712 0.1111

(c) MEAN DIFFUSIVITY STRUCTURAL CONNECTOME

MDD phenotype Drug Ever Ever severe Current Recurrent MDD narrow

# Important Feature (without CTQ threshold) 107 37 90 96 60 88
# Important Feature (with CTQ threshold 0.4) 73 68 72 121 91 90
Number of Overlap 28 9 28 54 21 25
Jaccard index 0.1842 0.0938 0.2090 0.3313 0.1615 0.1634

(d) FRACTIONAL ANISOTROPY STRUCTURAL CONNECTOME

MDD phenotype Drug Ever Ever severe Current Recurrent MDD narrow

# Important Feature (without CTQ threshold) 80 25 86 96 38 59
# Important Feature (with CTQ threshold 0.4) 74 41 88 100 63 57
Number of Overlap 29 5 29 52 10 14
Jaccard index 0.2320 0.0820 0.2000 0.3611 0.1099 0.1373

(e) STREAMLINE COUNT STRUCTURAL CONNECTOME

MDD phenotype Drug Ever Ever severe Current Recurrent MDD narrow

# Important Feature (without CTQ threshold) 96 51 85 125 60 75
# Important Feature (with CTQ threshold 0.4) 97 60 84 112 75 102
Number of Overlap 33 16 33 50 24 22
Jaccard index 0.2063 0.1684 0.2426 0.2674 0.2162 0.1419

(f) ORIENTATION DISPERSION STRUCTURAL CONNECTOME

MDD phenotype Drug Ever Ever severe Current Recurrent MDD narrow

# Important Feature (without CTQ threshold) 79 71 69 95 57 74
# Important Feature (with CTQ threshold 0.4) 84 72 78 105 66 104
Number of Overlap 27 16 28 44 17 28
Jaccard index 0.1985 0.1260 0.2353 0.2821 0.1604 0.1867

(g) ISOTROPIC VOLUME FRACTION STRUCTURAL CONNECTOME

MDD phenotype Drug Ever Ever severe Current Recurrent MDD narrow

# Important Feature (without CTQ threshold) 83 58 90 74 60 103
# Important Feature (with CTQ threshold 0.4) 88 31 92 116 107 63
Number of Overlap 30 6 38 47 30 25
Jaccard index 0.2128 0.0723 0.2639 0.3287 0.2190 0.1773
(h) INTRA-CELLULAR VOLUME FRACTION STRUCTURAL CONNECTOME

Drug = Depression Medicated, Ever = Ever Depressed, Ever Severe = Ever Severely Depressed, Current = Currently Depressed, Recurrent = 
Recurrent Depression without Bipolar Disorder, MDD Narrow = Probable Moderate/Severe Depression.
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the FDR-corrected threshold. According to the uncor-
rected p-values, more edges were selected as import-
ant features from between VN and eDMN and were 
positively predictive for Depression Medicated phe
notype (p = 0.0256,βnorm = 0.0228 ). More edges were 
selected as important features from between VN and 
EC_AN as well as between VN and CON, and were neg-
atively predictive for Currently Depressed phenotype 
( p = 0.0386 − 0.0484,βnorm = - 0.0131− - 0.0061) .   M o r e 
edges were selected as important features from bet
ween SMN and EC_AN and were negatively predictive  
for Probable Moderate/Severe Depression phenotype 
(p = 0.0067,βnorm =  - 0.0111 ). Fewer edges were selected 
from connections between CON and eDMN (p = 0.0270), 
see Figure 6b.

3.5.2.  Partial correlation functional connectomes

Without CTQ threshold, all the p -values were larger than 
the FDR-corrected threshold. According to the uncor-
rected p -values, more edges were selected as important 
features from the connections within SMN for two MDD 
phenotypes (p = 0.0203− 0.0459). They were negatively 
predictive for Depression Medicated phenotype (βnorm =   
- 0.0194), but were positively predictive for Ever Depressed 
phenotype (βnorm = 0.0011). More edges were selected  
as important connections from within VN and were posi-
tively predictive for Ever Severely Depressed phenotype 
(p = 0.0390,βnorm = 0.0701). Fewer edges were selected 
from between EC_AN and DMN for Depression Medicated 
phenotype (p = 0.0424), see Figure 7a.

