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Abstract
The Dawn spacecraft approached the asteroid Vesta and descended from a high-altitude
mission orbit to a low-altitude mission orbit using low-thrust propulsion. During this descent,
the spacecraft crossed the 2:3 and 1:1 ground-track resonances with Vesta, which posed a risk
of capture that might strongly perturb the spacecraft’s orbit. This study analyzes the effects
of these resonances on the spacecraft’s orbital elements and estimates the probability of
capture into it through Monte Carlo simulations. Specifically, a comprehensive investigation
is performed to assess the effects of 1:1 and 2:3 ground-track resonances on the semimajor
axis, eccentricity, and inclination. The dynamical model includes the gravitational field of
Vesta using a spherical harmonics approximation up to the fourth degree and order and
the low-thrust acceleration that is assumed to be opposite to the spacecraft’s velocity vector
direction. It is observed that the eccentricity evolution is mostly influenced by the 2:3 ground-
track resonance which results in a large variation when the spacecraft crosses that ground-
track resonance, while the semimajor axis and inclination are mostly influenced by the 1:1
ground-track resonance. Then, the probability of capture into 1:1 ground-track resonance is
found to have a negative correlationwith the spacecraft’s thrust magnitude and the probability
of capture into 2:3 ground-track resonance is found to arise as the spacecraft’s mass increases.
It is found that for circular orbits below a certain inclination value the spacecraft’s trajectory
is subject to the “automatic entry into libration” phenomenon, due to the singularity in the
Hamiltonian function. This research contributes to the design of successful transfer strategies
when crossing resonance for future missions.
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1 Introduction

Resonance is a pervasive phenomenon in dynamical systems, arisingwhen a system is excited
at its natural frequency, thereby causing pronounced oscillations. This concept manifests
across diverse disciplines, including plasma physics (Artemyev et al. 2018), celestialmechan-
ics (Garfinkel 1982), and astrodynamics (Tricarico and Sykes 2010). Within the realms of
celestialmechanics and astrodynamics, various forms of orbital resonances are evident. These
range from mean motion resonances, where the orbital periods of two celestial bodies are in
simple integer ratios (Murray and Dermott 2000), to more complex forms like secular (Cel-
letti et al. 2020), secondary (Lemaître et al. 2009), spin-orbit (Goldreich and Peale 1966), and
ground-track resonances (GTRs) (Tricarico and Sykes 2010). Notably, for GTRs to manifest,
the period of a spacecraft’s revolution must be commensurable with the rotation period of the
central body, as exemplified in 1:1 GTRs with Earth’s geostationary satellites (Celletti and
Gales 2014). Previous studies have delved into the impact of irregular gravitational fields on
resonant satellite orbits. Scheeres Scheeres (1994) focused on satellites orbiting irregularly
shaped asteroids, particularly investigating periodic orbits around the ellipsoids mimicking
asteroids Vesta and Eros. Subsequent extensions of this work explored the asteroid Toutatis
(Scheeres et al. 1998) and the moons Europa (Scheeres et al. 2001; Paskowitz and Scheeres
2006; Russell 2006) and Enceladus (Lara and Russell 2010; Russell and Lara 2009).

In 2011, the Dawn spacecraft successfully approached the asteroid Vesta (Russell et al.
2007), and it was one of the first missions to use low-thrust propulsion during both the cruise
phase and the approach phase to an asteroid. This mission demonstrated the possibility
of relying on low-thrust propulsion for the majority of the mission duration (Rayman 2020;
Wallace et al. 2019; Nishiyama et al. 2016). The use of low-thrust propulsion allows for more
efficient use of fuel and longermissiondurationbut also poses challenges in termsof trajectory
design (Morante et al. 2021). One major challenge when using low-thrust propulsion during
the approach to an asteroid is the probability of being captured by 1:1 GTR (Tricarico and
Sykes 2010), caused by the chaotic layer surrounding the resonance region (Celletti andGales
2014). The spacecraft at each revolution encounters the same gravitational configuration, the
effect of whichmay accumulate and significantly change the orbit eccentricity and inclination
(Scheeres 2012). The capture of a spacecraft into a GTR has the potential to significantly
impact the success of a mission by preventing it from reaching lower altitudes and the
achievement of scientific objectives.

For this reason, it is important to investigate the probability of capture into the GTR
of a spacecraft around an asteroid. This necessitates a comprehensive understanding of the
dynamics of both the spacecraft and the asteroid. The outcomes of these studies can be uti-
lized to ensure the robustness of the mission. Tricarico and Sykes (2010) investigated the
possibility of the Dawn spacecraft being captured into the 1:1 GTR around Vesta, located
within the orbital radius range of 500 and 600km. The authors simulated the descent starting
from 1000km and considered 12 different initial conditions, which were shifted by an angle
of 30◦ of true anomaly. Out of the 12 simulations conducted, capture occurred only once,
yielding an estimated capture probability of 1/12 based on this limited sample size. Delsate
(Delsate 2012) extended this analysis using a larger set of initial conditions and varying thrust
magnitudes, thereby achieving a similar capture probability of 8.26%, albeit with enhanced
reliability due to the increased number of simulations. It was found that the probability of
capture into GTR is dependent on various factors such as the initial state of the spacecraft,
the thrust magnitude, and the characteristics of the central body. In this research, we improve
the understanding of the 1:1 and 2:3 GTRs by investigating their effect on the semimajor
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Table 1 Vesta’s physical
parameters (Tricarico and Sykes
2010)

Gravitational constant μ 17.5 km3/s2

Reference radius Re 300 km

Angular velocity θ̇ 3.2671 × 10−4 rad/s

axis, eccentricity, and inclination and by considering a larger interval of thrust magnitude and
spacecraft’s mass values. Additionally, this research offers important insights into the sensi-
tivity of the probability of capture into GTRs on the initial orbit geometry. The methodology
used in this work can be readily used for a wide variety of space exploration missions.

The structure of this paper is as follows: Sect. 2 presents the equations of motion and
defines the Hamiltonian dynamical model. It characterizes the phase-space and provides
important insights into the phenomenon of the GTR. Section 3 focuses on the analysis of
the effects of the 1:1 and 2:3 GTRs on Dawn’s descent trajectory, specifically the effect
of the accumulation of gravitational perturbation on the evolution of the semimajor axis,
eccentricity, and inclination. Section 4 conducts a sensitivity analysis of the probability of
capture on different values of thrust magnitude, spacecraft mass, and initial inclination.
Finally, a summary of the paper and the conclusions are presented.

2 Dynamical modeling

In this section, the dynamical environment surrounding Vesta is investigated to identify
perturbations that need to be considered for the modeling of the dynamics. Subsequently,
the physical and gravitational characteristics of Vesta and the equations of motion for the
spacecraft are presented. The Hamiltonian function of the system is then defined and the
dynamics of the Dawn mission phase-space are investigated.

