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A B S T R A C T

In this work we consider theoretically the problem of a Newtonian droplet moving in an otherwise quiescent
infinite viscoelastic fluid under the influence of an externally applied temperature gradient. The outer fluid is
modelled by the Oldroyd-B equation, and the problem is solved for small Weissenberg and Capillary numbers
in terms of a double perturbation expansion.
We assume microgravity conditions and neglect the convective transport of energy and momentum. We derive
expressions for the droplet migration speed and its shape in terms of the properties of both fluids. In the
absence of shape deformation, the droplet speed decreases monotonically for sufficiently viscous inner fluids,
while for fluids with a smaller inner-to-outer viscosity ratio, the droplet speed first increases and then decreases
as a function of the Weissenberg number. For small but finite values of the Capillary number, the droplet speed
behaves monotonically as a function of the applied temperature gradient for a fixed ratio of the Capillary and
Weissenberg numbers. We demonstrate that this behaviour is related to the polymeric stresses deforming the
droplet in the direction of its migration, while the associated changes in its speed are Newtonian in nature,
being related to a change in the droplet’s hydrodynamic resistance and its internal temperature distribution.
When compared to the results of numerical simulations, our theory exhibits a good predictive power for
sufficiently small values of the Capillary and Weissenberg numbers.
. Introduction

Motion of bubbles and droplets through fluids with various rheolog-
cal properties is one of the fundamental problems of fluid mechanics.
ts cornerstone is the work of Hadamard–Rybczyńsky [1,2], who cal-
ulated analytically the speed of a buoyancy-driven droplet of a New-
onian fluid moving inside another Newtonian fluid. The Hadamard–
ybczyńsky theory, which assumed a spherical droplet shape and ne-
lected inertia, has since been extended to deformable droplets [3–6],
o include the effects of inertia (e.g., see [7] and references therein),
nd to study thermocapillary migration of bubbles and droplets in an
xternal temperature gradient [8–13].

Our understanding of the viscoelastic analogue of the same problem
s significantly less developed, and mostly limited to experimental
see, e.g., [14–20]) and numerical studies (see, e.g., [21–25]). While
roviding detailed information on the structure of the flow, shape of
he droplet, and its migration speed, such studies seldom lead to a
hysical insight into the interplay of viscoelasticity, surface tension,
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and the externally applied driving force. Such insight can more readily
be obtained from an analytical study of the same problem. When
one of the fluids is viscoelastic, however, analytical analysis is often
made impossible by the strongly non-linear nature of the corresponding
equations of motion, and instead one has to resort to studying weakly
viscoelastic fluids. Important analytical results have thus been obtained
by employing various perturbation expansion techniques for the case
of bubbles and droplets undergoing buoyancy driven motion in weakly
viscoelastic fluids (see, e.g., [26–32]). Wagner et al. [26] calculated
the drag force exerted on the droplet moving through a Rivlin–Ericksen
fluid of grade three and the droplet’s shape. Tiefenbruck and Leal [29]
focused on the motion of a spherical gas bubble through a viscoelas-
tic fluid deriving an extended version of the Hadamard–Rybczyńsky
result for the terminal velocity. Quintana et al. [30] found that the
translational velocity of a droplet can be enhanced or hindered relative
to the Hadamard–Rybczyńsky value according to the degree of shear
thinning, and elongational and memory effects in the viscoelastic fluid.
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More specifically, it was found that for large droplet viscosities, shear
thinning and fluid memory cause an increase in the velocity, whereas
for very mobile droplet surfaces (i.e. for gas bubbles) the motion can be
accelerated or slowed down with respect to the Hadamard–Rybczyńsky
value depending on the relative influence of the memory and the elon-
gational properties of the viscoelastic phase. Chilcott and Rallison [31]
extended these studies to account for the finite extensibility of the
polymer molecules in the viscoelastic phase, while [32] investigated
experimentally and analytically the steady shape of a dilute polymer
solution droplet falling through a quiescent viscous Newtonian fluid.
Remarkably, [32] demonstrated that the dimpled shape displayed by
the droplet under some conditions could be reproduced analytically by
considering the axisymmetric Stokes flow past a non-Newtonian drop,
modelled as a Simple Fluid of Order Three.

To the best of our knowledge, at the time of preparation of this
work [33] the only analytical study about Marangoni migration of
droplets in the presence of viscoelastic effects was that of [34], who
considered the steady thermocapillary motion of an inviscid spherical
bubble under gravity. Neglecting the momentum and convective heat
transfer, [34] modelled the outer fluid by the Oldroyd-B constitutive
equation, restricting their analysis to weak viscoelasticity only. Their
results provide the force exerted by the fluid on the bubble and a
weakly viscoelastic correction to its terminal velocity originally de-
rived for pure Marangoni and mixed buoyancy-thermocapillary flows
by [8]. We should note however that since then, Vyas and Ghosh [35]
attempted to analyse the effect of an imposed temperature gradient
on the motion of a viscoelastic drop suspended in another viscoelastic
medium being driven by an external pressure gradient using asymp-
totic analysis. The authors consider a Phan-Thien Tanner constitutive
model for both fluids and predict that the viscoelastic properties of the
droplet strongly influence the drop deformation and migration velocity.
They also predict a maximum migration velocity for an intermediate
viscosity of the interior phase for Marangoni numbers larger than zero
(provided the droplet exhibits stronger viscoelasticity than the suspend-
ing medium), while for negative Marangoni numbers, the drop’s motion
can be completely arrested. Drop shape changes from prolate to oblate
are reported when viscoelastic stresses become significant.

In this work, we extend the previous study of [34] and consider
the migration of deformable Newtonian droplets in a weakly viscoelas-
tic fluid in the presence of thermal Marangoni effects. By neglecting
momentum and convective heat transfer, and assuming microgravity
conditions, we develop a perturbation theory to study analytically
the combined effects of non-uniform thermal distribution, leading to
interfacial tension gradients, and viscoelasticity. We show that vis-
coelasticity has significant implications for the velocity of the droplet,
which can either increase or decrease as a function of the applied
temperature gradient depending on the ratios of the viscosities and
thermal conductivities of the two fluids. We also demonstrate that
viscoelastic stresses universally stretch the droplet along the direction
of its migration, leading to fore-aft asymmetric shapes.

The remainder of the paper is organised as follows. In Section 2 we
state the problem we study, while in Section 3 we provide the equations
of motion and the boundary conditions. In Section 4 we outline the
procedure used to solve the equations of motion perturbatively and
derive the migration speed and the shape of the droplet. In Section 5
we discuss the physical implications of our results and compare them
to the numerical simulations of [25], while in Section 6 we present our
conclusions.