With CTQ threshold, the hypergeometric test showed 
that there were significantly more edges selected as 
important features from the connections within VN and 
positively predictive for Currently Depressed phenotype 
(p = 0.0012,βnorm = 0.0741). The rest did not survive the 
FDR-corrected threshold. According to the uncorrected 
p -values, more edges were selected as important  
features from within EC_AN for Depression Medicated 
phenotype (p = 0.0421), between SMN and EC_AN for 
Recurrent Depression phenotype (p = 0.0239), and 
between EC_AN and CON for Probable Moderate/
Severe Depression phenotype (p = 0.0343). They were 
positively predictive for MDD (β = 0.0175− 0.0474). More 
edges were selected as important features and were 
negatively predictive for Ever Depressed phenotype 
(p = 0.0289,βnorm =  - 0.0706). Fewer edges were selec
ted from between VN and EC_AN and between CON 
and eDMN for Probable Moderate/Severe Depression 
phenotype ( p = 0.0431− 0.0449 ), see Figure 7b.

between models with and without the CTQ threshold. We 
also presented the Jaccard index which provided a more 
objective estimate of the degree of overlap that accounts 
the differences in the number of important features identi-
fied by the models. Formulation of the Jaccard index is pre-
sented in the Supplementary Materials S1.3. We found that 
all models have less than 10% of the edges being identified 
as robust and important features for predicting depression 
phenotypes. Moreover, the set of important features identi-
fied in the models without CTQ threshold were mostly dif-
ferent from those identified in the models with CTQ 
threshold (Jaccard = 0.07− 0.38). A more detailed compar-
ison of the important functional connectome features for 
the different MDD phenotypes (with and without CTQ 
threshold) is shown in the following subsection.

3.5.  Significant feature occurrence in subnetworks for different 
MDD phenotypes

Given that better classification accuracies were achieved 
with functional connectomes, the following analysis 
focuses on functional connectomes. Figures  6 and 7 
show the results from the hypergeometric test and the 
normalised aggregated predictive coefficients for the 
subnetwork functional connectivity. The p-values and 
normalised predictive coefficients. The are also pre-
sented in Supplementary Materials S3, Table  S4 - S7. 
Benjamini-Hochberg procedure was used to correct for 
FDR (Benjamini & Hochberg, 1995). Details and formula-
tion of the normalised predictive coefficients are pre-
sented in Supplementary Materials S1.4.

3.5.1.  Correlation functional connectomes

Without CTQ threshold, all the p -values were larger than 
the FDR-corrected threshold. According to the uncor-
rected p -values, more edges were selected as import-
ant features from the connections within VN, within EC_ 
AN, and within DMN were positively predictive for Ever 
Severely Depressed phenotype (p = 0.0182− 0.0397, 
βnorm = 0.0204 − 0.0725), see Figure 6a.

With CTQ threshold, the hypergeometric test showed 
that there were significantly more edges selected as 
important features from the connections within VN and 
positively predictive for Currently Depressed pheno
type (p = 0.0005,βnorm = 0.0874 ). Significantly more 
edges were selected as important features from the 
connections between SMN and EC_AN, and were neg-
atively predictive for Recurrent Depression phenotype 
(p = 0.0062, βnorm = - 0.0189). The rest did not survive 
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(a) Significance testing of feature occurrence and normalised predictive coefficients between or within subnetworks for the 
six MDD classification without CTQ threshold.

(b) Significance testing of feature occurrence and normalised predictive coefficients between or within subnetworks for the 
six MDD classification with CTQ threshold at 0.4

Fig. 6.  Significance testing of feature occurrence and normalised predictive coefficients between or within subnetworks 
for the six MDD classification with and without CTQ threshold based on Corr functional connectomes. The uncorrected  
p-values < 0.05 were highlighted in red (for significantly fewer edges) or green (for significantly more edges). *p-values that 
survived the FDR corrected threshold. Drug = Depression Medicated, Ever = Ever Depressed, Ever Severe = Ever Severely 
Depressed, Current = Currently Depressed, Recurrent = Recurrent Depression without Bipolar Disorder, MDD Narrow = 
Probable Moderate/Severe Depression.
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(a) Significance testing of feature occurrence and normalised predictive coefficients between or within subnetworks for the 
six MDD classification without CTQ threshold.

