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11 

Models for the evolution of magma mush zones are of fundamental importance for 12 

understanding magma storage, differentiation in the crust, and melt extraction 13 

processes that prime eruptions. These models are underpinned by calculations of the 14 

permeability of the evolving crystal frameworks in the mush, which controls the rate of 15 

melt movement relative to crystals. Existing approaches for estimating the crystal 16 

framework permeability do not account for crystal shape. Here, we represent magma 17 

mush crystal frameworks as packs of hard cuboids with a range of aspect ratios, all at 18 

their maximum random packing. We use numerical fluid flow simulation tools to 19 

determine the melt fraction, specific surface area, and permeability of our 3D digital 20 

samples. We find that crystal shape exerts a first-order control on both the melt fraction 21 

at maximum packing, and on the permeability. We use these new data to generalize a 22 

Kozeny-Carman model in order to propose a simple constitutive law for the scaling 23 

between permeability and melt fraction that accounts for crystal shape in upscaled mush 24 
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dynamics simulations. Our results show that magma mush permeability calculated using 25 

a model that accounts for crystal shape is significantly different compared with models 26 

that make a spherical crystal approximation, with key implications for crustal melt 27 

segregation flux and reactive flow. 28 

 29 
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 31 

INTRODUCTION 32 

Substantial volumes of melt are stored in magma mush regions throughout the crust (Hildreth, 1981; 33 

Sparks & Cashman, 2017). Models for the evolution of these magma mush zones are of fundamental 34 

importance for magma storage timescales, differentiation in the crust, and melt extraction processes that 35 

prime eruptions (Bachmann & Bergantz, 2004; Jackson et al. 2018). The initial assembly of crustal 36 

magma bodies requires emplacement of, and percolative reactive flow through, crystal mushes (Jackson 37 

et al. 2018). The eruption of crystal-poor magmas requires that melts be separated from these mushes 38 

(Bachmann & Bergantz, 2004). While the details of these dynamics, the controlling processes, and the 39 

overall rates, are all poorly constrained and discussed widely (Petford 2020; Holness 2018), in most 40 

models, it is the permeability of the interlocking crystal framework that is a first-order rate-limiter. 41 

Leading quantitative models for melt percolation dynamics on crystal scales use variations on a Kozeny-42 

Carman permeability law for which the crystals are assumed to have a single radius (Petford, 1995; 43 

Bachmann & Bergantz, 2004; Jackson et al. 2018). Therefore, these constitutive models for mush 44 

permeability cannot account for crystal shape or the difference in percolative hydraulic properties 45 

between one mush and another if the phenocrysts are of similar size.  46 

Petrological and geochronological evidence suggests that melt percolation and extraction prior to the 47 

eruption of crystal-poor rhyolites occurs in transient and episodic events rather than continuously over 48 

the thermal lifespan of the mush (e.g. Allan et al., 2013). In most known cases, the extraction timescales 49 
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derived from petrological methods are rapid compared with simple gravitational compaction processes, 50 

leading to models that involve additional heat by mafic recharge magmas (e.g. Huang et al. 2015), 51 

and/or applied directional stresses and strain (Clemens & Petford, 1999; Bachmann & Bergantz 2008; 52 

Holness 2018) resulting in anisotropic dilation of the mush (Liu & Lee, 2021). Differentiating between 53 

one mechanism and another, or developing predictive frameworks for melt segregation timescales, all 54 

depend on rigorous constitutive models for the permeability of real mushes (e.g. Bachmann & Bergantz, 55 

2004), which remains poorly investigated. A key challenge is that the 3D shape of crystals is likely to 56 

affect both the melt fraction at maximum crystal packing in the mush and the permeability at that melt 57 

fraction, such that models should seek to constrain both effects simultaneously. 58 

