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We study the notion of subtyping for session types in a logical setting, where session types are

propositions of multiplicative/additive linear logic extended with least and greatest fixed points. The

resulting subtyping relation admits a simple characterization that can be roughly spelled out as the

following lapalissade: every session type is larger than the smallest session type and smaller than

the largest session type. At the same time, we observe that this subtyping, unlike traditional ones,

preserves termination in addition to the usual safety properties of sessions. We present a calculus of

sessions that adopts this subtyping relation and we show that subtyping, while useful in practice, is

superfluous in the theory: every use of subtyping can be “compiled away” via a coercion semantics.

1 Introduction

Session types [12, 13, 15] are descriptions of communication protocols supported by an elegant corre-

spondence with linear logic [23, 3, 16] that provides session type systems with solid logical foundations.

As an example, below is the definition of a session type describing the protocol implemented by a mathe-

matical server (in the examples of this section, N and ⊕ are n-ary operators denoting external and internal

labeled choices, respectively):

B = N{end : ⊥,add : Num⊥ ONum
⊥ ONum⊗B}

According to the session type B, the server first waits for a label – either end or add – that identifies

the operation requested by the client. If the label is end, the client has no more requests and the server

terminates. If the label is add, the server waits for two numbers, sends their sum back to the client and

then makes itself available again offering the same protocol B. In this example, we write Num
⊥ for the

type of numbers being consumed and Num for the type of numbers being produced. A client of this

server could implement a communication protocol described by the following session type:

A =⊕{add : Num⊗Num⊗Num
⊥ O⊕{end : 1}}

This client sends the label add followed by two numbers, it receives the result and then terminates the

interaction with the server by sending the label end. When we connect two processes through a session,

we expect their interaction to be flawless. In many session type systems, this is guaranteed by making

sure that the session type describing the behavior of one process is the dual of the session type describing

the behavior of its peer. Duality, often denoted by ·⊥, is the operator on session types that inverts the

direction of messages without otherwise altering the structure of protocol. In the above example it is

clear that A is not the dual of B nor is B the dual of A. Nonetheless, we would like such client and

such server to be declared compatible, since the client is exercising only a subset of the capabilities of

the server. To express this compatibility we have to resort to a more complex relation between A and

B, either by observing that B (the behavior of the server) is a more accommodating version of A⊥ or by

observing that A (the behavior of the client) is a less demanding version of B⊥. We make these relations

precise by means of a subtyping relation 6 for session types. Subtyping enhances the applicability of
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type systems by means of the well-known substitution principle: an entity of type C can be used where

an entity of type D is expected if C is a subtype of D. After the initial work of Gay and Hole [9] many

subtyping relations for session types have been studied [4, 20, 17, 21, 10]. Such subtyping relations differ

widely in the way they are defined and/or in the properties they preserve, but they all share the fact that

subtyping is essentially defined by the branching structure of session types given by labels. To illustrate

this aspect, let us consider again the session types A and B defined above. We have

B 6 N{add : Num⊥ ONum
⊥ ONum⊗N{end : ⊥}}= A⊥ (1)

meaning that a server behaving as B can be safely used where a server behaving as A⊥ is expected.

Dually, we also have

A 6⊕{end : 1,add : Num⊗Num⊗Num
⊥ OB⊥}= B⊥ (2)

meaning that a client behaving as A can be safely used where a client behaving as B⊥ is expected. Note

how subtyping is crucially determined by the sets of labels that can be received/sent when comparing two

related types. In (1), the server of type B is willing to accept any label from the set {end,add}, which is

a superset of {add} that we have in A⊥. In (2), the client is (initially) sending a label from the set {add},

which is a subset of {end,add} that we have in B⊥. This co/contra variance of labels in session types is

a key distinguishing feature of all known notions of subtyping for session types.1

In this work we study the notion of subtyping for session types in a setting where session types are

propositions of µMALL
∞ [2, 6], the infinitary proof theory of multiplicative additive linear logic extended

with least and greatest fixed points. Our investigation has two objectives. First, to understand whether

and how it is possible to capture the well-known co/contra variance of behaviors when the connectives

used to describe branching session types (N and ⊕ of linear logic) have fixed arity. Second, to understand

whether there are criticial aspects of subtyping that become relevant when typing derivations are meant

to be logically sound.