2.1 Main perturbations

In 2011, the Dawn spacecraft successfully arrived at the asteroid Vesta. During the approach
phase, the spacecraft descended from a high-altitude mission orbit (HAMO) to a low-altitude
mission orbit (LAMO) utilizing low-thrust propulsion. The orbital radii of the HAMO and
LAMO are 1000 and 460km, respectively (Tricarico and Sykes 2010). However, the use of
low-thrust propulsion during the descent phase posed a risk of capturing the spacecraft into
GTRs around Vesta. The physical parameters of Vesta are listed in Table 1, and it is assumed
to rotate uniformly around a constant direction in the inertial frame, coinciding with the axis
of symmetry of the gravitational field. The unnormalized Stokes coefficients of Vesta are
given in Feng et al. (2017).

The spacecraft is subject to the following perturbations (Montenbruck et al. 2002):

• Vesta’s irregular gravitational perturbations

anm = (n + 1)
μ

r2
Rn
e

rn
Jnm;

where Jnm = √
C2
nm + S2nm .
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Fig. 1 Order of magnitude of the
various perturbations to which
the Dawn spacecraft is subject at
different orbital radii. The
location of the 1:1 and 2:3 GTRs
is highlighted for reference

• Sun’s gravitational perturbation

aSun = 2μ�
d3�

r;

• solar radiation pressure perturbation

aSRP = Cr
A

m
P�

where r represents the distance from the spacecraft to Vesta, Cnm and Snm are the unnor-
malized Stokes coefficients, n and m are the degree and order of the spherical harmonic
expansion element considered, μ� represents the gravitational constant of the Sun, d� is
the distance of the spacecraft from the Sun, Cr = 0.25 is the reflectivity coefficient of the
spacecraft, A/m = 0.04m2/kg is the area-to-mass ratio of the spacecraft, and P� is the solar
radiation pressure at a distance d� from the Sun. The magnitudes of the main perturbations
at different orbital radii are illustrated in Fig. 1.

A thorough analysis of the figure reveals that at the orbital radius corresponding to the
1:1 GTR, i.e., 537km, Vesta’s second degree gravitational perturbations are a few orders of
magnitude stronger than the perturbations from the Sun’s gravitational attraction, and the
solar radiation pressure. This highlights the importance of accurately accounting for Vesta’s
gravitational influence in the dynamical modeling of the spacecraft’s trajectory. Furthermore,
it is worth noting that the relative magnitudes of these perturbations can vary significantly
dependingon the orbital radius of the spacecraft.Given the dominant effect ofVesta’s irregular
gravitational perturbations at the 2:3 GTR and 1:1 GTR and the potential impact on the
spacecraft’s trajectory, in this paper, only these perturbations are considered in the dynamical
modeling; solar gravitation and solar radiation pressure are ignored in the following analysis.

2.2 Equations of motion

The literature provides several methods for representing the gravitational field of a celestial
body.

• The polyhedron approximation method (Werner 2017) involves approximating the vol-
ume of an asteroid as a polyhedron and determining the gravitational field by summing the
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contributions of each volumetric element. This method offers a simplified representation
of the asteroid’s gravitational field, but its accuracy may be limited by the precision of the
polyhedron approximation. The accuracy of this method can be improved by increasing
the number of individual terms used, but this comes at the cost of increased computational
cost.

• The point mass approximation method, as described in Barthelmes and Dietrich (1991),
generates a gravitational field approximation by treating the asteroid as a set of discrete
point masses. While this method is less accurate compared to the polyhedron method,
it is computationally more efficient. The accuracy of this method can be improved by
increasing the number of point masses used, but this comes at the cost of increased
computational cost.

• The spherical harmonics approximation is a commonly used method for characterizing
the gravitational field of celestial bodies (Montenbruck et al. 2002; Kaula 1966). This
method is based on the expansion of the gravitational potential in terms of spherical
harmonics, which are a set of orthogonal functions defined on the surface of a sphere.
This approach maintains a balance between accuracy and computational cost and has
been extensively employed in prior studies (Tricarico and Sykes 2010; Delsate 2012;
Feng et al. 2017; Whiffen 2004). In these works, the spherical harmonics approximation
was applied to multiple asteroids, including Vesta, 1996 HW1, Betulia and for a generic
asteroid shape. In this paper, we apply this methodology to approximate Vesta’s irregular
gravitational field.

The gravitational potential of a central body is defined as a function of spherical harmonics,
where the shape and density variations of the asteroid are represented by the Stokes coeffi-
cients. The gravitational potential V , in spherical harmonics expansion of degree n and order
m, is given in spherical coordinates (r , δ, φ) as

V = μ

r
+

∞∑

n=2

n∑

m=0

μ

r

(
Re

r

)n

Pnm(sin φ)(Cnm cosmδ + Snm sinmδ), (1)

where φ and δ are the colatitude and the longitude, respectively. Previous studies have shown
that the dynamics around Vesta are primarily influenced by the spherical harmonics expan-
sion up to the fourth degree and order (Tricarico and Sykes 2010). This is also the truncation
order adopted in our current study. Our simulations focus on the perturbed two-body prob-
lem (Whiffen 2004), where the spacecraft is subject to perturbations from Vesta’s irregular
gravitational field and a constant low-thrust acceleration in the direction opposite of the
spacecraft’s velocity. In this way, the semimajor axis decreases in the most efficient way
(Huang et al. 2020). The equations of motion in cartesian coordinates and in the asteroid’s
centered inertial frame are

{
ẍ = ∇V − T

m(t) v̂

ṁ = − T
Ispg0

, (2)

where x = [x, y, z] is the position vector in cartesian coordinates, ẍ = [ax , ay, az] is the
acceleration vector, V represents the potential in spherical harmonics in Eq. 1, T is the
thrust magnitude, m is the spacecraft’s mass, and v̂ is the spacecraft’s velocity unit vector.
Finally, the second equation describes the rate of change of the spacecraft’s mass over time
as a function of Isp and g0 which represent the specific impulse and Earth’s gravitational
constant, respectively. The equations of motion are propagated using the MATLAB built-in
functionode113which is a variable-step, variable-order Adams–Bashforth–Moulton solver
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Fig. 2 Sample of a trajectory
captured into GTR with Vesta.
The black line represents the first
part of the descent; the red line
represents the trajectory after the
capture has occurred

of orders 1–13 (Shampine and Gordon 1975), with a relative and absolute tolerance set at
10−12. Figure2 shows a sample of a trajectory captured into GTR in the asteroid’s centered
inertial frame.

2.3 Hamiltonianmodel

The Hamiltonian formalism is an effective method for analyzing resonance dynamics. The
gravitational field, as defined in Eq. 1, can be represented as a function of orbital elements,
as Kaula (1966)

V = μ

r
+

∞∑

n=2

n∑

m=0

n∑

p=0

∞∑

q=−∞

μRn
e

an+1 Fnmp(i)Gnpq(e)Snmpq(ω, M,�, θ), (3)

where Fnmp(i) and Gnpq(e) are functions of the inclination i and eccentricity e, respectively,
ω represents the argument of periapsis, M is the mean anomaly, � denotes the longitude of
the ascending node, θ represents the sidereal time, n,m, p, q are integers, and

Snmpq =
{
Cnm cos�nmpq + Snm sin�nmpq , if n − m is even

−Snm cos�nmpq + Cnm sin�nmpq , if n − m is odd
,

where �nmpq is Kaula’s phase angle that is defined as

�nmpq = (n − 2p)ω + (n − 2p + q)M + m(� − θ), (4)

GTRs occur when the rate of change of Kaula’s phase angle �̇nmpq is close to zero, i.e., when
the phase angle of the system remains relatively constant over time.