 59 

METHODS: PERCOLATION OF MELTS THROUGH MAGMA MUSH 60 

Melt extraction rates are given by the volumetric melt flux through a mush, 𝑄, which in turn is governed 61 

by Darcy’s law	∇𝑃 = −𝜇!𝑄/(𝑘𝐴) where ∇𝑃 is the driving melt pressure gradient, 𝜇! is the melt shear 62 

viscosity, 𝑘	is the permeability of the mush, and 𝐴 is the area normal to the extraction direction. 63 

Throughout we make an isotropic assumption, such that mush permeability can be treated as a pseudo-64 

scalar and equal in all directions, in line with previous work (e.g. Bachmann & Bergantz, 2004). 65 

Previous models have used simple scaling laws for 𝑘 that assume all crystals are spherical and can be 66 

defined by their radius (e.g. Bachmann & Bergantz, 2004; Huber et al. 2010; Hartung et al. 2019; Floess 67 

et al. 2019; Pistone et al. 2020). The most widely used model for 𝑘 is the Kozeny-Carman equation, 68 

where 𝑘 as a function of the solid volume fraction 𝜙, the specific surface area of the network 𝑠, and a 69 

dimensionless constant 𝐶 (c.f. Röding et al. 2020; Vasseur et al. 2021) 70 

 71 

𝑘 =
(1 − 𝜙)"

𝐶𝑠#
. 

Eq. 1 

 72 
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Using the specific surface area for volumes packed with monodisperse spheres of radius 𝑅 gives 𝑠 =73 

3(𝜙)/𝑅, which results in 𝑘 = (1 − 𝜙)"𝑅#/[9𝐶(𝜙)#] (e.g. Hersum et al., 2015; Lui and Lee, 2021). 74 

𝐶 = 5 has been found to be a typical value for most granular systems (Vasseur et al. 2021; Röding et 75 

al. 2020; Torquato, 2013). However, the problem remains that the solid crystals in silicic mushes are 76 

often dominated by non-spherical crystals, and indeed may involve highly anisometric crystals such as 77 

high aspect ratio plagioclase (see Fig. 1A) or amphibole. Here, our central aim is to find a form of Eq. 78 

1 that accounts for 3D crystal shape, and that can be used widely in mush evolution models. 79 

We use numerical periodic domains generated by Liu et al. (2017) of packed and randomly arranged 80 

solid cuboids to approximate magma mush, which is a geometry that is closer to natural crystal shapes 81 

than spheres (c.f. Fig. 1A). Our cuboids have axis lengths 𝑎, 𝑏, and 𝑐 and length aspect ratios 𝑟$ = 𝑐/𝑎 82 

and 𝑟# = 𝑏/𝑎. The cuboids have a square cross-section such that 𝑎 = 𝑏 (hence, 𝑟# = 1) and the domains 83 

are produced at their random maximum packing, given by volume fraction 𝜙 = 𝜙′ (Figure 1B). Liu et 84 

al. (2017) used order parameters to ensure that the packs are isotropic and disordered (i.e. no fabrics or 85 

cuboid preferred arrangements are found). We use a marching cubes algorithm to determine the specific 86 

surface area of each cuboid pack (Lorensen & Cline 1987), and we use LBflow – a numerical lattice-87 

Boltzmann fluid flow simulation tool (Llewellin, 2010a, 2010b) – to characterise steady-state fluid flow 88 

through the inter-cuboid space and output the permeability of each cuboid domain (details of the 89 

numerical analysis are provided in the Data Repository).  90 

 91 

RESULTS AND ANALYSIS 92 

The results of our permeability determinations show that the permeability	is a function of the melt 93 

fraction 1 − 𝜙 and the specific surface area	as predicted by Eq. 1, which is a function of the crystal 94 

aspect ratio 𝑟$. All raw results are provided in the Data Repository. In order to analyze these results in 95 

a unified manner across a range of crystal sizes, we introduce the dimensionless permeability 𝑘> =96 

𝑘/𝑘% = 𝑘𝑠#/(2𝜙), where 𝑘% is a generalized Stokes permeability (Vasseur & Wadsworth, 2017; 97 