At the core of our proposal is the observation that, when session types (hence process behaviors) are

represented by linear logic propositions [23, 3, 16], it is impossible to write a process that behaves as 0

and it is very easy to write a process that behaves as ⊤. If we think of a session type as the set of processes

that behave according to that type, this means that the additive constants 0 and ⊤ may serve well as the

least and greatest elements of a session subtyping relation. Somewhat surprisingly, the subtyping relation

defined by these properties of 0 and ⊤ allows us to express essentially the same subtyping relations that

arise from the usual co/contra variance of labels. For example, following our proposal the session type

of the client, previously denoted A, would instead be written as

C =⊕{end : 0,add : Num⊗Num⊗Num
⊥ O⊕{end : 1,add : 0}}

using which we can derive both

B 6 N{end : ⊤,add : Num⊥ ONum
⊥ ONum⊗N{end : ⊥,add : ⊤}}=C⊥ as well as C 6 B⊥

without comparing labels and just using the fact that 0 is the least session type and ⊤ the greatest one.

Basically, instead of omitting those labels that correspond to impossible continuations (cf. the missing

1Gay and Hole [9] and other authors [4, 20, 21] define subtyping for session types in such a way that the opposite relations

of eqs. (1) and (2) hold. Both viewpoints are viable depending on whether session types are considered to be types of channels

or types of processes. Here we take the latter stance, referring to Gay [8] for a comparison of the two approaches.
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Process P,Q ::=
A〈x〉 invocation

| x().P signal input

| x(y).P channel input

| case x{P,Q} choice input

| (x)(P |Q) composition

| fail x failure

| x[] signal output

| x[y](P |Q) channel output

| x[ini].P choice output i ∈ {0,1}

Table 1: Syntax of µCP
∞.

end and add in A), we use the uninhabited session type 0 or its dual ⊤ as impossible continuations (cf. C).

It could be argued that the difference between the two approaches is mostly cosmetic. Indeed, it is easy to

devise (de)sugaring functions to rewrite session types from one syntax to the other. However, the novel

approach we propose allows us to recast the well-known subtyping relation for session types in a logical

setting. A first consequence of this achievement is that the soundness of the type system with subtyping

does not require an ad hoc proof, but follows from the soundness of the type system without subtyping

through a suitable coercion semantics. In addition, we find out that the subtyping relation we propose

preserves not only the usual safety properties – communication safety, protocol fidelity and deadlock

freedom – but also termination, which is a liveness property.

Structure of the paper. In Section 2 we define µCP
∞, a session calculus of processes closely related to

µCP [16] and CP [23]. In Section 3 we define the type language for µCP
∞ and the subtyping relation. In

Section 4 we define the typing rules for µCP
∞ and give a coercion semantics to subtyping, thus showing

that the type system of µCP
∞ is a conservative extension of µMALL

∞ [2, 6]. We wrap up in Section 5.

2 Syntax and semantics of µCP
∞

The syntax of µCP
∞ is shown in Table 1 and makes use of a set of process names A, B, . . . and of an infi-

nite set of channels x, y, z and so on. The calculus includes standard forms representing communication

actions: fail x models a process failing on x; x().P and x[] model the input/output of a termination signal

on x; case x{P,Q} and x[ini].P model the input/output of a label ini on x; x(y).P and x[y](P |Q) model the

input/output of a channel y on x. Note that x[y](P |Q) outputs a new channel y which is bound in P but not

in Q. Free channel output can be encoded as shown in previous works [16]. The form (x)(P |Q) models

a session x connecting two parallel processes P and Q and the form A〈x〉 models the invocation of the

process named A with parameters x. For each process name A we assume that there is a unique global

definition of the form A(x), P that gives its meaning. Hereafter x denotes a possibly empty sequence of

channels. The notions of free and bound channels are defined in the expected way. We identify processes

up to renaming of bound channels and we write fn(P) for the set of free channels of P.

The operational semantics of µCP
∞ is shown in Table 2 and consists of a structural pre-congruence

relation 4 and a reduction relation →, both of which are fairly standard. We write P → if P → Q for

some Q and we say that P is stuck, notation P X→, if not P →.

Example 2.1. We can model client and server described in Section 1 as the processes below.