By defining the quantity L = √
μa as the conjugate momentum to λ = M + � + ω, the

Hamiltonian that describes the motion of the spacecraft around an asteroid with an irregular
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Table 2 Spherical harmonics
terms related to the 1:1 GTR up
to 2nd degree and order (e = 0)
(Kaula 1966)

n m p q �nmpq Fnmp Gnpq

2 0 1 0 0 3/4 sin2 i − 1/2 1

2 2 0 0 2λ − 2θ 3(1 + cos i)2/4 1

gravitational field can be defined as

H = − μ2

2L2 +
∞∑

n=2

n∑

m=0

n∑

p=0

∞∑

q=−∞
Rn
e

μn+2

L2n+2 Fnmp(i)Gnpq(e)Snmpq(ω, M,�, θ) + θ̇	,

(5)

where	 is the conjugated momentum to the sidereal time θ and the term θ̇	 accounts for the
asteroid’s rotation. The dynamics of the system close to the 1:1 GTR are primarily affected
by the gravitational term up to the second degree and order (Scheeres 1999). In light of this,
the Hamiltonian used in the analysis is limited to the second degree and order. The harmonic
contributions incorporated in the potential V are selected based on the resonance under
consideration. In the case of the 1:1 GTR, the harmonics that contribute to this resonance are
listed in Table 2.

For a polar circular orbit, the Hamiltonian is

H1:1 = − μ2

2L2 + 1

4
R2
e
μ4

L6C20

+3

4
R2
e
μ4

L6

√
C2
22 + S222 cos

[
�2200 + arctan

(
− S22
C22

)]
+ θ̇	, (6)

where the first argument of the cosine is
�2200 = 2(M + � + ω) − 2θ = 2(λ − θ). (7)

The resonance angle σ in the case of 1:1 GTR is
σ = λ − θ. (8)

However, in order to preserve a set of canonical variables, it is necessary to perform a
canonical transformation. These transformations are important in Hamiltonian mechanics as
they allow for the definition of new variables that can simplify the analysis of the Hamiltonian
function. In this particular case, the canonical transformation proposed by Valk et al. (2009)
is adopted. The new set of variables is

σ, L ′ = L, θ ′ = θ, 	′ = 	 + L.

As a result of this transformation, the new Hamiltonian is

H̃1:1 = − μ2

2L2 − 1

4
R2
e
μ4

L6C20

−3

4
R2
e
μ4

L6

√
C2
22 + S222 cos

[
2σ + arctan

(
− S22
C22

)]
− θ̇L, (9)

in which the prime signs are dropped for simplicity and the constant θ̇	′ term is not included
since the expression is no more explicitly dependent on θ . For Vesta, S22 = 0 (Tricarico and
Sykes 2010), so the Hamiltonian is simplified to

H̃1:1 = − μ2

2L2 − 1

4
R2
e
μ4

L6C20 − 3

4
R2
e
μ4

L6C22 cos 2σ − θ̇L. (10)
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Fig. 3 Phase-space configuration of the 1:1 GTR around Vesta. The black curves are the different energy
levels, while the red lines are the separatrices that enclose the two GTR regions. The stable and unstable
equilibrium points are indicated with a triangle and a cross, respectively

Generally, when considering a gravitational field up to the second degree and order, four
equilibrium points can be identified. Two of them are always unstable, while the other two
may be either stable or unstable, depending on the physical characteristics of the asteroid,
such as its rotational rate, second degree gravity coefficients, and mass (Hu and Scheeres
2004). By analyzing the Hamiltonian H̃1:1 defined in Eq. 10, it is possible to find two stable
equilibria σst and two unstable equilibria σun , as solutions of

∂H̃1:1
∂L

= ∂H̃1:1
∂σ

= 0, (11)

which are

σun = 0, σun = π, σst = π/2, σst = 3/2π. (12)

These equilibrium points are the locations in the phase-space where the spacecraft’s motion
is stationary in the body-fixed frame (Boccaletti and Pucacco 2001). Figure 3 shows the
phase-space of the 1:1 GTR from Eq. 10, where the stable and unstable equilibrium points
are indicated with a triangle and a cross, respectively.

The region of interest, also known as the resonance region, is confined between the two
red curves, known as separatrices. The regions above and below the resonance region are
referred to as the upper and lower circulation regions, respectively. In the phase-space, the
conjugate momentum L is plotted along the y-axis and is closely relates to the semimajor axis
of the orbit. As the spacecraft is descending to a lower altitude orbit, it crosses the resonance
region from a higher altitude orbit and exits the resonance from a lower altitude, finally
reaching the target orbit. So, in phase-space, the trajectory starts in the upper circulation
region, crosses the upper separatrix, then crosses the lower separatrix, and finally reaches
within the lower circulation region. When the spacecraft is captured into GTR, its trajectory
in the phase-space is confined to the resonance region, and it oscillates around the stable
equilibrium point σst as shown in the upper plots of Fig. 4. On the other hand, if no GTR
capture occurs, the spacecraft’s trajectory in the phase-space escapes the resonance region
and reaches the lower circulation region, as shown in the lower plots of Fig. 4.

From the left plots of Fig. 4, it can be difficult to determine the precisemoment of separatrix
crossing. To alleviate this issue, the following steps are implemented:
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Fig. 4 Trajectories of the spacecraft’s descent in the case of captured (upper plots) and escape (lower plots)
from the 1:1 GTR in phase-space. In the plots on the left, the true trajectories are plotted, while on the right
the same trajectories after averaging are plotted. The trajectory lines are red when inside the resonance region

• The trajectory in the phase-space is averaged to eliminate high-frequency oscillations and
improve the clarity of the trajectory’s evolution making it easier to identify the point of
entry into resonance. Different from the conventional orbital average over one orbital rev-
olution, we compute the moving average usingMATLAB’s built-in function, movmean.
Commonly known as a rolling or running average, this technique produces a series of
averaged values from different subsets of the original data set. While primarily employed
in time series analysis, the moving average serves to smooth out short-term fluctuations,
thereby highlighting underlying long-term trends or cyclical patterns. Mathematically,
the moving average, denoted as L̄ , for a time series L = [L1, L2, L3, . . . , Ln] is given
as follows:

L̄i = 1

z

z−1∑

j=0

Li− j , (13)

where z is the length of the moving average window.
• The point of entry into resonance with Vesta is defined as the point at which the averaged

trajectory crosses the upper separatrix line. This step allows for a well-defined criterion
to identify the point of entry into resonance.