2. Statement of the problem

We consider a Newtonian droplet moving in an infinite viscoelastic
fluid. The two fluids are assumed to be perfectly immiscible. Although
we refer to the inner phase as the droplet, the analysis presented below
also applies to the case of a gas bubble. The droplet is assumed to be de-
formable, and has the volume of an equivalent sphere of radius 𝑅. The
2

Fig. 1. Schematic of a droplet in the presence of a temperature gradient, ∇∞𝑇 . The
centre of mass of the droplet is chosen as the origin of a spherical coordinate system.
The fluid at infinity moves with the velocity −𝑈 in the direction opposite to the applied
temperature gradient.

outer viscoelastic phase is characterised by a single Maxwell relaxation
time 𝜆, and a constant viscosity, 𝜂0 = 𝜂𝑠 + 𝜂𝑝, where 𝜂𝑠 and 𝜂𝑝 are the
Newtonian (solvent) and polymeric contributions, respectively, which
has been extensively used to model polymeric viscoelastic solutions of
constant viscosity [36] commonly known as Boger fluids. The droplet
phase has the viscosity 𝜂̃. In the following, tildes are used to denote
quantities referring to the inner phase.

The motion is generated by a constant temperature gradient, ∇∞𝑇 ,
which is maintained by external means (see Fig. 1). We assume that
the interfacial tension 𝜎 between the inner and the outer fluids is
a decreasing function of the temperature with a constant gradient
𝜎𝑇 = 𝜕𝜎∕𝜕𝑇 < 0 [37]. Furthermore, gravity is neglected throughout
this work. Under these assumptions, the droplet migrates along the
direction of the imposed thermal gradient by virtue of thermocapillary
effects [8]. Following common practice (see, for instance, [38]), we as-
sume that the remaining fluid properties are insensitive to temperature
variations, and that the droplet attains a steady-state velocity, 𝑈 . We
stress that this assumption can be violated under certain conditions,
especially in the case of the viscosity and relaxation time of non-
Newtonian fluids in the presence of large temperature gradients (see,
e.g., [39]), and, thus, care is needed when comparing our results to
experiments.

To proceed, we employ a spherical coordinate system, (𝑟, 𝜃, 𝜙), with
its origin being fixed at the centre of mass of the translating droplet,
see Fig. 1. In this coordinate system, the droplet is stationary, while the
fluid at infinity moves with the velocity −𝑈 in the direction opposite
to the applied temperature gradient.

The problem is rendered dimensionless by adopting 𝑅 as a refer-
ence length, 𝑈𝑇 = −𝜎𝑇∇∞𝑇𝑅∕𝜂0 as the velocity scale [38], and the
convective timescale 𝑡𝑐 = 𝑅∕𝑈𝑇 as the characteristic time. Stresses and
the pressure in the outer phase are normalised with the characteristic
viscous stress 𝜂0𝑈𝑇 ∕𝑅, while 𝜂̃𝑈𝑇 ∕𝑅 is used in the Newtonian phase.
A dimensionless temperature is defined as 𝜗(𝒓) = (𝑇 (𝒓) − 𝑇0)∕𝑅∇∞𝑇 ,
where 𝑇 (𝒓) is a local temperature and 𝑇0 is a reference temperature,
chosen to be the temperature of the unperturbed linear profile at the
current position of the droplet’s centre of mass; in these units the
temperature profile in the absence of the droplet is given by 𝜗(𝒓) =
𝑧 = 𝑟 cos 𝜃, see Fig. 1. The value of the surface tension at the reference
temperature, 𝜎(𝑇0), is used as a scale for the surface tension, leading to
the following dimensionless profile: 𝜎(𝒓𝑖) = 1−𝑈𝑇 𝜂0𝜗(𝒓𝑖)∕𝜎(𝑇0), where 𝒓𝑖
is a position at the interface; since the temperature is continuous across



Journal of Non-Newtonian Fluid Mechanics 324 (2024) 105168P. Capobianchi et al.

t
e

b
b

o

f

𝒖

𝒏

𝛼

𝒕

w
𝑟
a
o
e
l
p
a
t
t
p
E
c
w
t

a

𝒖

w
m
a
c
f

w
m

4

4

l
i
I
c
i

the interface, there is no need to distinguish between 𝜗(𝒓𝑖) and 𝜗̃(𝒓𝑖) in
his equation. All quantities presented below are dimensionless, unless
xplicitly stated otherwise.

The problem is characterised by the following dimensionless num-
ers. The importance of inertia over the viscous stresses is determined
y the Reynolds number, defined as 𝑅𝑒 = 𝜌𝑅𝑈𝑇 ∕𝜂0, where 𝜌 is the

density of the outer phase. The strength of heat advection set in motion
by the surface tension gradients as compared to thermal diffusion is
determined by the Marangoni number, 𝑀𝑎 = 𝑅𝑈𝑇 ∕𝐾, where 𝐾 is the
thermal diffusivity of the outer phase. The ratio of the typical magni-
tudes of viscous stresses and surface tension is given by the Capillary
number, 𝐶𝑎 = 𝜂0𝑈𝑇 ∕𝜎(𝑇0), that determines whether the droplet can be
significantly deformed by the ensuing motion. Finally, the magnitude of
elastic stresses is controlled by the Weissenberg number, 𝑊 𝑖 = 𝜆𝑈𝑇 ∕𝑅.

In what follows, we assume that both Reynolds and Marangoni
numbers are sufficiently small, and we neglect convective transport of
energy and momentum in the equations of motion.

3. Equations of motion and boundary conditions

Employing the dimensionless units introduced in Section 2, the
equations of motion for the viscoelastic outer phase read

𝛁 ⋅ 𝒖 = 0, (1)

𝛁𝑝 = 𝛁 ⋅ 𝝉 , (2)

𝛁2𝜗 = 0, (3)

while the governing equations for the Newtonian droplet phase are
given by

𝛁 ⋅ 𝒖̃ = 0, (4)

𝛁𝑝̃ = 𝛁 ⋅ 𝐃̃, (5)

𝛁2𝜗 = 0. (6)

Here, 𝒖 and 𝒖̃, 𝑝 and 𝑝̃, and 𝜗 and 𝜗, are the dimensionless velocities,
pressures, and temperatures of the outer and inner fluids, respectively;
𝐃̃ = 𝛁𝒖̃ + (𝛁𝒖̃)T, where T denotes transpose of a matrix. The total
dimensionless deviatoric stress in the outer fluid, 𝝉, comprises both
viscous and viscoelastic contributions, and is assumed to satisfy the
viscoelastic Oldroyd-B model [40,41]