Client(x), x[in1].x[in0].x[] Server(x,z) , case x{x().z[],Server〈x,z〉}

For simplicity, we only focus on the overall structure of the processes rather than on the actual mathe-

matical operations they perform, so we omit any exchange of concrete data from this model. y
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[S-PAR-COMM] (x)(P |Q) 4 (x)(Q |P)
[S-PAR-ASSOC] (x)(P | (y)(Q |R)) 4 (y)((x)(P |Q) |R) x ∈ fn(Q)\ fn(R),y 6∈ fn(P)

[S-CALL] A〈x〉 4 P A(x), P

[R-CLOSE] (x)(x[] | x().P) → P

[R-COMM] (x)(x[y](P |Q) | x(y).R) → (y)(P | (x)(Q |R))
[R-CASE] (x)(x[ini].P | case x{Q0,Q1}) → (x)(P |Qi) i ∈ {0,1}

[R-PAR] (x)(P |R) → (x)(Q |R) P → Q

[R-STRUCT] P → Q P 4 P′ → Q′ 4 Q

Table 2: Structrual pre-congruence and reduction semantics of µCP
∞.

We conclude this section with the definitions of the properties ensured by our type system, namely

deadlock freedom and termination. The latter notion is particularly relevant in our setting since termina-

tion preservation is a novel aspect of the subtyping relation that we are about to define.

Definition 2.1 (deadlock-free process). We say that P is deadlock free if P ⇒ Q X→ implies that Q is not

(structurally pre-congruent to) a process of the form (x)(R1 |R2).

A deadlock-free process either reduces or it is stuck waiting to synchronize on some free channel.

Definition 2.2 (terminating process). A run of a process P is a (finite or infinite) sequence (P0,P1, . . . )
of processes such that P0 = P and Pi → Pi+1 whenever i+1 is a valid index of the sequence. We say that

a run is maximal if either it is infinite or if the last process in it is stuck. We say that P is terminating if

every maximal run of P is finite.

Note that a terminating process is not necessarily free of restrictions. For example, (x)(fail x | x[]) is

terminated but not deadlock free. It really is the conjunction of deadlock freedom and termination (as

defined above) that ensure that a process is “well behaved”.

3 Types and subtyping

The type language for µCP
∞ consists of the propositions of µMALL

∞ [2, 6, 1], the infinitary proof

theory of multiplicative/additive linear logic extended with least and greatest fixed points. We start from

the definition of pre-types, which are linear logic propositions built using type variables taken from an

infinite set and ranged over by X and Y .

Pre-type A,B ::= X | ⊥ | 1 | ⊤ | 0 | A OB | A⊗B | A NB | A⊕B | νX .A | µX .A

The usual notions of free and bound type variables apply. A type is a closed pre-type. We assume

that type variables occurring in types are guarded. That is, we forbid types of the form σ1X1 . . .σnXn.Xi

where σ1, . . . ,σn ∈ {µ ,ν}. We write A⊥ for the dual of A, which is defined in the expected way with the

proviso that X⊥ = X . This way of dualizing type variables is not problematic since we will always apply

·⊥ to types, which contain no free type variables. As usual, we write A{B/X} for the (pre-)type obtained

by replacing every X occurring free in the pre-type A with the type B. Hereafter we let κ range over the

constants 0, 1, ⊥ and ⊤, we let ⋆ range over the connectives N, ⊕, O and ⊗ and σ range over the binders

µ and ν . Also, we say that any type of the form σX .A is a σ -type.
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[BOT]

0 6 A

[TOP]

A 6⊤

[REFL]

κ 6 κ

[CONG]

A 6 A′ B 6 B′

A⋆B 6 A′ ⋆B′

[LEFT-σ ]

A{σX .A/X}6 B

σX .A 6 B

[RIGHT-σ ]

A 6 B{σX .B/X}

A 6 σX .B

Table 3: Subtyping for session types.

We write � for the standard sub-formula relation on types. To be precise, the relation � is the least

preorder on types such that A � σX .A and Ai � A1 ⋆A2. For example, consider A
def

= µX .νY.(1⊕X) and

its unfolding A′ def

= νY.(1⊕A). We have A � 1⊕A � A′, hence A is a sub-formula of A′. Given a set T

of types we write minT for the �-minimum type in T when it is defined.

Table 3 shows the inference rules for subtyping judgments. The rules are meant to be interpreted

coinductively so that a judgment A 6 B is derivable if it is the conclusion of a finite/infinite derivation.

The rules [BOT] and [TOP] establish that 0 and ⊤ are respectively the least and the greatest session type;

the rules [REFL] and [CONG] establish reflexivity and pre-congruence of 6 with respect to all the constants

and connectives; the rules [LEFT-σ ] and [RIGHT-σ ] allow fixed points to be unfolded on either side of 6.