The right plots of Fig. 4 show the result of these steps on the trajectory, where the captured
part of the descent can be clearly recognized. To identify the moment of separatrix crossing,
the Hamiltonian function is evaluated at each instant and compared to the value of the
Hamiltonian at the separatrix H̃sep

1:1 . When the two values coincide, the spacecraft enters into
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Fig. 5 Hamiltonian evolution during the descent of the spacecraft from a circular polar orbit at 1000km. The
left plot represents the capture case, while the right plot represents the escape case. The dashed line represents
the value of the Hamiltonian at the separatrix

Table 3 Dawn’s nominal initial
conditions at HAMO (Tricarico
and Sykes 2010)

Mass m 1000kg

Thrust magnitude T 20 mN

Specific impulse Isp 3000s

Semimajor axis a0 1000km

Eccentricity e0 0

Inclination i0 90◦
Longitude of the ascending node �0 0◦
Argument of periapsis ω0 0◦

the resonance region. If the value of theHamiltonian function coincides for a second timewith
the value H̃sep

1:1 , the trajectory escapes from the resonance and enters into the lower circulation
region. As shown in Fig. 5, the evolution of the system’s Hamiltonian is compared with the
Hamiltonian value at the separatrix, indicated by the horizontal dashed line. On the left panel,
the Hamiltonian crosses the separatrix value only once as the spacecraft is captured into a
1:1 GTR. On the contrary, in the right panel, the Hamiltonian crosses the separatrix value a
second time as the spacecraft escapes from the GTR.

3 GTRs capture

Throughout the paper, the Dawn spacecraft’s descent is simulated using the equations of
motion in Eq. 2 and, unless otherwise stated in the paper, the initial conditions reported
in Table 3 are used, which include the spacecraft’s parameters, such as thrust magnitude,
mass, and specific impulse, and the initial orbit geometry. It is also important to note that the
integration is stopped once the spacecraft reaches an altitude of 400km, which is lower than
the altitude of the LAMO, or if the spacecraft is captured into 1:1 GTR, it is stopped after 60
days.
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Fig. 6 Semimajor axis evolution of descent trajectories for different values of initial true anomaly. The 2:3
and 1:1 GTR locations are highlighted by the black dashed lines

The effects of the 1:1 GTR on the orbital elements of the semimajor axis, eccentricity, and
inclination are investigated. Three cases are considered to understand how GTR affects the
spacecraft’s motion. In Tricarico and Sykes (2010) and Delsate (2012), the authors highlight
the dependence and high sensitivity of the probability of capture on the initial phase of true
anomaly, referred to as the initial phase throughout the paper. After a preliminary analysis,
the following cases with specific values of the initial phase are considered:

• the first case considers the scenario where the spacecraft is captured within the 1:1 GTR
region. The initial phase value of 72◦ is chosen as a reference case;

• the second case investigates the scenario where the spacecraft escapes the 1:1 GTR. The
initial phase value of 0◦ is chosen as a reference case;

• the third case investigates the scenario where the spacecraft crosses the 1:1 GTR through
the unstable equilibrium point (σun, Lun). The initial phase value of 70◦ is chosen as a
reference case.

For convenience, the three cases are referred to as Test Case A (TC-A), Test Case B (TC-B),
and Test Case C (TC-C), respectively.

3.1 Effects of GTRs on the semimajor axis

The effect of the GTRs on the semimajor axis is the first to be considered in this analysis.
Starting from the initial semimajor axis of 1000km, the spacecraft descends toward the target
orbit at 400km. As the spacecraft crosses the 1:1 GTR with Vesta, it can either be captured
into this GTR or escape from it. Figure 6 shows the evolution of the semimajor axis for 1000
different true anomaly values.

When the spacecraft is captured into the 1:1 GTR, its semimajor axis oscillates around
the GTR location. In contrast, the trajectories that escape the GTR reach toward the target
semimajor axis value of 400km. Figure 7 illustrates one such example each of a captured
trajectory (top plot), an escape trajectory (middle plot), and an escape trajectory that passes
through the unstable equilibrium point (σun = 0, L res) (bottom plot), all of which are selected
for in-depth analysis.
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Fig. 7 The semimajor axis evolution with respect to time in TC-A, TC-B, and TC-C (on left from top to
bottom) with T = 20 mN, and their representation in phase-space, zoomed in the 1:1 GTR region (right). In
the left plots, the 2:3 and 1:1 GTR locations are highlighted by the black dashed lines. The trajectory lines are
red when inside the resonance region

The main difference between the capture and escape cases lies in their different initial
true anomaly values, highlighting the sensitivity of this capture phenomenon to this initial
condition, as it is extensively discussed in Sect. 4. After the spacecraft is captured into 1:1
GTR, the semimajor axis (highlighted in red in the upper left plot of Fig. 7) oscillates around
the location of the GTR, and the period of oscillation changes from approximately 3.6 days
when the spacecraft enters the resonance (around day 30) to about 2.2 days after one month
within the resonance (around day 60). The combined outcome of these effects, namely the
oscillation of the semimajor axis and the decrease of the oscillation period, is reflected in
phase-space as the trajectory gradually approaches closer to the equilibrium point as shown
in the top right plot of Fig. 7. A trajectory that is closer to the stable equilibrium point will be
farther from the separatrix, necessitating a greater thrust magnitude to successfully escape
the GTR. Boumchita and Feng (2022) highlight this issue when performing an analysis of the
thrust magnitude required to escape from the GTR. If the spacecraft escapes from 1:1 GTR,
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Fig. 8 Eccentricity evolution of descent trajectories for different values of initial true anomaly. The 2:3 and
1:1 GTR locations are highlighted by the black dashed lines

the time evolution of the semimajor axis is subject to significant perturbations, resulting in
an increase in the libration amplitude, as shown in the lower left plot of Fig. 7. This is also
shown in phase-space with the trajectory not completing a full rotation around the stable
equilibrium point. Finally, the importance of considering the third case, shown in the bottom
plots of Fig. 7, is highlighted in Sect. 3.3.

3.2 Effects of GTRs on the eccentricity

Delsate (Delsate 2012) identified that the 2:3 GTR is the main resonance that affected the
eccentricity evolution and it is caused by the second degree tesseral harmonic. This work
improves the investigation of the effect of the 1:1 GTR on the eccentricity for 1000 different
initial phases uniformly sampled between 0 and 360◦ as shown in Fig. 8.

The eccentricity initially starts at zero and shows oscillations over time. Upon crossing the
2:3 GTR, there is a sudden increase in the eccentricity value to 0.13, which further increases
to 0.15 as the spacecraft traverses the 1:1 GTR. Subsequently, the eccentricity decreases to
0.13 before increasing again to 0.2 as the spacecraft escapes the resonance. The eccentricity
evolution of the three test cases are shown individually in Fig. 9.

It can be noticed that when the spacecraft crosses the 2:3 GTR, the eccentricity changes
noticeably and consistently, while when the spacecraft crosses the 1:1 GTR the eccentricity
continues to evolve without an identifiable extra disturbance from the resonance.

3.3 Effects of GTRs on the inclination

Figure 10 shows the inclination evolution for 1000 distinct initial phase values.
It is observed that after crossing the 1:1 GTR, the final inclination value is characterized

by two types of evolutions: it either oscillates close to 90◦ if the spacecraft escapes the 1:1
GTR, or it decreases if the capture into the 1:1 GTR takes place. Consequently, this analysis
focuses on three distinct scenarios: when the spacecraft is captured into 1:1 GTR (TC-A),
when the spacecraft escapes the 1:1 GTR (TC-B) and when the spacecraft escapes the 1:1
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Fig. 9 Eccentricity evolution as the trajectory crosses different GTRs. The 2:3 and 1:1 GTR locations are
highlighted by the black dashed lines. The top plot corresponds to TC-A, the middle one to TC-B, and the
bottom one to TC-C. The trajectory lines are red when inside the resonance region

GTR through the unstable equilibrium point (TC-C). Figure 11 isolates the time evolution of
the inclination for the three different test cases.