Vasseur et al. 2020) and the specific surface area is measured directly for our packs. Our data for the 98 
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normalized permeability 𝑘> collapse to a single trend as a function of melt fraction, regardless of 𝑟$ and 99 

crystal size (Fig. 2A), indicating that our non-dimensional approach captures these effects. In this 100 

normalized space, Eq. 1 becomes universal for any crystal shape and is 𝑘> = (1 − 𝜙)"/(2𝐶𝜙); we find 101 

good agreement between the model and the cuboid dataset with the classic 𝐶 = 5 (Torquato, 2013). To 102 

calibrate this further, we compare our results with published permeability data for packs of hard spheres 103 

normalized in the same way (Fig 2A). The excellent agreement we see between the numerical data and 104 

the model is used to validate Eq. 2 as a permeability model applicable to any particle/crystal shape as 105 

long as 𝑠 is known. We note that in the dilute limit as 𝜙 → 0, the sphere data deviate from Eq. 1, which 106 

is explored and modeled by Vasseur et al. (2021) using a dilute expansion of 𝑘% (see Data Repository). 107 

The analysis for 𝑘> relies on our determination of the specific surface area	for each sample, which in 108 

turn depends on the aspect ratio 𝑟$ and the melt fraction. In order to render this of wide utility in systems 109 

for which 𝑠 is not known a priori, we test our model using the theoretical specific surface area of a pack 110 

cuboids with interstitial melt fraction (Eq.2; see Data Repository for derivation). 111 

 112 

𝑠 =
2𝜙
𝑎 B1 +

1
𝑟$
+
1
𝑟#
D 

Eq. 2 

 113 

which reduces to 𝑠 = 2𝜙(2 + 1/𝑟$)/𝑎 when 𝑟# = 1 (square-ended cuboids used here). As with 𝑘, we 114 

can compare our results for 𝑠 with the prediction of Eq. 2 across all cuboid packs used here, by making 115 

Eq. 2 scale-independent via the normalisation �̅� = 𝑠𝑎/𝜙, which reduces Eq. 2 to �̅� = 4 + 2/𝑟$. 116 

We find that our data for 𝑠, converted to �̅�, collapse to a single trend, which matches the prediction of 117 

this �̅� model (Fig. 2B). This shows that the normalized specific surface area �̅� decreases as the cuboids 118 

move from oblate (platy-habit such that  𝑟$ ≪ 1) to prolate (needle-habit such that 𝑟$ ≫ 1), meaning 119 

that rod-like crystals have a lower specific surface area at their maximum packing. Hence, with 120 

reference to Eq. 1, the permeability of maximally packed mush consisting of prolate crystals will be 121 

higher than that of a mush made from oblate crystals. The result presented in Fig. 2B (i.e. the success 122 
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of Eq. 2 in describing the specific surface area of the cuboid packs used here) suggests that the incidence 123 

of planar cuboid-cuboid contact surfaces is rare, and therefore justifies our use of Eq. 1 and the 124 

generalization of permeability by 𝑘 ∝ 1/𝑠#. We propose that Eq. 2 used with Eq. 1, validated herein, 125 

represents a universal model for the permeability of packs of cuboids as a proxy for the permeability of 126 

magma mush, and given in expanded dimensional form by 127 

 128 

𝑘 =
(1 − 𝜙)"𝑎#

4𝐶𝜙# B1 +
1
𝑟$
+
1
𝑟#
D
&#
. 