Example 3.1. Consider the types A
def

= 0⊕ (1⊕ 0) and B
def

= νX .(⊥N X) which, as we will see later,

describe the behavior of Client and Server in Example 2.1. We can derive both A 6 B⊥ and B 6 A⊥ thus:

[BOT]
0 6 1

[REFL]
1 6 1

[BOT]
0 6 B⊥

[CONG]
1⊕0 6 1⊕B⊥

[RIGHT-µ ]
1⊕0 6 B⊥

[CONG]
A 6 1⊕B⊥

[RIGHT-µ ]
A 6 B⊥

[TOP]
⊥6⊤

[REFL]
⊥6⊥

[TOP]
B 6⊤

[CONG]
⊥OB 6⊥O⊤

[LEFT-ν ]
B 6⊥N⊤

[CONG]
⊥OB 6 A⊥

[LEFT-ν ]
B 6 A⊥

The rules [LEFT-σ ] and [RIGHT-σ ] may look suspicious since they are applicable to either side of 6
regardless of the intuitive interpretation of µ and ν as least and greatest fixed points. In fact, if subtyping

were solely defined by the derivability according to the rules in Table 3, the two fixed point operators

would be equivalent. For example, both µX .(1⊕X) 6 νX .(1⊕X) and νX .(1⊕X) 6 µX .(1⊕X) are

derivable even though only the first relation seems reasonable. We will see in Example 4.2 that allowing

the second relation is actually unsound, in the sense that it compromises the termination property enjoyed

by well-typed processes. We obtain a sound subtyping relation by ruling out some infinite derivations as

per the following (and final) definition of subtyping.

Definition 3.1 (subtyping). We say that A is a subtype of B if A 6 B is derivable and, for every infinite

branch (Ai 6 Bi)i∈N of the derivation, either (1) min{C | ∃∞i : Ai = C} is a µ-type or (2) min{C | ∃∞i :

Bi =C} is a ν-type. Hereafter ∃∞i means the existence of infinitely many i’s with the stated property.

The clauses (1) and (2) of Definition 3.1 make sure that µ and ν are correctly interpreted as least

and greatest fixed points. In particular, we expect the least fixed point to be subsumed by a greatest fixed

point, but not vice versa in general. For example, consider once again the (straightforward) derivations

for the aforementioned subtyping judgments µX .(1⊕X)6 νX .(1⊕X) and νX .(1⊕X)6 µX .(1⊕X).
The first derivation satisfies both clauses (there is only one infinite branch, along which a µ-type is

unfolded infinitely many times on the left hand side of 6 and a ν-type is unfolded infinitely many times

on the right hand side of 6). The second derivation satisfies neither clause. Therefore, µX .(1⊕X) is a
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[CALL]

P ⊢ x : A

A〈x〉 ⊢ x : A
A(x), P

[SUB]

P ⊢ Γ ,x : A Q ⊢ ∆,x : B

(x)(P |Q) ⊢ Γ ,∆
A 6 B⊥

[⊤]

fail x ⊢ Γ ,x : ⊤

[⊥]

P ⊢ Γ

x().P ⊢ Γ ,x : ⊥

[1]

x[] ⊢ x : 1

[O]

P ⊢ Γ ,y : A,x : B

x(y).P ⊢ Γ ,x : A OB

[⊗]

P ⊢ Γ ,y : A Q ⊢ ∆,x : B

x[y](P |Q) ⊢ Γ ,∆,x : A⊗B

[N]

P ⊢ Γ ,x : A Q ⊢ Γ ,x : B

case x{P,Q} ⊢ Γ ,x : A NB

[⊕]

P ⊢ Γ ,x : Ai

x[ini].P ⊢ Γ ,x : A0 ⊕A1

i ∈ {0,1}

[σ ]

P ⊢ Γ ,x : A{σX .A/X}

P ⊢ Γ ,x : σX .A

Table 4: Typing rules for µCP
∞.

subtype of νX .(1⊕X) but νX .(1⊕X) is not a subtype of µX .(1⊕X). As we will see in Section 4, the

application of a subtyping relation A 6 B can be explicitly modeled as a process consuming a channel of

type A while producing a channel of type B. According to this interpretation of subtyping, we can see

that clause (1) of Definition 3.1 is just a dualized version of clause (2).