In TC-A, close to the 1:1 GTR the amplitude of the inclination oscillations increases
while its mean value decreases approximately linearly with time, as shown in the top plot of
Fig. 11. In TC-B, the inclination is affected by the perturbation; however, the average value
remains relatively close to the initial value of approximately 90◦ as shown in the middle
plot of Fig. 11. The 1:1 GTR has a greater influence on the inclination when the spacecraft’s
trajectory in phase-space passes through the unstable equilibrium point σun = 0◦ (bottom
plot of Fig. 11). In such a scenario, the inclination undergoes a significant change, leading
to an increase in its average value to approximately 92◦. Figure 12 examines the impact
of gravitational perturbations and low-thrust effects on the inclination evolution. The initial
conditions are as outlined in Table 3, and the semimajor axis is selected to start the trajectory
within the 1:1 GTR region.
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Fig. 10 Inclination evolution of descent trajectories for different values of initial true anomaly. The 2:3 and
1:1 GTR locations are highlighted by the black dashed lines

The linear trend is caused by the effect of the low-thrust acceleration and it is explained
by the Gauss variational equations. In particular, the differential equation governing the
inclination evolution (Curtis 2005) is

di

dt
= r

h
cos(ω + θ)pw (14)

where h is the angular momentum and pw is the component of the low-thrust acceleration
normal to the trajectory. As the magnitude of pw is negative the inclination decreases over
time. Moreover, higher trust magnitude results in a larger inclination change as shown in
Fig. 13.

Finally, the 2:3 GTR can have varying effects on the evolution of the inclination, ranging
from minimal to significant changes of a few tenths of degrees as shown in the middle plot
of Fig. 11.

4 Probability of capture into GTR

This section focuses on the probability of capture into the 1:1GTRofDawn aroundVesta, and
its sensitivity on the spacecraft parameters such as the mass and thrust magnitude, and on the
initial orbit geometry such as the inclination. For each semimajor axis value, 1000 trajectories
are propagated for different initial phases of true anomaly values uniformly sampled in
the interval [0, 2π ]. With extensive simulations, this research significantly improves the
understanding of the 1:1 and 2:3GTRs by investigating their effects on varying the semimajor
axis, eccentricity, and inclination, and by considering a much wider range values of thrust
magnitude and spacecraft’s mass. Also, this research extends the previous research by for
the first time performing a systematic analysis of the sensitivity of the probability of capture
into GTRs on the initial orbit geometry, the thrust magnitude, and the spacecraft’s mass. The
methodology and analysis performed in this work can be readily applied to a wide variety of
space exploration missions.. The probabilities are obtained for the nominal orbital elements
and spacecraft parameters listed in Table 3 and are shown in Fig. 14.
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Fig. 11 Inclination evolution as the spacecraft crosses different GTRs. The upper, middle, and lower plots
represent TC-A, TC-B, and TC-C, respectively. The 2:3 and 1:1 GTR locations are highlighted by the black
dashed lines. The trajectory lines are red when inside the resonance region

The probability of capture into 1:1 GTR remains below 10% and no specific trend can be
established as the initial semimajor axis value decreases. The average probability of capture
is approximately 7.1%, with a maximum value of 9.5% and a minimum value of 4.9%. The
second value is the probability of capture into the 2:3 GTR. By definition, trajectories with
an initial semimajor axis of less than 700km have a zero probability of capture into the 2:3
GTR and it is found through this set of simulations, using the specified parameters in Table 3,
the spacecraft is never captured into this GTR for initial semimajor axis values larger than
700km. When investigating the sensitivity of the probability of capture with respect to the
spacecraft properties and initial orbit geometry, these results are taken as a reference.

To thoroughly explore the effects of these variables (m0, T , i0 and e0), a range of values
is considered in the analysis. Dawn’s dry and wet mass are, respectively, 800 and 1200kg.
The maximum value of thrust magnitude that Dawn’s propulsion system could generate
was 92 mN. Thus, the impact of mass and thrust magnitude on the probability of capture
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Fig. 12 Inclination evolution inside the 1:1 GTR for T = 0 mN (left) and T = 20 mN (right)
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Fig. 13 Inclination evolution inside the 1:1 GTR for T = 5 mN (left), T = 10 mN (center) and T = 20 mN
(right). The red lines represent the linear fit of the inclination evolution for each case

is studied by considering different values of mass from 800 to 1200kg with a resolution of
50kg and of thrust magnitude from 20 to 90 mN with a resolution of 10 mN. Concerning
orbit shape and orientation, the analysis considers different initial eccentricity values, namely
[0, 0.04, 0.2] which are considered as null, low, and high different initial eccentricity values,
and an inclination range of 0◦–180◦. However, only results within the 50◦–140◦ range are
reported in this paper, since no additional information emerges in the full range as discussed
in Sect. 4.3. As for the semimajor axis, its range is selected to be between 600 (above the 1:1
GTR location) and 1000km (corresponding to the HAMO radial distance).
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Fig. 14 Probabilities of GTR capture around Vesta in nominal conditions and at different initial semimajor
axis. For each value of the semimajor axis, the first number is the probability of capture into 1:1 GTR; the
second value is the probability of being captured into 2:3 GTR

Fig. 15 Magnitude of the
different perturbations on Dawn
at different orbital radii. The
positions of the 1:1 and 2:3 GTRs
have been highlighted. The gray
area represents the interval of
acceleration from different
magnitudes of the thrust. The
upper and lower limits of that
area are the accelerations of 90
mN and 20 mN, respectively

4.1 Sensitivity on the thrust magnitude

By maintaining the low-thrust acceleration vector opposite to the spacecraft’s velocity vec-
tor, this section analyzes the influence of thrust magnitude on the trajectory as the spacecraft
descends from HAMO to LAMO. It is worth noting that the results obtained in this study
depending on the thrust profile selected and the result might change with different thrust
profiles. However, the methodology of this sensitivity analysis still works.. In Fig. 15, the
accelerations due to irregular gravitational perturbations and due to the low-thrust propulsion
are compared. As the magnitude of the thrust increases, it is found that the low-thrust accel-
eration becomes almost comparable to the gravitational acceleration caused by the second
degree tesseral harmonic, as shown in the gray region. The upper and lower bounds of the
area represent the acceleration for T = 92 mN and T = 20 mN, respectively, withm = 1000
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Fig. 16 Semimajor axis evolution of descent trajectories for different values of initial true anomaly for T = 20
mN (on the left) and T = 90 mN (on the right). The 2:3 and 1:1 GTR locations are highlighted by the black
dashed lines. The bottom plots show the frequency of the instant in which a = 400 km is reached. Each bin
is 0.1 days long

kg. In particular,

amin
LT =20 × 10−3

1000

N

kg
= 2.0 × 10−8 km

2

s
(15)

amax
LT =92 × 10−3

1000

N
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= 9.2 × 10−8 km

2

s
. (16)

Figure 16 shows 1000 trajectory evolutions for T = 20 mN and T = 90 mN (top plot)
and two histograms of the distribution of the transfer times from HAMO to LAMO over time
grouped in bins long 0.1 days (bottom plot).