 

Eq. 3 

 129 

LOOSE MUSH VS MAXIMALLY PACKED MUSH  130 

Using Eq. 3, we can calculate the permeability of percolating mush using measured or estimated crystal 131 

aspect ratios and sizes for a given melt fraction thereby accounting for crystal shape. Crystal shape not 132 

only changes the permeability at a given melt fraction, but also strongly affects the maximum packing 133 

fraction itself. Mush maximum packing fraction 𝜙′ is a function of 𝑟$ (Fig. 3), and for 𝑟$ = 1 (cubes), 134 

there is a local minimum in 𝜙′, and local maxima at 𝑟$ ≈ 0.7 and 𝑟$ ≈ 1.5. Our results are consistent 135 

with the general form for previous results for loose random packs of non-spherical particles (e.g. Donev 136 

et al. 2004; Wouterse et al. 2007; Rudge et al. 2008; Delaney et al. 2010; Meng et al. 2016; Liu et al. 137 

2017). As crystals become highly oblate (𝑟$ ≪ 0.7) or highly prolate (𝑟$ ≫ 1.5), 𝜙′ drops, and is 138 

symmetric in log(𝑟$) around 𝑟$ = 1. The function 𝜙' = 𝜙(' (𝐴𝑥 + 1) exp(−𝐵𝑥) matches our data, 139 

where 𝜙(' = 0.641 is the numerically determined value of 𝜙′ at 𝑟$ = 1, 𝑥 = |log$(	(𝑟$)|, and 𝐴 = 1.26 140 

and 𝐵 = 1.04 are best-fit constants.  141 

At high melt fraction, crystals do not interact or communicate force (i.e. a ‘suspension’). Conversely, 142 

at the random maximum packing of crystals, a mush can support load and transmit force through the 143 

crystal framework but cannot densify further by compaction or other processes without deformation or 144 

re-organisation of the crystal framework. The transition from ‘suspension’ to a random maximally 145 
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packed mush can be termed the ‘loose mush’ region, and we posit that the percolative extraction of melt 146 

begins when crystal fractions increase to a critical value 𝜙 = 𝜙). We interpret 𝜙) to be the lowest crystal 147 

volume fraction at which crystal-crystal force interactions can occur. Mueller et al., (2010) show that 148 

𝜙) ≈ 0.8𝜙′ for all 𝑟$. Using this and our model for how the maximum packing varies with crystal shape, 149 

we can quantitatively define the ‘loose mush’ region. Furthermore, using our general model (Eq. 3), we 150 

can predict the permeability at 𝜙) and 𝜙′ for all 𝑟$. We note here that 𝜙) is an approximate and indicative 151 

value, and that granular dynamics simulations demonstrate that a single melt fraction may be 152 

insufficient to demark the boundary between ‘suspension’ and ‘loose mush’ regimes (Deng et al. 2021). 153 

Regardless, whatever definition of a lower-bound on 𝜙 one places to demark ‘loose mush’, our model 154 

can predict 𝑘 for that 𝜙. 155 

In Fig. 3 we show the results of our model (Eq. 3) in two modes of application. First, we show the 156 

general results of our permeability model for any melt fraction and a range of crystal shapes (Fig. 3; 157 

𝑎 = 1	mm). Second, we show the results of the model specifically for the upper and lower bounds on 158 

the ‘loose mush’ region, defined as when the crystal volume fraction is between the onset of crystal-159 

crystal interactions, and the random maximum packing 𝜙) < 𝜙 < 	𝜙′. This second mode of application 160 

of Eq. 3 allows us to deconvolve the two principal effects predicted here: (1) the effect of 𝑟$ on  𝜙′ or 161 

𝜙), and (2) the resultant effect of 𝑟$ on the permeability. Fig. 3 shows that crystal shape can play a 162 

substantial role in controlling the absolute value of the permeability in these ‘loose’ simulated crystal 163 

mushes. A limitation of this model is that anisotropy is not considered, and that in nature, evolution of 164 

mush from 𝜙) to 𝜙' may well involve crystal rearrangements and fabric development (see Liu & Lee, 165 