In both clauses of Definition 3.1 there is a requirement that the type of the fixed point on each side of

the relation is determined by the �-minimum of the types that appear infinitely often on either side. This

is needed to handle correctly alternating fixed points, by determining which one is actively contributing

to the infinite path. To see what effect this has consider the types A
def

= µX .νY.(1⊕X), A′ def

= νY.(1⊕A),
B

def

= µX .µY.(1⊕X) and B′ def

= µY.(1⊕B). Observe that A unfolds to A′, A′ unfolds to 1⊕A, B unfolds to

B′ and B′ unfolds to 1⊕B. We have A 6 B despite Y is bound by a greatest fixed point on the left and by

a least fixed point on the right. Indeed, both A and A′ occur infinitely often in the (only) infinite branch

of the derivation for A 6 B, but A � A′ according to the intuition that the �-minimum type that occurs

infinitely often is the one corresponding to the outermost fixed point. In this case, the outermost fixed

point is µX which “overrides” the contribution of the inner fixed point νY . The interested reader may

refer to the literature on µMALL
∞ [2, 6] for details.

Hereafter, unless otherwise specified, we write A 6 B to imply that A is a subtype of B and not simply

that the judgment A 6 B is derivable. It is possible to show that 6 is a preorder and that A 6 B implies

B⊥ 6 A⊥. Indeed, as illustrated in Example 3.1, we obtain a derivation of B⊥ 6 A⊥ from that of A 6 B by

dualizing every judgment and by turning every application of [LEFT-σ ] (respectively [RIGHT-σ ], [BOT],

[TOP]) into an application of [RIGHT-σ⊥] (respectively [LEFT-σ⊥], [TOP], [BOT]).

4 Typing rules

In this section we describe the typing rules for µCP
∞. Typing judgments have the form P⊢ Γ where P is a

process and Γ is a typing context, namely a finite map from channels to types. We can read this judgment

as the fact that P behaves as described by the types in the range of Γ with respect to the channels in the

domain of Γ . We write dom(Γ) for the domain of Γ , we write x : A for the typing context with domain {x}
that maps x to A, we write Γ ,∆ for the union of Γ and ∆ when dom(Γ)∩dom(∆) = /0. The typing rules

of µCP
∞ are shown in Table 4 and, with the exception of [CALL] and [SUB], they correspond to the proof
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rules of µMALL
∞ [2, 6] in which the context is the sequent being proved and the process is (almost)

a syntactic representation of the proof. The rules for the multiplicative/additive constants and for the

connectives are standard. The rule [σ ] where σ ∈ {µ ,ν} simply unfolds fixed points regardless of their

nature. The rule [CALL] unfolds a process invocation into its definition, checking that the invocation and

the definition are well typed in the same context. Finally, [SUB] checks that the composition (x)(P |Q)
is well typed provided that A (the behavior of P with respect to x) is a subtype of B⊥ (where B is the

behavior of Q with respect to x). In this sense [SUB] embeds the substitution principle induced by 6
since it allows a process behaving as A to be used where a process behaving as B⊥ is expected. Note that

the standard cut rule of µMALL
∞ is a special case of [SUB] because of the reflexivity of 6.

Like in µMALL
∞, the rules are meant to be interpreted coinductively so that a judgment P ⊢ Γ is

deemed derivable if there is an arbitrary (finite or infinite) derivation whose conclusion is P ⊢ Γ .

Example 4.1. Let us show the typing derivations for the processes discussed in Example 2.1. To this

aim, let A
def

= 0⊕ (1⊕0) and B
def

= νX .(⊥NX) and recall from Example 3.1 that A 6 B⊥. We derive:

[1]
x[] ⊢ 1

[⊕]
x[in0].x[] ⊢ 1⊕0

[⊕]
x[in1].x[in0].x[] ⊢ x : A

[CALL]
Client〈x〉 ⊢ x : A

[1]
z[] ⊢ z : 1

[⊥]
x().z[] ⊢ x : ⊥,z : 1

...

Server〈x,z〉 ⊢ x : B,z : 1
[N]

case x{x().z[],Server〈x,z〉} ⊢ x : ⊥NB,z : 1
[ν ]

case x{x().z[],Server〈x,z〉} ⊢ x : B,z : 1
[CALL]

Server〈x,z〉 ⊢ x : B,z : 1
[SUB]

(x)(Client〈x〉 |Server〈x,z〉) ⊢ z : 1

We can obtain a similar typing derivation by swapping Client and Server and using the relation

B 6 A⊥. Note that Client and Server cannot be composed directly using a standard cut since A 6= B⊥. So,

the use of subtyping in the above typing derivation is important to obtain a well-typed composition. y

It is a known fact that not every µMALL
∞ derivation is a valid one [2, 6, 1]. In order to characterize

the valid derivations we need some auxiliary notions which we recall below.