For T = 20 mN, the distribution of the transfer times from HAMO to LAMO is concen-
trated between 36 and 43 days and no cases are found outside of this interval. For T = 90
mN, the distribution of the transfer times is concentrated between 8 and 9 days but more cases
are found to reach the target orbit later. This indicates that a certain number of trajectories
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Fig. 17 Hamiltonian value of the system with respect to the 1:1 GTR energy level. The permanent and
temporary capture Hamiltonian evolutions are plotted in red and orange, respectively. The horizontal black
line represents the energy level of the 1:1 GTR

stay inside the resonance region for a longer time with respect to the nominal case, where the
descent is completed in about 8 days before reaching the final orbit. So, for the case of T = 20
mN, the trajectories can be either captured or escape the resonance. Instead, for T = 90 mN,
a third case arises in which the spacecraft reaches the final orbit while staying for a longer
time inside the resonance region and being temporary captured in it. This phenomenon is
found in the field of celestial mechanics, e.g., in Henrard (1991) it was found that some pairs
of satellites of Uranus have been temporarily captured into resonance in the past or in Touma
and Wisdom (1998) and more recently in Vaillant and Correia (2022) it was found that the
Moon was in temporary resonance with Earth and Phobos will be captured into temporary
resonance with Mars, and it is now introduced in astrodynamics. In Belbruno et al. (2008),
where the authors consider the temporary capture of a rock or spacecraft around the Moon
in the three-body problem, the temporary capture phenomenon is defined as a capture case
where the Keplerian energy of the satellite with respect to the Moon is temporarily non-
positive. This definition is adapted in the context of the Dawn mission: the state of temporary
capture occurs whenever the Hamiltonian value of the system with respect to the 1:1 GTR
energy level (black horizontal line in Fig. 17) is temporarily positive as shown with orange
lines in Fig. 17.

This phenomenon is caused by the comparability of the low-thrust acceleration and the
second degree tesseral harmonic which occurs at T = 90 mN. For this reason, from this
point, a trajectory is destined to be either permanently captured or temporary captured into
resonance or escaped from the resonance. Fig. 18 isolates two cases of escape and temporary
capture with T = 90 mN and shows their semimajor axis and inclination evolution. These
cases are characterized by an initial phase angle of 0 and 60◦.

The inclination in the escape case increases, leading to a final inclination value of approxi-
mately 92◦ (on the right plot of Fig. 18). On the other hand, in the temporary capture scenario,
the inclination decreases and results in a final inclination value of approximately 83◦ (on the
left plot of Fig. 18). This changes the value of the inclination of about 7◦. A similar effect
was found when the Moon was temporary captured into resonance with Earth (Touma and
Wisdom 1998), during which the inclination was found to be changed by 10◦ with respect to
Earth’s equatorial plane.
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Fig. 18 Semimajor axis evolution over time (upper), in phase-space (middle) and inclination evolution over
time (bottom) for descent trajectories with T = 90 mN. The cases of temporary capture and escape are shown
on the left and right, respectively. In the upper and bottom plots, the 2:3 and 1:1 GTR locations are highlighted
by the black dashed lines. The trajectory lines are red when inside the resonance region

The probability of temporary capture is estimated as a function of the initial semimajor
axis value and thrust magnitude value and is shown in the matrix in Fig. 19. A histogram on
the left side of the figure displays the average probability of temporary capture into the 1:1
GTR for a fixed value of thrust magnitude.

It is observed that the temporary capture phenomenon occurs when the descent is per-
formed with higher thrust magnitudes. No temporary capture is observed at any altitude for
T = 20 mN. As the thrust magnitude increases to 30 mN and beyond, cases of temporary
capture arise if the initial semimajor axis is close to the GTR. A progressive increase in the
average probability of temporary capture from approximately 1.2–4.3% has been observed
as the thrust magnitude increases from 40 to 50 mN. Finally, this probability grows to 8.6%
for T = 90 mN. The matrix of the probability of permanent GTR capture is shown in Fig. 20.
As in Fig. 19, a histogram is present on the left showing the average value of the probability
of permanent capture for a fixed value of thrust magnitude.
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Fig. 19 Matrix of the probabilities of temporary capture into 1:1 GTR for different thrust magnitude values
and initial semimajor axis. On the left, is a histogram of the mean value of the probability of temporary capture
into GTR for each thrust magnitude value

Fig. 20 Matrix of the probabilities of permanent capture into 1:1 GTR for different thrust magnitude values
and initial semimajor axis. On the left, is a histogram of the mean value of the probability of permanent capture
into GTR for each thrust magnitude value
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This figure confirms the conclusions of Delsate (Delsate 2012) that when the motion
is close to the GTR, e.g., at 600km, it is safer to descend with a thrust higher than 50
mN. By comparing the histogram plots of Fig. 19 and Fig. 20, it is concluded that, for
thrust values larger than 50 mN, the probability of temporary capture increases and the
probability of permanent capture decreases. Boumchita et al. (2023) shows that for very
low-thrust magnitudes the probability of permanent capture is almost constant. So, the rise in
temporary captures can be attributed to an increase in cases transitioning from permanent to
temporary capture as the magnitude of low-thrust acceleration becomes comparable to that
of the gravitational acceleration.
The correlation between the probability of permanent capture and thrust magnitude is ana-
lyzed to evaluate the relationship between the two datasets. The correlation coefficient, which
indicates the linear dependence between two datasets, ranges from +1 to -1. A positive coef-
ficient represents a positive linear dependence, meaning an increase in one variable results
in an increase in the other, while a negative coefficient represents a negative linear depen-
dence. The closer the coefficient is to +1 or -1, the stronger the linear relationship between
the two datasets (Fisher 1970). The decision to focus on a linear relationship, rather than a
higher-order one, is driven by the limited dataset available and the expectation that a linear
regression could capture themajority of any existing correlation.Here, thePearson correlation
coefficient (Press et al. 1990) is used, which is defined as

ρ(Pr,T) = 1

N − 1

N∑

i=1

(
Pri − μPr

ηPr

) (
Ti − μT

ηT

)
, (17)

where N is the dataset vector length,μPr and ηPr are the mean and standard deviation of the
vector of the probability of permanent capture Pr, respectively, μT and ηT are those of the
vector of thrust magnitudes T, and Pri and Ti are the i-th component of the vectors Pr and
T, respectively. Depending on the value of the coefficient between the datasets, the following
considerations are made (Schober et al. 2018):

• if | ρ |< 0.2 there is no linear correlation;
• if 0.2 <| ρ |< 0.4 the linear correlation is weak;
• if 0.4 <| ρ |< 0.6 the linear correlation is moderate;
• if 0.6 <| ρ |< 0.9 the linear correlation is strong;
• if | ρ |> 0.9 the linear correlation is very strong.