𝝉 +𝑊 𝑖𝑑𝝉 = 𝐃 + 𝛽𝑊 𝑖𝑑𝐃, (7)

where 𝛽 = 𝜂𝑠∕𝜂0 is the ratio between the solvent and the total viscosities
of the outer phase, 𝐃 = 𝛁𝒖 + (𝛁𝒖)T, and

𝑑 (⋅) = 𝑑(⋅)∕𝑑𝑡 + 𝒖 ⋅ 𝛁 (⋅) − 𝛁𝒖T ⋅ (⋅) − (⋅) ⋅ 𝛁𝒖 (8)

defines the upper-convected derivative operator.
The velocity, pressure, and temperature fields in the outer and inner

fluids are related through a set of boundary conditions specified at
the droplet’s interface. In the following, we assume that all fields are
axisymmetric, i.e. no quantity depends on the azimuthal angle 𝜙. In
this case, the position of the interface can be defined as [3]

𝑟 = 1 + 𝜁 (𝜃) , (9)

where 𝜁 (𝜃) is an unknown function to be determined as a part of the
solution. Eq. (9) allows us to introduce the local normal

𝒏 =

(

1 + 𝜁 (𝜃),−𝜁 ′(𝜃), 0
)

√

(1 + 𝜁 (𝜃))2 + 𝜁 ′(𝜃)2
(10)

and tangential

𝒕 =
(

𝜁 ′(𝜃), 1 + 𝜁 (𝜃), 0
)

√

(1 + 𝜁 (𝜃))2 + 𝜁 ′(𝜃)2
(11)

vectors to the interface, where primes denote derivatives w.r.t. 𝜃. For a
spherical droplet, 𝜁 (𝜃) = 0, and the equations above trivially reduce to
3

h

𝒏 = 𝒆̂𝑟 and 𝒕 = 𝒆̂𝜃 , where 𝒆̂𝑟 and 𝒆̂𝜃 are the corresponding unit vectors
f our spherical coordinate system.

The boundary conditions employed in this work are given by the
ollowing set of equations

⋅ 𝒏 = 𝒖̃ ⋅ 𝒏 = 0, (12)

𝒖 ⋅ 𝒕 = 𝒖̃ ⋅ 𝒕, (13)

𝜗 = 𝜗̃, (14)

⋅ 𝛁𝜗 = 𝛾𝒏 ⋅ 𝛁𝜗̃, (15)

𝑝̃ − 𝑝 + 𝒏 ⋅
(

𝝉 − 𝛼 𝐃̃
)

⋅ 𝒏 = 1
𝐶𝑎

(1 − 𝐶𝑎𝜗)𝛁 ⋅ 𝒏, (16)

⋅
(

𝝉 − 𝛼 𝐃̃
)

⋅ 𝒏 = 𝒕 ⋅ 𝛁𝜗, (17)

here all quantities are evaluated at the position of the interface,
= 1 + 𝜁 (𝜃). Here, 𝛼 = 𝜂̃∕𝜂0 is the viscosity contrast between the inner
nd outer fluids, and 𝛾 denotes the ratio of the thermal conductivity
f the droplet phase to that of the suspending fluid. It should be
mphasised that the term 𝜗𝛁 ⋅𝒏 appearing in Eq. (16) represents a non-
inear coupling between the shape of the droplet and the temperature
rofile, making it impossible to solve the equations of motion exactly
t each order in 𝑊 𝑖. The kinematic conditions, Eqs. (12), imply that
he interface is stationary, while Eqs. (13), (14) and (15) ensure that
he tangential components of the velocity, temperature, and the tem-
erature flux are continuous across the interface. The final conditions,
qs. (16) and (17), ensure the balance of the normal and tangential
omponents of the local force per unit area acting on the interface; in
riting these equations, we have taken into account that the interfacial

ension is a function of the local temperature (see, e.g., [38]).
Far away from the droplet, the velocity and temperature fields must

ssume their unperturbed values

→ −𝑈
(

𝒆̂𝑟 cos 𝜃 − 𝒆̂𝜃 sin 𝜃
)

, and 𝜗→ 𝑟 cos 𝜃, as 𝑟→ ∞, (18)

here 𝑈 is the yet to be determined droplet speed, cf. Fig. 1. All fields
ust also be regular inside the droplet. Furthermore, the total force

cting on a neutrally buoyant droplet should be zero, with only the 𝑧-
omponent of the force providing a non-trivial condition. Formulated
or the inner phase, this requirement yields

∫

𝜋

0
𝑑𝜃 sin 𝜃

(

1 + 𝜁 (𝜃)
)

√

(

1 + 𝜁 (𝜃)
)2 + 𝜁 ′2(𝜃)

×
(

𝒆̂𝑟 cos 𝜃 − 𝒆̂𝜃 sin 𝜃
)

⋅
[

−𝑝̃ 𝐈 + 𝐃̃
]

⋅ 𝒏 = 0, (19)

where 𝐈 is the identity tensor.
Finally, the shape deformation given by Eq. (9) should satisfy two

constraints. The first is given by the droplet volume conservation

1
2 ∫

𝜋

0
𝑑𝜃 sin 𝜃

[

1 + 𝜁 (𝜃)
]3 = 1, (20)

hile the second stipulates that the position of the droplet’s centre of
ass is not changed by the deformation, yielding

∫

𝜋

0
𝑑𝜃 sin 2𝜃

[

1 + 𝜁 (𝜃)
]4 = 0. (21)

. Solution procedure

.1. Newtonian solution

Before proceeding to discuss our treatment of the viscoelastic prob-
em defined in Eqs. (1)–(19), here we briefly review the solution of
ts Newtonian analogue [8], obtained by setting 𝑊 𝑖 = 0 in Eq. (7).
n this case, the stress tensor in the outer fluid reduces to the viscous
ontribution, 𝝉 (0,0) = 𝐃(0,0), and the velocity, pressure, and temperature
n both fluids satisfy the same system of linear homogeneous equations;

ere, we use the superscript (0, 0) to denote the Newtonian solution.
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For an incompressible axisymmetric flow, it is convenient to re-
formulate the problem in terms of the Stokes streamfunctions 𝜓 (𝑟, 𝜃)
nd 𝜓̃ (𝑟, 𝜃) [42], defined through

𝑟 = − 1
𝑟2 sin 𝜃

𝜕𝜓
𝜕𝜃
, 𝑢𝜃 =

1
𝑟 sin 𝜃

𝜕𝜓
𝜕𝑟
, (22)

nd similar expressions for the inner fluid; Eqs. (22) ensure that the
ncompressibility condition is satisfied by definition [42]. In this for-
ulation, Stokes equations Eqs. (2) and (5) reduce to two identical
roblems in the Newtonian limit, 𝐸4𝜓 (0,0) = 0 and 𝐸4𝜓̃ (0,0) = 0, where