(b) Significance testing of feature occurrence and normalised predictive coefficients between or within subnetworks for the 
six MDD classification with CTQ threshold at 0.4

Fig. 7.  Significance testing of feature occurrence and normalised predictive coefficients between or within subnetworks 
for the six MDD classification with and without CTQ threshold based on pCorr functional connectomes. The uncorrected  
p-values < 0.05 were highlighted in red (for significantly fewer edges) or green (for significantly more edges). *p-values that 
survived the FDR corrected threshold. Drug = Depression Medicated, Ever = Ever Depressed, Ever Severe = Ever Severely 
Depressed, Current = Currently Depressed, Recurrent = Recurrent Depression without Bipolar Disorder, MDD Narrow = 
Probable Moderate/Severe Depression.
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3.8.  Comparing feature occurrence in subnetworks between 
models with and without the CTQ threshold for currently  
depressed phenotype

3.8.1.  Correlation matrices

The results showed that significantly more edges were 
being selected from connections within VN, and between 
VN and CON for the model with CTQ threshold (CTQ-
model). This was similar to the results from the model 
without the CTQ threshold (NoCTQmodel), where there 
were more edges being selected from connections, 
within VN, and between VN and CON (although it did not 
reach statistical significance for connections between VN 
and CON). The signs of the normalised aggregated pre-
dictive coefficients of these two connections of the 
NoCTQmodel matched with that of the CTQmodel. More 
frequently selected edges, although not reaching statisti-
cal significance, were selected from between SMN and 
eDMN, between EC_AN and CON, between CON and 
DMN, and between DMN and eDMN for both CTQmodel 
and NoCTQmodel with matching signs.

As for the differences, results showed that the con-
nections between the VN and EC_AN were significantly 
more frequently selected as important features for the 
CTQmodel while the same connections were less fre-
quently selected for the NoCTQmodel. The connections 
between the EC_AN and eDMN were significantly less 
frequently selected as important features for the CTQ-
model while the same connections were more frequently 
selected for the NoCTQmodel. The connections within 
CON and within EC_AN were more frequently selected, 
although not reaching statistical significance, as import-
ant features for the NoCTQmodel while the same con-
nections were less frequently selected for the CTQmodel, 
see Figure 8a – 8b.

3.8.2.  Partial correlation matrices

For partial correlation matrices, there were significantly 
more edges selected as important features from the con-
nections within VN for both the NoCTQmodel and the 
CTQmodel as mentioned in the above section. In addi-
tion, the connections were also more frequently selected 
from between SMN and eDMN, between VN and EC_AN, 
between VN and CON, between EC_AN and eDMN, 
between CON and DMN, and within eDMN for both mod-
els with matching signs.

On the other hand, we saw that the connections 
between the CON and eDMN were significantly more fre-
quently selected as an important feature for the NoCTQ-

model while it was less frequently selected in the 
CTQmodel. Moreoever, the connections were more fre-
quently selected from within SMN and between DMN and 
eDMN for the NoCTQmodel but not for the CTQmodel, 
see Figure 8c – 8d.

3.9.  Overall findings in functional connectomes

The important features indicated by the models were 
largely different across different MDD phenotypes. The 
connections with SMN and VN, whether it was within 
subnetwork connections or with other subnetworks, were 
selected more frequently as important features for pre-
dicting MDD phenotypes, while past studies mainly found 
aberrant functional connectivity within the DMN in 
depressed patients (Kaiser et  al., 2015; Mulders et  al., 
2015). We are aware of the fact that these results are pre-
sented in the context of performing ML classifications, 
and the important features being selected here only 
implied that they were the edges consistently having top 
rankings in terms of coefficient magnitudes across folds. 
Therefore, the results presented in the current study do 
not necessarily contradict the previously reported abnor-
mal functional connectivity within DMN in MDD patients—
shared covariance for functional connectivity in these 
networks may well have been more consistently and 
strongly represented (independently of all other features) 
in other edges as selected by the ML classifiers across 
the nested cross-validation folds. As far as the effect of 
CTQ thresholding is concerned, in addition to the low 
Jaccard index seen in Table 3a and Table 3b, some of the 
overlapping edges had coefficients with opposing asso-
ciations. The models with CTQ thresholding usually had 
more important edges selected, which indicated that the 
magnitudes and direction of the models’ coefficients 
were more consistent for classifying MDD with a CTQ 
threshold, giving partial evidence to the claim that MDD 
with early adversity features forms a more homogeneous 
subgroup.

4.  DISCUSSION

In the current study, we applied logistic ridge regression 
to classify depression phenotypes based on functional 
and structural connectomes, where we ensured the 
1-to-1 case-control matching and correction for con-
founders throughout the classification analyses for all 
the different MDD phenotypes. In general, the MDD 
classification test accuracies based on functional con-
nectomes were higher than those based on structural 
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Partial Correlation Functional Connectomes

(c) Currently depressed based on partial correlation 
functional connectomes.