The left plot in Fig. 21 shows the value of the correlation coefficient between the probability
of permanent capture and thrust magnitude for each value of the initial semimajor axis.

All the coefficients are negative indicating the existence of a negative linear correlation
between the probability of permanent capture and thrust magnitude. One case presents no
correlation, one case presents a weak correlation, four cases present a moderate correlation,
and three cases strong correlation. So, themajority of cases present amoderate/strongnegative
correlation indicating that, generally, as the thrust magnitude increases the probability of
permanent capture into 1:1 GTR decreases, as shown in the right plot of Fig. 21 for the case
of initial semimajor axis of 750km.

Figure 22 shows the cases where the spacecraft is permanently captured into 1:1 GTR as
a function of the initial true anomaly phase and the thrust magnitudes ranging from 20 to 90
mN, with an initial semimajor axis of 600km. Each black point represents a specific perma-
nent capture case corresponding to a given thrust magnitude value and initial true anomaly.
Notably, these capture cases display an approximate phase shift of about 180◦, particularly as
thrust magnitude increases. At lower thrust levels, the capture cases are sparse and clustered

123



    3 Page 24 of 33 W. Boumchita, J. Feng

600 700 800 900 1000

Initial SMA [km]

-1

-0.5

0

0.5

1
C

or
re

la
tio

n 
co

ef
fic

ie
nt

s

0.02 0.04 0.06 0.08 0.1

Thrust [N]

0

2

4

6

8

10

12

14

P
ro

ba
bi

lit
y 

[%
]

Linear Fit

Fig. 21 The correlation coefficient between the different values of thrust and probabilities of permanent capture
at different initial semimajor axis values (left). The probabilities of being permanently captured into 1:1 GTR
when the descent starts at 750km with different values of thrust (right)
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Fig. 22 Permanent capture cases (black dots) as a function of the initial true anomaly and thrust magnitude
and with a0 = 600 km

in narrow intervals; however, as thrust magnitude grows, these cases converge into fewer but
broader groups. At higher thrust magnitudes, only two groups remain, approaching the initial
true anomaly values of approximately 120◦ and 300◦.

4.2 Sensitivity on the spacecraft’s mass

During Dawn’s cruise phase, approximately half of the propellant was consumed, resulting
in an approximate wet mass of about 1000kg at its arrival at Vesta (Rayman et al. 2006). In
Fig. 23, the gray area represents the various low-thrust accelerations for different values of
the spacecraft’s mass.
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Fig. 23 Order of magnitude of
the different perturbations to
which Dawn is subject to
different orbital radii. The
positions of the 1:1 and 2:3 GTRs
have been highlighted. The gray
area represents the interval of
accelerations of the thrust
considering different mass
values. The upper limit is the
acceleration with the m = 800
kg, while the lower limit
corresponds to m = 1200 kg
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Fig. 24 Probabilities of permanent capture into GTRs around Vesta with m = 1200 kg at different initial
semimajor axis. For each value of the semimajor axis, the first number is the probability of permanent capture
into 1:1 GTR, and the second value is the probability of being permanently captured into 2:3 GTR

The lower and upper bounds of that area represent the accelerations when the mass is
1200 and 800kg, respectively, with T = 20 mN. So,

amin
LT =20 × 10−3

1200

N

kg
= 1.6 × 10−8 km

2

s
(18)

amax
LT =20 × 10−3

800

N

kg
= 2.5 × 10−8 km

2

s
. (19)

All the low-thrust accelerations remain much lower than the acceleration due to the second
degree and order harmonic, indicating that no temporary capture phenomena are expected in
this part of the study. The different probabilities of permanent capture for different values of
the semimajor axis are represented in Fig. 24 for m = 1200 kg.
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Fig. 25 Capture cases (black dots) as a function of the initial true anomaly and initial semimajor axis and with
m = 1200 kg. The lower semimajor axis interval considers the cases of permanent capture into 1:1 GTR;
while the upper interval considers the cases of capture into 2:3 GTR

The analysis reveals that the probability of permanent capture into the 2:3 GTR is highest
near its location and diminishes as the initial semimajor axis increases. Concurrently, as the
probability of permanent capture into 2:3 GTR rises, the probability of permanent capture
into the 1:1 GTR experiences a dip around the location of the 2:3 GTR. Figure 25 shows
the cases which are permanently captured into 2:3 GTR and 1:1 GTR for m = 1200 kg
for different values of the initial phase of true anomaly in the interval between 0 and 360◦.
The lower interval of the semimajor axis, ranging from 600 to 1000km, focuses on cases
of permanent capture into the 1:1 GTR. Instead, the upper interval of the semimajor axis is
dedicated to examining cases of permanent capture into the 2:3 GTR.

For lower initial semimajor axis values, cases of permanent capture into the 1:1 GTR
are clustered into small groups, becoming increasingly sparse as the initial semimajor axis
expands, as the gravitational perturbations act on the trajectory. In the context of the 2:3 GTR,
the capture cases predominantly occur around the initial phase angle of 270◦ and within the
range between 240 to 300◦. As a consequence, the cases captured into 2:3 GTR will not be
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Fig. 26 Evolution of the probability of permanent capture into 2:3 (in blue) and 1:1 (in red) GTRs for different
initial inclination values

captured into 1:1 GTR. It is interesting to notice that the capture into 1:1 GTR is characterized
by a phase shift of 180◦ (see Fig. 22), while in the cases of capture into 2:3 GTR (see Fig. 25)
this shift is not shown. This is a consequence of the phase-space structure of the two GTRs.
In particular, the 1:1 GTR is characterized by two resonance regions between σ = [0, 2π ],
while the 2:3 GTR is characterized by only one resonance region in the same resonance angle
interval.

4.3 Sensitivity on the initial inclination

The descent of the Dawn spacecraft to LAMO started from a polar orbit. In this section, the
effect of initial inclination on the probability of GTR capture is analyzed. The evolution of
the probability of permanent capture into the 1:1 and 2:3 GTRs, as a function of the initial
inclination in the interval of i0 = [50◦, 140◦], is shown in Fig. 26. The blue line represents the
probability of permanent capture into 2:3 GTR and the red line corresponds to the probability
of permanent capture into 1:1 GTR.