𝐸4 =
(

𝜕2

𝜕𝑟2
+ sin 𝜃

𝑟2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

)2
(23)

is the bi-harmonic operator in spherical coordinates. Their general
solution, regular for any 𝜃, is given by [42]

𝜓 (𝑟, 𝜃)

=
∞
∑

𝑛=2

(

𝐶 (1)
𝑛 𝑟𝑛 + 𝐶 (2)

𝑛 𝑟−𝑛+1 + 𝐶 (3)
𝑛 𝑟𝑛+2 + 𝐶 (4)

𝑛 𝑟−𝑛+3
)𝑃𝑛−2(cos 𝜃) − 𝑃𝑛(cos 𝜃)

2𝑛 − 1
,

(24)

and similar for the inner fluid. Here, 𝑃𝑛 is the Legendre polynomial of
degree 𝑛, and 𝐶 (1)

𝑛 ,… , 𝐶 (4)
𝑛 are unknown constants. In a similar fashion,

he relevant solution of the Laplace equation for the dimensionless
emperature is given by [38]

(𝑟, 𝜃) =
∞
∑

𝑛=0

(

𝐶 (5)
𝑛 𝑟𝑛 + 𝐶 (6)

𝑛 𝑟−𝑛−1
)

𝑃𝑛 (cos 𝜃) , (25)

nd a similar series for 𝜗̃; again, 𝐶 (5)
𝑛 and 𝐶 (6)

𝑛 are unknown constants.
The constants in the general solutions presented above are set by

he conditions Eqs. (12)–(19). For a general shape of the droplet,
owever, these lead to strongly non-linear equations for the unknown
onstants that have no closed-form analytical solution. In the case
here both fluids are Newtonian, however, a significant simplification
ccurs. Indeed, setting 𝜁 (𝜃) = 0, we observe that

(0,0) (𝑟, 𝜃) =
(

𝑟 +
1 − 𝛾
2 + 𝛾

1
𝑟2

)

cos 𝜃, 𝜗(0,0) (𝑟, 𝜃) = 3𝑟
2 + 𝛾

cos 𝜃, (26)

(0,0) (𝑟, 𝜃) = 𝐴
(

𝑟2 − 1
𝑟

)

sin2 𝜃, 𝜓̃ (0,0) (𝑟, 𝜃) = 3
2
𝐴
(

𝑟4 − 𝑟2
)

sin2 𝜃,

(27)
(0,0) (𝑟, 𝜃) = 0, 𝑝̃(0,0) (𝑟, 𝜃) = 2

𝛼 𝐶𝑎
− 30𝐴𝑟 cos 𝜃

(28)

satisfy all equations and boundary conditions Eqs. (1)–(19). Here,

𝐴 = 1
(2 + 𝛾)(2 + 3𝛼)

, (29)

and we have set the irrelevant constant pressure at infinity to zero. We
can, therefore, conclude that in the absence of convective transport of
momentum and energy, mechanical stresses generated in the fluid by
the ensuing motion do not deform the droplet from the spherical shape.
Finally, we observe that Eqs. (27) and (22) imply that far away from
the droplet 𝒖 → −2𝐴

(

𝒆̂𝑟 cos 𝜃 − 𝒆̂𝜃 sin 𝜃
)

. Comparing this result with
Eq. (18), we obtain the Newtonian droplet speed 𝑈 (0,0) = 2𝐴.

4.2. Asymptotic expansion

To simultaneously account for viscoelasticity of the outer fluid and
a finite droplet deformability, we seek the solution to the general
problem defined in Eqs. (1)–(19) in the form of a double expansion

𝑋 =
∞
∑

𝑛=0
𝑚=0

𝑋(𝑛,𝑚)𝑊 𝑖𝑛𝐶𝑎𝑚, (30)

where 𝑋 stands for the velocity, pressure, stress, and temperature fields
4

in both fluids, as well as for the shape function 𝜁 (𝜃) and the droplet
speed 𝑈 ; this form implies that we assume 𝑊 𝑖 < 1 and 𝐶𝑎 < 1.
s discussed in Section 4.1, no droplet deformation occurs in the
ewtonian limit 𝑊 𝑖 = 0, hence 𝑋(0,𝑚) = 0 for 𝑚 > 0, while 𝑋(0,0) refer

o the Newtonian values for the respective quantities presented above.
For a given order in the expansion, we utilise the following solution

rocedure. Expanding Eq. (7) to the corresponding order in 𝑊 𝑖 and
𝐶𝑎, we observe that it becomes an algebraic equation for the unknown
stress components. To illustrate this, we consider 𝑂(𝑊 𝑖), which gives

(1,0) = 𝐃(1,0)

− (1 − 𝛽)
[

𝒖(0,0) ⋅ 𝛁𝐃(0,0) −
(

𝛁𝒖(0,0)
)T

⋅ 𝐃(0,0) − 𝐃(0,0) ⋅ 𝛁𝒖(0,0)
]

.

(31)

t higher orders in 𝑊 𝑖 and 𝐶𝑎, the stress components retain the same
tructure, comprising a purely viscous contribution 𝐃 at the same order,
nd quadratic combinations of velocities and stresses at lower orders
hrough the upper-convected derivative, Eq. (8).

To obtain the equations for the streamfunctions 𝜓 (𝑛,𝑚) and 𝜓̃ (𝑛,𝑚),
e take the curl of Eqs. (2) and (5), and project it onto the azimuthal
irection, 𝒆̂𝜙. While in the Newtonian phase the resulting equation is
till homogeneous, 𝐸4𝜓̃ (𝑛,𝑚) = 0, the streamfunction in the viscoelastic
outer) phase is now given by an inhomogeneous equation, 𝐸4𝜓 (𝑛,𝑚) =
(𝑟, 𝜃), where 𝑔(𝑟, 𝜃) originates from the upper-convected derivative
erms in the solution for the stress components (e.g. the second term
n Eq. (31)). The solution to the outer problem consists of an inhomo-
eneous part, determined by 𝑔(𝑟, 𝜃), and a homogeneous part, given by
q. (24), where only terms that match the angular symmetry of 𝑔(𝑟, 𝜃)
re retained. The inner solution is then given by the modes in Eq. (24)
ith the same angular symmetry. Some of the unknown constants of

he outer solution have to be set to zero to ensure the condition far
way from the droplet, Eq. (18), while the inner velocity field has to
e regular at 𝑟 = 0.