(d) Currently depressed with CTQ threshold based on 
partial correlation functional connectomes.

Correlation Functional Connectomes

(a) Currently depressed based on correlation functional 
connectomes.

(b) Currently depressed with CTQ threshold based on 
correlation functional connectomes.

Fig. 8.  The circular plots showing important features for predicting currently depressed phenotype with and without the 
CTQ threshold based on functional connectomes. The ordering of the 55 good ICA nodes is the same as that from the 
UKB functional network interactive visualisation, where the coloured clusters approximately maps to SMN (orange), VN 
(blue), EC_AN (green), CON (purple), DMN (red), and eDMN (brown). Details of method for identifying important features 
are presented in the Methods section.
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connectomes, though accuracy was not >62% for any 
model. The classification test accuracies for Currently 
Depressed phenotype were the highest among all the 
MDD phenotypes. We also found that adding self-
reported childhood adversity information to the depres-
sion case criterion benefited model accuracy for some 
of the models, namely Currently Depressed phenotype 
based on both functional and structural connectomes 
except for MD and ICVF, Ever Severely Depressed phe-
notype based on functional connectomes but not for 
structural connectomes, and Probable Moderate/Severe 
Depression phenotype based on MD, FA, ICVF, and 
ISOVF.

We found that ML models based on SC connectomes 
exhibited the lowest accuracies among all the structural 
network weightings. Previous research usually found SC 
(or edge density, a variant of SC) had stronger associa-
tions with other clinical and behavioural phenotypes 
(Oestreich et al., 2019). Buchanan et al. (2020) have com-
mented that the confounding effect of age, sex, and head 
size on SC weightings could be considerably larger than 
on other types of network weightings, which may have 
contributed to the superior predictive performances of 
SC when predicting psychiatric disorders shown in previ-
ous studies (Payabvash et al., 2019; Raji et al., 2020). In 
the current study, we chose healthy controls with age, 
sex, and ICV matched with (or closest to) the cases in 
order to minimise the confounding effect. This could be 
the reason for having results inconsistent with the previ-
ous literature. In addition, a similar phenomenon was 
seen in our previous paper where model classification 
performances on general cognitive function and general 
psychopathology were comparable for all the structural 
connectivity modalities when age and sex were added to 
the models (Yeung et al., 2022).

In terms of MDD phenotyping, we found that the more 
severe phenotype usually had higher classification accu-
racies. It is possible that there is less heterogeneity in the 
more severe MDD group and therefore easier to classify. 
It is worth highlighting that we saw moderate-to-strong 
negative correlations between test accuracies and sam-
ple size, which is consistent with the results in Stolicyn 
et al. (2020).

When considering the important network features, 
we found that less than 10% of the total number of 
edges were considered as important features for pre-
dicting any type of depression phenotype based on 
any connectome modality in this study. We also found 
that the set of important features were different 
between models with and without CTQ threshold. This 

may have partly demonstrated the neurobiological dif-
ferences between MDD patients with and without self-
reported exposure to childhood trauma reported in 
previous studies (Fadel et al., 2021; Luo, Chen, Li, Wu, 
Lin, Yao, Yu, Peng, et al., 2022), and we showed this in 
a much larger dataset than in previous studies. How-
ever, it is also possible that by adding an addition CTQ 
thresholding constraint on the MDD cases, we are 
essentially defining a more severe type of MDD based 
on the given MDD phenotype (Huh et al., 2017). This 
may explain why there is higher similarity, higher Jac-
card index, between the feature sets identified by the 
CTQmodels and the NoCTQmodel for the more severe 
MDD phenotypes. Utilising more detailed and compre-
hensive CTQ phenotyping as well as other main risk 
factors may be a potential future research direction in 
finding biologically driven MDD subtypes, as well as 
subtyping for anxiety disorder and other trauma-
related disorders.