Definition 4.1 (thread). Let γ = (Pi ⊢ Γi)i∈N be an infinite branch in a typing derivation and recall that

Pi+1 ⊢ Γi+1 is a premise of Pi ⊢ Γi. A thread of γ is a sequence (xi)i≥k of channels such that xi ∈ dom(Γi)
and either xi = xi+1 or Pi = xi[xi+1](Pi+1 |Q) or Pi = xi(xi+1).Pi+1 for every i ≥ k.

Intuitively, a thread is an infinite sequence of channel names (xi)i≥k that are found starting from some

position k in an infinite branch (Pi ⊢ Γi)i∈N and that pertain to the same session. For example, consider

the derivation in Example 4.1 and observe that there is only one infinite branch, the rightmost one. The

sequence (x,x,x, . . . ) is a thread that starts right above the conclusion of the derivation.

Definition 4.2 (ν-thread). Given a branch γ = (Pi ⊢ Γi)i∈N and a thread t = (xi)i≥k of γ , we write

inf(γ , t)
def

= {A | ∃∞i ≥ k : Γi(xi) = A}. We say that t is a ν-thread of γ if min inf(γ , t) is a ν-type.

Given a branch γ = (Pi ⊢ Γi)i∈N and a thread t = (xi)i≥k of γ , the thread identifies an infinite sequence

(Γi(xi))i≥k of types. The set inf(γ , t) is the set of those types that occur infinitely often in this sequence and

min inf(γ , t) is the �-minimum among these types (it can be shown that the minimum of any set inf(γ , t)
is always defined [6]). We say that t is a ν-thread if such minimum type is a ν-type. In Example 4.1,

the thread t = (x,x,x, . . . ) identifies the sequence (B,B,⊥NB,B, . . . ) of types in which both B and ⊥NB

occur infinitely often. Since B �⊥NB and B is a ν-type we conclude that t is a ν-thread.
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t

0 6 A

|

x,y

, fail x

t

1 6 1

|

x,y

, x().y[]

t
π1 :: A 6 A′

π2 :: B 6 B′

A⊕B 6 A′⊕B′

|

x,y

, case x{y[in0].Jπ1Kx,y ,y[in1].Jπ2Kx,y}

t
π1 :: A 6 A′

π2 :: B 6 B′

A⊗B 6 A′⊗B′

|

x,y

, x(u).y[v](Jπ1Ku,v | Jπ2Kx,y) (u and v fresh)

t
π :: A{σX .A/X}6 B

σX .A 6 B

|

x,y

, JπKx,y

t
π :: A 6 B{σX .B/X}

A 6 σX .B

|

x,y

, JπKx,y

Table 5: Coercion semantics of subtyping (selected equations).

Definition 4.3 (valid branch). Let γ = (Pi ⊢ Γi)i∈N be an infinite branch of a typing derivation. We say

that γ is valid if there is a ν-thread (xi)i≥k of γ such that [ν ] is applied to infinitely many of the xi.

Definition 4.3 establishes that a branch is valid if it contains a ν-thread in which the ν-type occurring

infinitely often is also unfolded infinitely often. This happens in Example 4.1, in which the [ν ] rule is

applied infinitely often to unfold the type of x. The reader familiar with the µMALL
∞ literature may have

spotted a subtle difference between our notion of valid branch and the standard one [2, 6]. In µMALL
∞,

a branch is valid only provided that the ν-thread in it is not “eventually constant”, namely if the greatest

fixed point that defines the ν-thread is unfolded infinitely many times. This condition is satisfied by our

notion of valid branch because of the requirement that there must be infinitely many applications of [ν ]

concerning the names in the ν-thread. Now we can define the notion of valid typing derivation.

Definition 4.4 (valid derivation). A typing derivation is valid if so is every infinite branch in it.