It is observed that if the initial inclination, i0 < 63◦, and e0 = 0, all the propagated
trajectories are permanently captured into 2:3 GTR. In Sinclair (1972), this phenomenon is
called “automatic entry into libration” and it occurs when the probability of capture is 100%.
Neishtadt Neishtadt (1975) discussed and motivated this mechanism for Saturn’s satellite
system, identifying the cause in the Hamiltonian’s singularity (e = 0). In fact, considering
the circular and equatorial case, the Hamiltonian of the 2:3 GTR (Delsate 2012) is

H2:3 = − μ2

2L2 − 21

2
eR2

e
μ4

L6C22 cos[3(M + ω) − 2θ − ω] + θ̇	. (20)

The same singularity is present in this case which brings about the “automatic entry into
libration” phenomenon. The second term of Eq. 20 depends explicitly on the eccentricity
and as e decreases, the contribution from the tesseral harmonic decreases and disappears
for e = 0. For i0 > 63◦, the probability of permanent capture into 2:3 GTR decreases,
while the probability of permanent capture into 1:1 GTR increases. When i0 is close to the
polar case, no trajectories are permanently captured into 2:3 GTR, while the probability of
permanent capture into 1:1 GTR reaches a value of 9.5%, which was estimated in Sect. 4.
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Fig. 27 Evolution of the semimajor axis in the case of e0 = 0 (top), e0 = 0.04 (middle) and e0 = 0.2
(bottom). The 1:2, 2:3 and 1:1 GTR locations are highlighted by the black dashed lines

The probability of permanent capture into 1:1 GTR remains almost constant for higher values
of i0 and has two peak values of about 12.6% between 110◦ and 120◦. For i0 > 120◦, the
probability of permanent capture into 1:1 GTR decreases until it reaches 0% at i0 = 130◦,
as retrograde orbits are less affected by the gravitational perturbation due to the high relative
velocity between the spacecraft and the asteroid (Olsen 2006; Hu and Scheeres 2008).

4.4 Sensitivity on initial eccentricity

This section explores how the trajectory is influenced by variations in initial eccentricity.
The nominal initial eccentricity for Dawn’s descent toward LAMO was set to 0. Fig. 27
shows the evolution of the semimajor axis for different initial phase angles and for initial
eccentricity values of 0, 0.04, and 0.2. These values are chosen to represent the scenarios of
circular, low, and high eccentricity orbits, respectively. As it will be discussed later in this
section, considering eccentricity values higher than 0.2 will not bring about valuable insights
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Fig. 28 Evolution of the semimajor axis in the case of an initial eccentricity of 0.2 of a trajectory temporary
captured into 2:3 GTR. The 1:2, 2:3, and 1:1 GTR locations are highlighted by the black dashed lines

due to the high instability characteristics of highly eccentric orbits. To better understand the
evolution of each trajectory, distinct colors (randomly assigned) are used for each trajectory,
allowing the identification of specific cases of interest.

It is observed that increasing the initial eccentricity increases the risk of the spacecraft
being permanently captured into the 2:3 GTR as shown in the middle plot of Fig. 27. As
the initial eccentricity reaches the value of 0.2, the trajectory evolution is characterized by a
large degree of instability as shown in the bottom plot of Fig. 27. For e0 = 0.2, the following
effects can be identified: the 1:2 GTR has a noticeable effect; the trajectories captured into
2:3 GTR are susceptible to both the cases of temporary (see Fig. 28) and permanent capture;
finally, the trajectories have a probability of being temporary and permanently captured into
1:1 GTR.

Given these instability issues, discussing the probability of capture into a GTRmay not be
meaningful. Therefore, this section focuses on the evolution of dynamics for different initial
eccentricity cases, rather than on the probability of capture into different GTRs. Since the
2:3 GTR has a strong effect on the eccentricity evolution, it is expected that the trajectories
captured into this resonance are highly unstable. The instability effects are evident in the
semimajor axis evolution in the cases of e0 = 0.04 and e0 = 0.2. In the first case, after about
25 days inside the 2:3 GTR, the semimajor axis evolution is characterized by high amplitude
oscillations; in the second case, the semimajor axis oscillates after about 20 days after the
trajectory is captured into 2:3 GTR. To a lesser extent, instability effects are also present
in the trajectories captured into 1:1 GTR (see last 10 days of the bottom plot of Fig. 27).
Finally, comparing the middle and bottom plots of Fig. 27, it is noted that the oscillations
of the semimajor axis inside the 2:3 GTR increase in amplitude as the initial eccentricity
increases. This phenomenon can be explained by examining the Hamiltonian corresponding
to the 2:3 GTR in the polar case up to the first order in eccentricity (Delsate 2012).

H2:3 = − μ2

2L2 − 15

8
R3
e
μ5

L8 [C32 sin(σ − �) − S32 cos(σ − �)]

−21

8
eR2

e
μ4

L6C22 cos(σ − ω − �) + θ̇	, (21)
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where σ = 3(M+ω+�)−2θ . Specifically, the effects of themain harmonic associated with

the 2:3 GTR, H32 = − 15
8 R3

e
μ5

L8 [C32 sin(σ − �) − S32 cos(σ − �)], and the second degree

and order tesseral harmonics, H22 = 21
8 eR

2
e

μ4

L6C22 cos(σ − ω − �), should be considered.
As e0 increases, H22 has a greater influence on the dynamics, and the resonance region
corresponding to the 2:3 GTR expands. The dominant influence of H22 with respect to H32

is explained by analyzing the magnitude of the coefficients of each term. In the case of Vesta,
the coefficients from H22 are over three times larger with respect to the one in H32.

5 Conclusions

A comprehensive investigation is performed in this study to assess the effects of 1:1 and 2:3
GTRs on the semimajor axis, eccentricity, and inclination. The dynamical model includes the
gravitational field of Vesta using spherical harmonics approximation up to the fourth degree
and order and the low-thrust acceleration that is assumed to be opposite to the spacecraft’s
velocity vector direction. It is observed that the effect of both GTRs considered in this work
influences the evolution of the semimajor axis; the eccentricity evolution is mostly influenced
by the 2:3 GTR which results in a large variation of its value when the spacecraft crosses
the 2:3 GTR; finally, the inclination is mostly influenced by the 1:1 GTR, decreasing its
mean value over time as the spacecraft crossed the GTR. In addition, the effects of the
spacecraft parameters (thrust magnitude and mass) and the initial orbital inclination on the
probability of permanent and temporary capture into 1:1 GTR are also investigated. It is
determined that the probability of permanent capture into 1:1 GTR generally decreases as
the thrustmagnitude. In particular for high thrust cases, the phenomenon of temporary capture
is identified and its probability increases as the thrust magnitude increases. Additionally, it
is observed that spacecraft with high mass values is at risk of being permanently captured
into 2:3 GTR. Then, it is found that for circular orbits with initial inclinations lower than 63◦
all trajectories automatically enter into libration, and as the initial inclination increases, the
probability of permanent capture into 2:3 GTR decreases and the probability of permanent
capture into 1:1 GTR increases, reaching its maximum between 110◦ and 120◦, after which
that probability decreases to zero. Finally, the trajectory evolution is examined for null, low,
and high initial eccentricity values. The analysis reveals that as initial eccentricity increases,
the effects of the 2:3 GTR become more pronounced and cases of permanent capture into 2:3
GTR occur. Additionally, in cases of large initial eccentricity, the influence of other GTRs,
such as the 1:2 GTR, becomes evident. For trajectories permanently captured into the 1:1
GTR, instability is observed but is generally more restricted in magnitude compared to those
of trajectory permanently captured into the 2:3 GTR. It can be concluded that the case of
circular and polar orbits is one of the safest options for spacecraft descent. In the future,
additional investigations are recommended to design strategies for effectively leveraging
GTR to achieve a desired final orbital configuration while minimizing fuel consumption.
Additionally, for computational efficiency, it is recommended to develop efficient analytical
or semi-analytical tools for estimating the probability of permanent capture into GTR.
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