The pressure in both fluids is obtained by substituting the stream-
unctions and stresses back into Eqs. (2) and (5), leading to simple
irst-order partial differential equations that are readily solved. We
tress the importance of introducing an unknown constant into the
xpression for the inner pressure, which will be crucial in determining
he shape of the droplet. The corresponding constant term in the outer
roblem is set to zero since, at any order, the outer pressure should
ecay to the pressure in the quiescent fluid far away from the droplet.

Next, we turn to the balance of the normal force given by Eq. (16).
t every order, it relates 𝛁 ⋅ 𝒏 to the already known quantities at

ower orders, thus allowing us to determine the interface deformation
(𝑛,𝑚). As mentioned above, the constant inner pressure contributions,
ndetermined by the equations at their respective order in 𝑊 𝑖 and 𝐶𝑎,
re set by requiring that 𝜁 (𝜃) satisfies Eqs. (20) and (21) at every order.

Since the Newtonian temperature fields, Eqs. (26), satisfy the
oundary conditions, Eqs. (14) and (15), at the unperturbed surface
= 1, any change to the droplet’s shape drives a correction to the

nner and outer temperature distributions. The angular symmetry of
his correction is set by the continuity of the tangential force acting
ocally on the interface, Eq. (17), resulting in only a few terms from
he general solution, Eq. (25), contributing at a given expansion order.
ogether with Eqs. (3), (6), (14), (15), (18) and the regularity condition
t 𝑟 = 0, this completely determines 𝜗(𝑛,𝑚) (𝑟, 𝜃) and 𝜗(𝑛,𝑚) (𝑟, 𝜃).

The remaining unknown constants are trivially fixed by the bound-
ry conditions, Eqs. (12) and (13), and the no-force requirement,
q. (19).

The procedure outlined above can, in principle, be applied at any
xpansion order, although the expressions involved quickly become
ery cumbersome. In this work, we employ a spherical cut-off, 𝑛+𝑚 ≤ 3,
.e. we only consider contributions proportional to 𝑊 𝑖, 𝐶𝑎𝑊 𝑖, 𝑊 𝑖2,
𝑎2𝑊 𝑖, 𝐶𝑎𝑊 𝑖2, and 𝑊 𝑖3. To this accuracy, we obtain for the speed of
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the droplet
𝑈

𝑈 (0,0)
= 1 + 6

25
𝐶𝑎𝑊 𝑖𝐴2(1 − 𝛽) 22 + 13𝛼

1 + 𝛼

(

33 − 18𝛼
3(2 + 3𝛼)

+
3(𝛾 − 1)
2 + 𝛾

)

− 54
3575

𝑊 𝑖2𝐴2(1 − 𝛽)
(

5 26 + 193𝛼
2 + 3𝛼

+ 286
1 − 𝛽
1 + 𝛼

)

, (32)

It is worth mentioning that the terms proportional to 𝑊 𝑖, 𝑊 𝑖3, 𝐶𝑎2𝑊 𝑖,
and 𝐶𝑎𝑊 𝑖2 are all zero by symmetry and thus do not appear in Eq. (32):
the magnitude of the droplet’s velocity should be insensitive to the
reversal of the direction of the temperature gradient. Moreover, the
droplet’s shape is given by

𝜁 (𝜃) = 3
5
𝐶𝑎𝑊 𝑖𝐴2(1 − 𝛽) 22 + 13𝛼

1 + 𝛼
𝑃2(cos 𝜃)

+ 27
1750

𝐶𝑎2𝑊 𝑖𝐴3(1 − 𝛽)
(22 + 13𝛼)

(

28𝛼2 + 17𝛼 − 10
)

(1 + 𝛼)2
𝑃3(cos 𝜃)

− 27
2275

𝐶𝑎𝑊 𝑖2𝐴3(1 − 𝛽)

×
(1 + 𝛼)(5480 + 4481𝛼) − 39(1 − 𝛽)(142 + 103𝛼)

(1 + 𝛼)2
𝑃3(cos 𝜃).

(33)
The corresponding equations for the stress, pressure, temperature, and
streamfunctions in both fluids are given in Supplementary Material.

5. Discussion

Eqs. (32) and (33) constitute the main results of our work. They
represent the speed and the shape of a Newtonian droplet moving
through a model viscoelastic medium due to the presence of an exter-
nally applied temperature gradient. Our results are obtained in the limit
of weak viscoelasticity and high surface tension, and are presented in
a form of an asymptotic double series in 𝑊 𝑖 and 𝐶𝑎. Below we discuss
their implications for the motion of the droplet, and their limits of
applicability.

First, we comment on our choice of 𝑈𝑇 as a velocity scale. As
discussed in Section 2, 𝑈𝑇 represents a typical velocity of the fluid set
in motion by a balance of the thermocapillary interfacial and viscous
stresses. While incorporating the relevant physical ingredients, it does
not correctly capture a typical magnitude of the fluid velocity, which
in the Newtonian case is given instead by 2𝐴𝑈𝑇 . According to Eq. (29),
𝐴 does not exceed 1∕4, while its typical values are yet smaller. For
instance, for the inner and outer fluids with similar viscosities and
thermal conductivities, 𝛼 ∼ 1 and 𝛾 ∼ 1, Eq. (4.8) gives 𝐴 ∼ 0.07.
In other words, while 𝑈𝑇 is the correct dimensional combination, it
lacks a dimensionless factor 𝐴, which is not of order unity for this
problem. This implies that 𝑊 𝑖 significantly overestimates the effect
of viscoelasticity, while 𝐶𝑎 underestimates the effect of the capillary
forces, since both are based on 𝑈𝑇 , and that the right scale for these
effects is set by 𝑊 𝑖(𝐴) = 2𝐴𝑊 𝑖 and 𝐶𝑎(𝐴) = 2𝐴𝐶𝑎. Indeed, as Eqs. (32)
and (33) suggest, our theory is valid for small values of𝑊 𝑖(𝐴) and 𝐶𝑎(𝐴),
while 𝑊 𝑖 and 𝐶𝑎 can potentially be large.