2021).  166 

 167 

IMPLICATIONS: RATES OF PERCOLATION THROUGH MAGMA MUSH 168 

In this study, we have used packs of square-ended cuboids, however, via Eq. 3 our model is extensible 169 

to crystals of arbitrary 3D shape. In order to apply our model to mush with real crystals, we use 170 

published data for plagioclase phenocryst shapes (Duchene et al., 2008), wherein 𝑎, 𝑏, and 𝑐 are 171 
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measured directly (𝑎:𝑏:𝑐 = 1: 6.5: 9.6; Duchêne et al. 2008). In all cases, we normalize all measured 172 

crystal shapes so that they are relative to 𝑎, which we take to be the shortest of the axes. We note that 173 

this approach does not alter 𝑟$ and 𝑟#. Then we assign 𝑎 = 1	cm, in order to compute the permeabilities 174 

of mushes that comprise those shapes. Using this workflow, we find that for a given melt fraction, the 175 

permeabilities of the plagioclase mush fall within an order of magnitude of each other. Importantly, at 176 

a melt fraction of 0.5, these datasets occur at predicted permeabilities up to a maximum of 1.5 orders 177 

of magnitude greater than the prediction of the Jackson et al. (2018) scaling (Fig. 4). Since such models 178 

predict the flux of melt to the shallow crust, we posit that our model has implications for overall melt 179 

accumulation timescales. Our model (Eq. 3) can be used to predict the melt extraction rates, fluxes, and 180 

characteristic timescales, and, importantly, our results suggest that crystal shape plays a first-order role 181 

in melt extraction because the timescales 𝜆 are proportional to permeability 𝜆 ∝ 𝑘&$ ∝ 𝑠#. Mush 182 

permeability exerts a first order control over the rates of this process, and hence crystal shape effects 183 

need to be accounted for using our model. 184 

  185 
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Figure 1. Mush texture compared with our simulated mush. (A) Ca-concentration map demonstrating 272 

the anisometric and cuboidal nature of plagioclase crystals (teal) with interstitial quartz (black) and 273 

clinopyroxene (grey; reproduced with permission from Holness et al., 2019, scalebar is 1 mm). (B) 3D 274 

visualization of a numerical cuboid pack (𝑟$ = 0.2) with the flow pattern at steady state represented in 275 

the melt phase (scalebar is 100 µm). 276 

 277 

  278 
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Figure 2. The permeability and specific surface area of the cuboid packs analyzed. (A) The normalised 279 

permeability 𝑘/𝑘% as a function of melt volume fraction 1 − 𝜙. The squares are the results from cuboid 280 

packs; the circles are for hard spheres (Vasseur et al. 2021) for validation and comparison. The solid 281 

curve represents our model using 𝐶 = 5. The dashed curve is a dilute expansion for the ‘suspension’ 282 

regime at high melt fraction (Vasseur et al. 2021). (B) The scaling for 𝑠 as a function of 𝑟$	for cuboids 283 

cast as the normalized �̅�.  284 

  285 
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Figure 3. (A) The maximum packing crystal volume fraction 𝜙' as a function of 𝑟$ (data from Liu et 286 

al., 2017) compared with our empirical model for 𝜙' (see text). The grey shaded area terminates against 287 

the upper bound of 𝜙' and a lower bound at 𝜙) = 0.8𝜙'. (B) The model (Eq. 3) solved using 𝑎 = 1	cm. 288 

The black curves represent the result for each aspect ratio at the specific maximum packing value (see 289 

A). The cartoons on panel A are a visual representation of the mush at different crystal fractions. 290 

 291 
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Figure 4. The model (Eq. 3) solved using input 3D crystal shapes for plagioclase (Duchene et al., 2008) 293 

phenocrysts (𝑎 = 1	cm). Our model is compared with the scaling from Jackson et al. (2018) 𝑘 =294 

𝑎#𝛽𝜙+ where 𝛽 = 1/125 and 𝛼 = 3 are the parameters proposed (Jackson et al. 2018). We also give 295 

a classical Kozeny-Carman model of the form 𝑘 = (1 − 𝜙)"𝑎#/[150(𝜙)#] (e.g. Torquato 2013). Both 296 

of these comparisons underpredict plagioclase mush permeabilities given here. The vertical line at 𝜙 =297 

0.35	is for comparison across models (Fig. 3A). 298 
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