Following Pierce [22] we provide a coercion semantics to our subtyping relation by means of two

translation functions, one on derivations of subtyping relations A 6B and one on typing derivations P⊢ Γ

that make use of subtyping. The first translation is (partially) given in Table 5. The translation takes a

derivation π of a subtyping relation A 6 B – which we denote by π :: A 6 B – and generates a process

JπKx,y that transforms (the protocol described by) A into (the protocol described by) B. The translation

is parametrized by the two channels x and y on which the transformation takes place: the protocol A is

“consumed” from x and reissued on y as a protocol B. In Table 5 we show a fairly complete selection

of cases, the remaining ones being obvious variations. It is easy to establish that JπKx,y ⊢ x : A⊥,y : B if

A 6 B. In particular, consider an infinite branch γ
def

= (JπiKxi,yi
⊢ xi : A⊥

i ,y : Bi)i∈N in the typing derivation

of the coercion where A0 = A and B0 = B. This branch corresponds to an infinite branch (Ai 6 Bi)i∈N in

π :: A 6 B. According to Definition 3.1, either clause (1) or clause (2) holds for this branch. Suppose,

without loss of generality, that clause (1) holds. Then min{C | ∃∞i ∈ N : Ai =C} is a µ-type. According

to Table 5 we have that (xi)i∈N is a ν-thread of γ , hence γ is a valid branch. Note that in general JπKx,y is

(the invocation of) a recursive process.
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Concerning the translation of typing derivations, it is defined by the equation

t
π1 :: P ⊢ Γ ,x : A π2 :: Q ⊢ Γ ,x : B

(x)(P |Q) ⊢ Γ

|
=

Jπ1{y/x}K JπKy,x ⊢ y : A⊥,x : B

(y)(P{y/x} | JπKy,x) ⊢ Γ ,x : B Jπ2K
(x)((y)(P{y/x} | JπKy,x) |Q) ⊢ Γ

(3)

where π :: A 6 B⊥ and extended homomorphically to all the other typing rules in Table 4. Note that (3)

turns every application of the [SUB] into two applications of the standard µMALL
∞ cut rule. The validity

of the resulting typing derivation follows immediately from that of the original typing derivation and that

for the coercion, as argued earlier.

Thanks to the correspondence between µCP
∞’s typing rules and µMALL

∞, well-typed µCP
∞ pro-

cesses are well behaved. In particular, processes that are well typed in a singleton context are deadlock

free.

Theorem 4.1 (deadlock freedom). If P ⊢ x : A then P is deadlock free.

Moreover, the cut elimination property of µMALL
∞ [2, 6] can be used to prove that well-typed µCP

∞

processes terminate, similarly to related systems [16, 5].

Theorem 4.2 (termination). If P ⊢ Γ then P is terminating.

Proof sketch. The typing derivation for P ⊢ Γ with the subtype coercion made explicit maps directly to

a valid µMALL
∞ proof. Every reduction step of P maps directly to one or more principal reductions in

the µMALL
∞ proof. The reason why we could have more than one principal reduction for each process

reduction comes from our choice of not having an explicit process form triggering the unfolding of a

fixed point (see [σ ]). Now, suppose that P has an infinite run. Then there would be an infinite sequence

of reduction steps starting from P, hence an infinite sequence of cut reductions in the corresponding

µMALL
∞ proof, which contradicts [6, Proposition 3.5]. Thus every run of P must be finite.

Note that Theorem 4.2 only assures that a well-typed process will not reduce forever, not necessar-

ily that the final configuration of the process is free of restricted sessions. These may occur guarded

by a prefix concerning some free channel in the process. We can formulate a property of “successful

termination” by combining Theorems 4.1 and 4.2.

Corollary 4.1. If P ⊢ x : 1 then P eventually reduces to x[].

We conclude this section with an example showing that the additional clauses of Definition 3.1 are

key to making sure that 6 is a termination-preserving subtyping relation.

Example 4.2. Consider a degenerate client Chatter(x) , x[in1].Chatter〈x〉 that engages into an infinite

interaction with Server from Example 2.1 and let C
def

= νX .(1⊕X). The derivation
...

[ν ]
Chatter〈x〉 ⊢ x : C

[⊕]
x[in1].Chatter〈x〉 ⊢ x : 1⊕C

[CALL]
Chatter〈x〉 ⊢ x : 1⊕C

[ν ]
Chatter〈x〉 ⊢ x : C

is valid since the only infinite branch contains a ν-thread (x,x, . . . ) along which we find infinitely many

applications of [ν ]. If we allowed the relation C 6 B⊥ (cf. the discussion leading to Definition 3.1) the

composition (x)(Chatter〈x〉 |Server〈x,z〉) would be well typed and it would no longer be the case that

well-typed processes terminate, as the interaction between Chatter and Server goes on forever. y
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5 Concluding remarks

We have defined a subtyping relation for session types as the precongruence that is insensitive to the

(un)folding of recursive types and such that 0 and ⊤ act as least and greatest elements. Despite the

minimalistic look of the relation and the apparent rigidity in the syntax of types, in which the arity of

internal and external choices is fixed, 6 captures the usual co/contra variance of labels thanks to the

interpretation given to 0 and ⊤. Other refinement relations for session types with least and greatest

elements have been studied in the past [19, 21], although without an explicit correspondance with logic.