Our results are presented in terms of power series that often have a
very small, potentially zero, radius of convergence [43–46]. To estimate
the range of their validity, we consider the case of a spherical droplet,
𝐶𝑎 = 0. We extend our analysis to 𝑂(𝑊 𝑖(𝐴)4) (details not shown) and
obtain the following result for the speed of the droplet

𝑈
𝑈 (0,0)

= 1 − 27
7150

𝑊 𝑖(𝐴)2(1 − 𝛽)

(

5 26 + 193𝛼
2 + 3𝛼

+ 286
1 − 𝛽
1 + 𝛼

)

− 9
48412

𝑊 𝑖(𝐴)4(1 − 𝛽)

(

697410 + 39343𝛼
2 + 3𝛼

− (1 − 𝛽) 17647994572 + 31470338748𝛼 + 9825203787𝛼2 + 3003766830𝛼3

7150(1 + 𝛼)(2 + 3𝛼)2

− (1 − 𝛽)2 170642956 + 600328498𝛼 − 416798595𝛼2 − 150048675𝛼3

2750(1 + 𝛼)2(2 + 3𝛼)

+ 1539(1 − 𝛽)3 5412536 + 5092704𝛼 + 2500320𝛼2 + 376425𝛼3
3

)

, (34)
5

13750(1 + 𝛼) (2 + 3𝛼)
Fig. 2. The applicability range of our perturbation theory, 𝑊 𝑖(𝐴) < 𝑊 𝑖(𝐴)∗, as a function
of 𝛼 for several values of 𝛽.

where, again, 𝑈 (0,0) = 2𝐴. For Eqs. (32) and (33) to be semi-
quantitatively accurate, we require the terms retained in those equa-
tions to be sufficiently larger than the next higher order term. Equating
the absolute values of the second and the third terms in Eq. (34) gives a
naïve estimate of 𝑊 𝑖(𝐴)∗ that should not be exceeded for this condition
to hold. In Fig. 2 we plot 𝑊 𝑖(𝐴)∗ as a function of the viscosity ratio 𝛼
for several values of 𝛽. We observe that for sufficiently large values
of 𝛽, 𝑊 𝑖(𝐴)∗ ∼ 0.4 provides a consistent estimate for the range of
validity of our theory. For 𝛽 = 0.1, there exist such values of 𝛼 that
the term proportional to 𝑊 𝑖(𝐴)4 vanishes. Such points correspond to
the divergences in Fig. 2 visible around 𝛼 ≈ 0.4 and 𝛼 ≈ 11 for
𝛽 = 0.1. Around these points the fourth-order term is very small and
cannot be reliably used to estimate 𝑊 𝑖(𝐴)∗. Instead, one should consider
the next non-vanishing term in the expansion, which goes beyond the
scope of this work. Here, we choose to use a conservative condition
𝑊 𝑖(𝐴) < 0.4 across all values of parameters considered. Since our
expansion, Eq. (30), tacitly assumes that 𝐶𝑎 and 𝑊 𝑖 are of the same
order of smallness, a similar condition is applied to 𝐶𝑎(𝐴).

To analyse the predictions of Eq. (32) in various situations, we
consider the following archetypal sets of parameters. The first set,
𝛼 = 0 and 𝛾 = 0, corresponding to a Newtonian droplet with a very
low viscosity and thermal conductivity, represents a broad class of gas
bubbles suspended in viscoelastic solutions. Next, we observe that at
room temperature the thermal conductivities of various Newtonian and
polymeric liquids are quite similar [47]. Therefore, the other three sets
of parameters we are going to study below are 𝛾 = 1 and 𝛼 = 0.1,
𝛾 = 1 and 𝛼 = 1, and 𝛾 = 1 and 𝛼 = 10. These sets represent a
liquid Newtonian phase with a viscosity that is significantly smaller,
equal, and significantly higher than the total viscosity of the suspending
viscoelastic liquid, respectively.

We start by considering the limiting case of a spherical droplet,
formally achieved by setting 𝐶𝑎 = 0 in Eqs. (32) and (33). In this
case, the up–down symmetry of the problem ensures that the expansion
in Eq. (32) only contains even powers of 𝑊 𝑖(𝐴); see also Eq. (34).
Indeed, the speed of the droplet is expected to be independent of the
direction of the external temperature gradient, thus requiring that all
contributions to 𝑈∕𝑈 (0,0) proportional to odd powers of 𝑊 𝑖(𝐴) vanish.
(Note that the global sign of 𝑈 is set by the Newtonian velocity 𝑈 (0,0).)
Eq. (32), which only captures the first two terms in this series, predicts
that the speed of the droplet decreases with 𝑊 𝑖(𝐴) for any value of 𝛼
and 𝛽. Since for 𝐶𝑎 = 0 the temperature field is given by its Newtonian
profile, Eq. (26), and since 𝜁 (𝜃) = 0, we attribute the decrease in the
droplet’s speed to the effect of viscoelasticity in the outer fluid: the
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Fig. 3. The normalised droplet speed 𝑈∕𝑈 (0,0) as a function of 𝑊 𝑖(𝐴) for 𝐶𝑎(𝐴) = 0.2 and
𝛽 = 0.1. Although we expect our theory to be quantitatively correct only for 𝑊 𝑖(𝐴) < 0.4,
here we also explore higher values of 𝑊 𝑖(𝐴) to stress the non-monotonic behaviour for
small values of 𝛼.

stresses generated by the polymer molecules slightly stretched from
their equilibrium conformations by the fluid flow oppose the droplet’s
translational motion. The polymer-induced slow down increases with
decreasing 𝛽, as the coupling between the fluid velocity and the poly-
meric stresses increases. While Eq. (32) predicts that 𝑈∕𝑈 (0,0) becomes
negative at sufficiently large values of 𝑊 𝑖(𝐴), i.e. that the droplet
changes the direction of its motion, this conclusion is most likely an
artefact of the low order of expansion employed in this work and would
have to be corroborated by either the higher-order terms or numerical
simulations.

This behaviour changes for non-zero values of 𝐶𝑎. In Fig. 3 we plot
the prediction of Eq. (32) for the four sets of parameters discussed
above with 𝐶𝑎(𝐴) = 0.2 and 𝛽 = 0.1. In contrast to the spherical case, the
droplet’s speed is now a non-monotonic function of 𝑊 𝑖(𝐴) for most of
the parameter values considered. For small values of 𝑊 𝑖(𝐴), the droplet
speeds up in comparison to its Newtonian counterpart, while at larger
values of 𝑊 𝑖(𝐴), it slows down again. When present, the speed up is
caused by the 𝑂(𝐶𝑎𝑊 𝑖) term in Eq. (32), and we now analyse its
physical origin.