For resting-state functional connectivity, in contrast to 
most previous studies where they either found significant 
hyperconnectivity or hypoconnectivity within DMN in 
depressed patients (Hamani et  al., 2011; Kaiser et  al., 
2015; Sheline et al., 2010; Yan et al., 2019), we found that 
the DMN was not often selected as the hub of important 
connections for classifying MDD, and sometimes even 
less than random chance. The connections within the 
DMN are not selected significantly more often than ran-
dom chance in any of the MDD phenotypes based on 
either pCorr or Corr, except for the Ever Depressed phe-
notype with CTQ threshold of 0.4 based on pCorr where 
connections within the DMN are negatively predictive for 
MDD. On the other hand, we found that the connections 
from as well as within SMN and VN, although they were 
of small effects (i.e., small magnitudes in model coeffi-
cients), were more frequently selected as important fea-
tures for predicting MDD than other subnetworks. For the 
models which indicated SMN and VN as important hubs 
for MDD classification, the connectivity within SMN and 
VN was mostly positive predictive for MDD. The fact that 
connections from SMN and VN were more frequently 
selected by the models as important features for classify-
ing MDD across different MDD phenotypes possibly sug-
gests that differences in networks involved in processing 
of sensory information may be a more stable neuroimag-
ing marker for the purposes of MDD prediction out-of-
sample (Javaheripour et al., 2021). We are aware that the 
results only implied variations in these areas best differ-
entiate MDD cases from controls in the context of classi-
fication modelling. Replication in other community 
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samples is needed to assess the robustness of the results 
from the current study.

There are a few limitations to this study. First, differ-
ent atlas for parcellation of the nodes for the structural 
and functional connectomes at the preprocessing step, 
where group Independent Component Analysis (group-
ICA) was used for functional connectomes and the 
Desikan-Killiany atlas was used for the structural con-
nectomes. This partly limits direct neuroanatomical 
comparisons of selected features for structural and 
functional connectivity and interpretations on the added 
value of combining structural and functional connectiv-
ity in MDD classifications. Second, representing func-
tional connectivity in the form of one adjacency matrix 
per person may not be the most optimal way. There are 
studies with smaller data sets which use functional con-
nectomes in time series form and applied the hybrid 
model, combining Graph Convolutional Neural Network 
(GCNN) and Long-Short Term Memory (LSTM) Network 
for predicting clinical phenotypes. They reported that 
the hybrid models performed better at classifying autis-
tic patients compared to other ML models (Masood & 
Kashef, 2022; Wang et  al., 2021). Similarly, structural 
network measures are known to be sensitive to the net-
work construction methodology (Qi et al., 2015). There-
fore, different structural findings might be obtained with 
connectome methods different to those applied here. 
Fourth, the CTQ items from the UKB have an abbrevi-
ated scale and are potentially confounded by current 
mood, which may potentially introduce bias (Madden 
et  al., 2022). In addition, different types of trauma are 
likely to have differential effect on MDD individuals. Cer-
tain types of childhood trauma have been suggested to 
be more associated with symptom severity in MDD 
patients, while different types of trauma have been 
linked to differential alteration in MDD brain functional 
connectivity (Fadel et al., 2021; Negele et al., 2015). A 
more comprehensive and detailed CTQ is needed to 
thoroughly investigate the effect of childhood adversity 
on depression. Moreover, the UKB consists of healthier, 
wealthier, and older individuals (Fry et  al., 2017) and 
only a small portion of the MDD cases meet the criteria 
for current depression. Although it was found that the 
currently depressed phenotype achieved the best clas-
sification accuracies, the small sample size could have 
been the reason for the high accuracy, as shown in the 
Results. Similar results were also shown in a previous 
study (Stolicyn et al., 2020). These results provide the 
basis for further replication and refinement in other 
community samples and in clinical cohorts.

5.  CONCLUSION

In conclusion, this study reports a comprehensive data-
driven MDD classification analysis, classifying six MHQ-
derived MDD phenotypes based on a wide range of 
functional and structural brain connectivity measures, on a 
large community sample (UKB). The results indicated a 
positive relationship between depression severity and 
classification accuracy. Our findings also suggested that 
SMN and VN may be more robust biomarkers of MDD than 
other resting-state networks. The model for Currently 
Depressed phenotype based on pCorr achieved the high-
est accuracy of 60.2%, and the accuracy for classifying 
this phenotype with a CTQ threshold was 4.6% higher. The 
set of important features selected for models with and 
without CTQ threshold were largely different. Connections 
from SMN and VN were more frequently selected for clas-
sifying MDD across different MDD phenotypes rather than 
DMN and EC_AN. The robust functional connectivity fea-
tures for MDD classification identified in the current study 
were in line with the recent imaging studies in MDD. This 
provided the basis to verify and build on the idea of having 
sensory-related subnetworks as one of the possible robust 
biomarkers for MDD.
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