Unlike subtyping relations for session types [9, 4, 17, 10] that only preserve safety properties of

sessions (communication safety, protocol fidelity and deadlock freedom), 6 also preserves termination,

which is a liveness property. For this reason, 6 is somewhat related to fair subtyping [20, 21], which

preserves fair termination [11, 7]. It appears that 6 is coarser than fair subtyping, although the exact

relationship between the two relations is difficult to characterize because of the fundamentally different

ways in which recursive behaviors are represented in the syntax of types. The subtyping relation defined

in this paper inherits least and greatest fixed points from µMALL
∞ [2, 6], whereas fair subtyping has

been studied on session type languages that either make use of general recursion [20] or that use regular

trees directly [21]. A more conclusive comparison is left for future work.

A key difference between the treatment of fixed points in this work and a related logical approach

to session subtyping [14] is that, while both guarantee deadlock freedom, the current approach also

guarantees termination. Insight concerning the design of fixed points should be exportable to other

session calculi independently from any logical interpretation. In particular, it would be interesting to

study subtyping for asynchronous session types [17, 10] in light of Definition 3.1. This can be done by

adopting a suitable coercion semantics to enable buffering of messages as in simple orchestrators [18].

Acknowledgments. We are grateful to the anonymous reviewers for their thoughtful comments.
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[15] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luı́s Caires, Marco Carbone, Pierre-Malo Deniélou, Dim-

itris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira & Gianluigi Zavattaro

(2016): Foundations of Session Types and Behavioural Contracts. ACM Comput. Surv. 49(1), pp. 3:1–3:36,

doi:10.1145/2873052.

[16] Sam Lindley & J. Garrett Morris (2016): Talking bananas: structural recursion for session types. In Jacques

Garrigue, Gabriele Keller & Eijiro Sumii, editors: Proceedings of the 21st ACM SIGPLAN International

Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, ACM, pp. 434–

447, doi:10.1145/2951913.2951921.

[17] Dimitris Mostrous & Nobuko Yoshida (2015): Session typing and asynchronous subtyping for the higher-

order π-calculus. Inf. Comput. 241, pp. 227–263, doi:10.1016/j.ic.2015.02.002.

[18] Luca Padovani (2010): Contract-based discovery of Web services modulo simple orchestrators. Theor. Com-

put. Sci. 411(37), pp. 3328–3347, doi:10.1016/j.tcs.2010.05.002.

[19] Luca Padovani (2010): Session Types = Intersection Types + Union Types. In Elaine Pimentel, Betti Venneri

& Joe B. Wells, editors: Proceedings Fifth Workshop on Intersection Types and Related Systems, ITRS 2010,

Edinburgh, U.K., 9th July 2010, EPTCS 45, pp. 71–89, doi:10.4204/EPTCS.45.6.

[20] Luca Padovani (2013): Fair Subtyping for Open Session Types. In Fedor V. Fomin, Rusins Freivalds, Marta Z.

Kwiatkowska & David Peleg, editors: Automata, Languages, and Programming - 40th International Collo-

quium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, Lecture Notes in Computer Science

7966, Springer, pp. 373–384, doi:10.1007/978-3-642-39212-2_34.

[21] Luca Padovani (2016): Fair subtyping for multi-party session types. Math. Struct. Comput. Sci. 26(3), pp.

424–464, doi:10.1017/S096012951400022X.

https://tel.archives-ouvertes.fr/tel-01676953
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1145/3568422
https://doi.org/10.1145/800222.806752
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1016/j.tcs.2010.05.002
https://doi.org/10.4204/EPTCS.45.6
https://doi.org/10.1007/978-3-642-39212-2_34
https://doi.org/10.1017/S096012951400022X


R. Horne and L. Padovani 37

[22] Benjamin C. Pierce (2002): Types and programming languages. MIT Press.

[23] Philip Wadler (2014): Propositions as sessions. J. Funct. Program. 24(2-3), pp. 384–418, doi:10.1017/

S095679681400001X.

https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X

	1 Introduction
	2 Syntax and semantics of calculus
	3 Types and subtyping
	4 Typing rules
	5 Concluding remarks