To this effect, we consider an artificial problem of a deformed New-
tonian droplet moving through a Newtonian outer fluid. We prescribe
a surface deformation in the form of 𝜁 (𝜃) = 𝛥𝑃2(cos 𝜃), where 𝛥 is a
small amplitude. We repeat the analysis discussed in Section 4.1 to first
order in 𝛥 and with 𝑊 𝑖 = 0. Disregarding the normal-stress boundary
condition, Eq. (16), which now defines an external force needed to
create the deformation prescribed, we obtain for the droplet’s speed

𝑈
𝑈 (0,0)

= 1 + 2
5
𝛥
(

33 − 18𝛼
3(2 + 3𝛼)

+
3(𝛾 − 1)
2 + 𝛾

)

. (35)

We now identify 𝛥 with the amplitude of the 𝑂(𝐶𝑎𝑊 𝑖) term in Eq. (33),
and recover the 𝑂(𝐶𝑎𝑊 𝑖) term in Eq. (32). We, therefore, conclude,
that once the 𝑂(𝑊 𝑖) viscoelastic stresses deform the droplet, its speed
up is a purely Newtonian effect. The structure of Eq. (35) suggests that
it can be attributed to two mechanisms. When 𝛾 = 1, the outer and inner
fluids share the same thermal properties, and no changes to the temper-
ature profile around a spherical droplet, Eq. (26), will occur in response
to the droplet deformation. Therefore, the first term proportional to 𝛥
in Eq. (35) is associated with changes to the hydrodynamic resistance
to the droplet’s motion generated by the viscous stresses in both fluids,
while the second term 𝑂(𝛥) captures the response to changes in the
fore-aft temperature gradient experienced by the droplet. This is further
corroborated by the structure of the temperature profile inside the
6

Fig. 4. The normalised droplet speed 𝑈∕𝑈 (0,0) as a function of 𝑊 𝑖(𝐴) for 𝛾 = 1, 𝛽 = 0.1,
and a fixed ratio 𝐶𝑎∕𝑊 𝑖 = 0.5.

droplet,
(

3
2 + 𝛾

+
18(𝛾 − 1)
5(2 + 𝛾)2

𝛥
)

𝑟 cos 𝜃, (36)

that changes compared to the Newtonian temperature profile, Eq. (26),
depending on whether 𝛾 is larger or smaller than unity. We note that
both effects can either speed the droplet up or slow it down compared
to the Newtonian case, 𝑊 𝑖 = 0, and that the speed up is observed for
𝛼 < (16 + 17𝛾)∕(21 − 3𝛾).

The 𝑂(𝐶𝑎𝑊 𝑖) term in Eq. (33) is proportional to the second-order
Legendre polynomial, 𝑃2(cos 𝜃), and, therefore, describes a fore-aft
symmetric deformation. Similar to the argument employed above, such
deformations should be independent of the direction of motion and are
thus described by even powers of the expansions parameters, such as
𝐶𝑎𝑊 𝑖. The higher order terms in Eq. (33), on the other hand, break
the fore-aft symmetry, and are, therefore, coupled to odd total powers
of the expansion parameters, such as 𝐶𝑎2𝑊 𝑖 and 𝐶𝑎𝑊 𝑖2. In general,
the symmetry arguments require that the deformations described by
even/odd Legendre polynomials be coupled to even/odd total powers
of 𝐶𝑎 and 𝑊 𝑖, respectively.

Until now, we studied the predictions of Eqs. (32) and (33) as
functions of 𝑊 𝑖(𝐴) for fixed values of 𝐶𝑎(𝐴). However, in a typical ex-
periment one is expected to vary the applied temperature gradient, thus
simultaneously changing both the Weissenberg and Capillary numbers
since both are proportional to ∇∞𝑇 . To mimic such an experiment, in
Fig. 4 we plot the prediction of Eq. (32) as a function of 𝑊 𝑖(𝐴) for a
fixed ratio 𝐶𝑎∕𝑊 𝑖; the latter quantity is independent of the applied
temperature gradient and is a function of the fluids’ properties only.
Unlike the fixed 𝐶𝑎 case studied above, Fig. 4 shows that the droplet’s
speed is monotonic in 𝑊 𝑖(𝐴), either increasing or decreasing depending
on the values of 𝛼 and 𝛾. Eq. (32) readily yields that the droplet’s speed
increases with 𝑊 𝑖 as long as

𝐶𝑎
𝑊 𝑖

>
45(1+𝛼)(26+193𝛼)

143(2+3𝛼) + 18(1 − 𝛽)

(22 + 13𝛼)
(

33−18𝛼
3(2+3𝛼) +

3(𝛾−1)
2+𝛾

) . (37)

For 𝛾 = 1 and 𝛽 = 0.1, this condition is satisfied for 𝛼 = 0.1, but not for
𝛼 = 1 and 𝛼 = 10, consistent with the behaviour in Fig. 4.

To gain further insight into the mechanical origins of the speed
up/slowing down, we now closely inspect the case with 𝛾 = 1, 𝛽 = 0.1,
𝐶𝑎∕𝑊 𝑖 = 0.5 and 𝑊 𝑖(𝐴) = 0.3, with 𝛼 either 0.1 or 1.0; the former case
corresponds to a droplet moving faster than its Newtonian counterpart
at the same conditions, while the latter case represents a smaller droplet
speed. In Fig. 5 we plot the flow streamlines inside and outside the
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Fig. 5. Flow streamlines and the droplet shape for 𝛾 = 1, 𝛽 = 0.1, and 𝐶𝑎∕𝑊 𝑖 = 0.5. (a) Newtonian: 𝑊 𝑖(𝐴) = 0.0 and 𝛼 = 0.1; (b) Viscoelastic: 𝑊 𝑖(𝐴) = 0.3 and 𝛼 = 0.1; (c)
Viscoelastic: 𝑊 𝑖(𝐴) = 0.3 and 𝛼 = 1.0.
Fig. 6. Trace of the stress tensor in the outer fluid, Tr 𝝉, for 𝛾 = 1, 𝛽 = 0.1, 𝐶𝑎∕𝑊 𝑖 = 0.5, and 𝑊 𝑖(𝐴) = 0.3. (a) 𝛼 = 0.1; (b) 𝛼 = 1.0.
droplet for these two cases, contrasted with the case of a Newtonian
outer fluid, 𝑊 𝑖(𝐴) = 0, in Fig. 5(a), which exhibits the classical
Hadamard–Rybczyńsky type toroidal vortex [1,2]. When the outer fluid
is viscoelastic, these vortices become strongly asymmetric, indicating
the loss of time-reversibility due to the viscoelastic memory effects,
shifting towards the front part of the droplet, see Figs. 5(b) and (c).
In Fig. 6 we show the trace of the stress tensor in the outer fluid, Tr 𝝉,
for the same parameters; note that since the flow is incompressible, Tr 𝝉
only contains contributions from the polymeric part of the stress tensor,
and is proportional to the local extension of polymer molecules [48].
In both cases, we observe a similar structure of the stress field, with
strong polymer extension around the front and back stagnation points.
As can be seen from Fig. 6, the thermocapillary interfacial stresses
generate higher polymeric stresses in the case of a less viscous inner
fluid, 𝛼 = 0.1, as compared to the more viscous case, 𝛼 = 1. When
streaming along the curved leading surface of the droplet, the hoop
stresses generated by the stretched polymers compress the droplet in
the direction perpendicular to the direction of its motion thus extending
it along the temperature gradient. This extension is larger in the less
viscous case, leading to a larger droplet speed in this case. While the
droplet stays relatively fore-aft symmetric in the less viscous case, it
develops a significant fore-aft asymmetry for a more viscous inner fluid.

We conclude by comparing the predictions of Eqs. (32) and (33)
against numerical simulations performed by [25], who considered the
current problem for vanishingly small Marangoni and Reynolds num-
bers, and matching fluid properties, 𝛾 = 1 and 𝛼 = 1. The Capillary
number was fixed to 𝐶𝑎 = 0.2, leading to 𝐶𝑎(𝐴) = 0.027. In Table 1
we present the dimensionless migration speed 𝑈∕𝑈 (0,0) obtained from
Eq. (32) set against the simulations of [25] for 𝛽 = 0.11 and 𝛽 = 0.5.
We observe that the numerical data differ from unity at 𝑊 𝑖 = 0 due
to inherent computational errors. This difference is about 1% and sets
the accuracy of the numerical data. For 𝑊 𝑖 > 0, the difference between
the two methods is consistently within 1%–4%, demonstrating a good
predictive power of Eq. (32) within its applicability range. When the
Weissenberg number reaches 𝑊 𝑖 = 3.75, the differences rise sharply,
reaching 4% for 𝛽 = 0.5, and 20% for 𝛽 = 0.11. This is unsurprising
since this value lies outside our estimate for the applicability range of
Eq. (32), 𝑊 𝑖(𝐴) < 0.4.
7

Fig. 7. Comparison between the droplet shape obtained by [25] (black circles) and
the prediction of Eq. (33) (red line) for 𝛾 = 1, 𝛼 = 1, 𝐶𝑎 = 0.2, 𝑊 𝑖 = 2.25, and 𝛽 = 0.11.
(a) The full shape, 1 + 𝜁 (𝜃); (b) the corresponding deviation from the spherical shape,
𝜁 (𝜃).

Table 1
Comparison between the dimensionless migration speed observed in numerical
simulations of [25], (𝑈∕𝑈 (0,0))𝑛𝑢𝑚, and the predictions of Eq. (32), (𝑈∕𝑈 (0,0))𝑎𝑛.
𝑊 𝑖 𝑊 𝑖(𝐴) 𝛽 = 0.5 𝛽 = 0.11

(𝑈∕𝑈 (0,0))𝑎𝑛 (𝑈∕𝑈 (0,0))𝑛𝑢𝑚 (𝑈∕𝑈 (0,0))𝑎𝑛 (𝑈∕𝑈 (0,0))𝑛𝑢𝑚
0 0 1.0000 0.9931 1 0.9930
0.1875 0.025 1.0000 0.9930 0.9999 0.9952
0.375 0.05 0.9993 0.9939 0.9983 0.9900
0.75 0.1 0.9959 0.9897 0.9909 0.9881
1.5 0.2 0.9809 0.9604 0.9584 0.9540
2.25 0.3 0.9548 0.9440 0.9027 0.9280
3.75 0.5 0.8699 0.9010 0.7215 0.8650

In addition, we compare the steady-state droplet shape determined
numerically with the ones predicted by the present analytical calcula-
tions Eq. (33). In Fig. 7(a), we show the polar plot of the droplet shape,
1 + 𝜁 (𝜃), compared to the results of [25], for a representative value of
𝑊 𝑖 = 2.25 with 𝛽 = 0.11. The two shapes differ only slightly from each
other and from a spherical droplet. To stress the differences, in Fig. 7(b)
we plot the deviation from the spherical shape, 𝜁 (𝜃), for the same
parameters. While there is a good overall agreement in the symmetry
of 𝜁 (𝜃), quantitative comparison is lacking around the front and back
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stagnation points. As discussed above, the polymer stresses accumulate
strongly around these areas, see Fig. 6, and the local Weissenberg
numbers can become significantly larger than the globally prescribed
value 𝑊 𝑖(𝐴), thus exceeding the applicability range of Eq. (33). This is
further corroborated by the droplet shape observed by [25] for 𝑊 𝑖 =
3.75, which developed a cusp at the rear stagnation point due to a very
strong stress localisation. Finally, we note that we could not perform
a meaningful shape comparison between our theory and simulations
of [25] at lower values of 𝑊 𝑖, where a better agreement is expected. At
those conditions, the deviation from the spherical shape, 𝜁 (𝜃), is much
smaller than for the case shown in Fig. 7(b), and the accuracy of the
numerical data is insufficient to resolve it. However, the droplet speed,
which can be seen as a proxy for the shape, is in a good agreement
with the numerical data, as discussed above, and we conclude that
the two approaches are in a semi-quantitative agreement within the
applicability range of the current theory, 𝑊 𝑖(𝐴) < 0.4.

6. Conclusions

In this work we considered theoretically the problem of a Newto-
nian droplet moving in an otherwise quiescent infinite viscoelastic fluid
under the influence of an externally applied temperature gradient. The
outer fluid was described by the Oldroyd-B model, and the problem
was solved for small Weissenberg and Capillary numbers in terms of a
double perturbation expansion. The analysis was conducted assuming
the absence of gravity and negligible convective transport effects. The
main results of our work, Eqs. (32) and (33), give predictions for
the droplet speed and shape as a function of the fluids’ parameters.
In the absence of the shape deformation, 𝐶𝑎 = 0, the droplet speed
decreased monotonically for sufficiently viscous inner fluids, while for
fluids with a smaller viscosity ratio 𝛼, the droplet speed first increased
and then decreased as a function of the Weissenberg number. For small
but finite values of the Capillary number, the droplet speed behaved
monotonically as a function of the applied temperature gradient for
a fixed 𝐶𝑎∕𝑊 𝑖 ratio. We demonstrated that this behaviour is related
to the polymeric stresses deforming the droplet in the direction of its
migration, while the associated changes in its speed were Newtonian
in nature, being related to a changes in the droplet’s hydrodynamic
resistance and its internal temperature distribution. When compared
to the results of numerical simulations, our theory exhibited a good
predictive power within its applicability range, i.e. for sufficiently
small values of 𝑊 𝑖 and 𝐶𝑎. The problem of thermocapillary motion of
droplets in viscoelastic fluids and the results presented here can be of
potential interest to the space manufacturing sector, and in microfluidic
applications, where the small characteristic lengths scale would allow
thermocapillary effects to prevail with respect to buoyancy.
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