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A B S T R A C T   

Periodic manual inspection by trained specialists is an important element of asset management in the nuclear 
industry. Detection of cracks caused by stress corrosion is an important element of remote visual inspection (RVI) 
in power plant steam generator components such as boilers, superheaters and reheaters. Challenges exist in the 
interpretation of RVI footage, such as high degree of concentration for reviewing lengthy and disorienting 
footage due to narrow field of view offered by endoscope. Deep learning is considered useful to automate crack 
detection process for improved efficiency and accuracy, and has enjoyed success in related applications. This 
article utilises a new application of automated crack feature detection in steam cycle components to demonstrate 
a transferrable data-driven framework for a variety of anomaly inspections in such structures. Specifically, a case 
study of superheater (a type of reactor pressure vessel head) anomaly inspection is presented to automatically 
detect regions of crack-like features in inspection footage with a good accuracy of 92.97 % using convolutional 
neural network (CNN), even in challenging cases. Due to the black-box nature of the CNN classification, the 
explicability of the classification results is discussed to enhance the trustworthiness of the detection system.   

1. Introduction 

Various components in the nuclear sector (e.g., nuclear reactor cores 
[1–3]), civil infrastructures (e.g., concrete surfaces [4,5] and piping 
systems [6,7]) and oil and gas energy sectors (e.g., subsea pipelines [8]) 
benefit from regular inspections by trained specialists. This provides an 
understanding of their current and future conditions and to ensure they 
are able to perform the functions for which they are designed. However, 
internal structural inspection of pressure vessels is commonly a complex 
task due to the constraint of inlet/outlet sizes in such structures and the 
associated difficult accessibility. 

Taking superheater inspection as example: as superheaters are 
enclosed structures, remote visual inspection is performed by inserting 
an endoscope into the superheater via the access point shown in Fig. 1 
(a). While inspecting the real-time footage from the endoscope, engi
neers need to seek a range of defects such as spalling, oxides and cracks. 
Amongst these defects, one important category is the stress corrosion 
crack features at the tube plate upper radius (i.e., the circumferential 
area at the superheater bottom) in Fig. 1(b). This is because cracks are a 
pivotal feature for assessing the structural integrity of superheaters. The 
observed crack features are recorded in the logbook which is then 

checked by metallurgists to decide whether the logged features are 
genuine stress corrosion cracks. In addition to remote visual inspection 
via endoscopes, other techniques via electromagnetic wave [9] and ul
trasound [10] probing are also possible for crack inspection in certain 
pressure vessel scenarios. This article focuses on the detection of su
perheater crack-features in the remote visual inspection phase, and is 
hoped to be inspiring and versatile to deal with anomaly inspection in 
other pressure vessel types. 

In practice, during the remote visual inspection process, hours of 
real-time footage need to be manually examined. As a result, this process 
is time-consuming and labour-intensive. Therefore, it is beneficial to 
support the conventional visual inspection process with an automated 
crack-feature detection system for improved efficiency. The supported 
anomaly inspection will offer useful valuable information to evaluate 
the remaining useful life of pressure vessels in nuclear power plants. 

Image processing techniques have been widely applied to detect 
cracks in various scenarios. Different edge-detection techniques (i.e., the 
fast Haar transform, fast Fourier transform, Sobel and Canny edge de
tectors) were investigated for their efficacy on crack detection in bridge 
deck surfaces [11]. Gabor filters is a tool to perform convolution oper
ation with images to extract texture features with certain frequency. 
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This technique was applied to extract features from crack images to 
build crack classifiers [12]. Frangi filter is a Hessian matrix-based 
technique originally proposed to detect tubular structures in medical 
images [13]. This technique was adopted to detect thin and bright cracks 
in steel beams [14]. An improved Hessian-matrix-based technique was 
proposed in [15] to segment concrete crack pixels with crack charac
teristics (e.g., length and width in pixel measurements) quantified. 
Precise and efficient pixel-level crack segmentation was addressed in 
[15] as crack segmentation was only needed for targeted crack regions 
flagged through the faster region-based convolutional neural network 
(Faster R–CNN) technique [16]. Jahanshahi et al. identified discrimi
native features suitable for crack feature extraction, and on this basis 
investigated the performance of different types of classifiers (e.g., Sup
port Vector Machine and Neural Network, trained with extracted fea
tures) for crack detection [17]. 

Recent literature demonstrates an increasing trend of adopting data- 
driven techniques to autonomously detect cracks. For example, the Bag- 
of-Visual-Words approach generates histograms of visual word (i.e., 
physical features) occurrence for labelled images and a classifier is 
trained using these histograms to categorise new images. This technique 
was applied to develop a detection system of cracks in panoramas view 
of fuel channels [3]. Amongst different data-driven techniques, the 
convolutional neural network (CNN) approach draws particular focus 
for its good accuracy and the ability to automatically learn the features 
of interest for image classification. For example, a CNN system was 
developed to automate the detection of cracks at patch level in concrete 
surfaces [18]. To obtain more refined crack location, a U-Net-based 
model called CrackUnet was proposed to detect concrete cracks at pixel 
level [19]. Real-time pixel-wise segmentation of concrete cracks on 
complex backgrounds was implemented through a semantic damage 
detection network (SDDNet) in [20] and a semantic transformer repre
sentation network (STRNet) in [21]. The efficacy of various 
state-of-the-art CNN models on detecting cracks in concrete structures 
was compared in [22], reporting that the balance between inference 
time and accuracy of a model needs to be considered for real-time ap
plications. In the domain of nuclear plant inspection, a CNN-based 
automated system was presented in [23] to detect cracks in the 
mock-up reactor surfaces. In the oil and gas transmission sector, a CNN 

system for detecting pitting and cracks in oil and gas pipelines can be 
found in [24]. 

However, the inspection environment of pressure vessels poses 
several challenges to understanding the performance of autonomous 
data-driven approaches for detecting crack features, and superheater is 
no exception. Typical challenging factors include highly reflective 
metallic surfaces, varying illuminations and rich presence of irrelevant 
intensive texture features in the structure. Therefore, a heuristic appli
cation of the novel CNN approach for superheater inspection advances 
the knowledge of data-driven technique capability for automated 
anomaly detection in the complex pressure vessel environment, as 
addressed in this article. To build a CNN-based crack detection system, 
the first common step is to generate the training dataset by cropping 
patches with a specified resolution (i.e., typically the same as the input 
image size of the CNN) from camera-taken images [18] or video frames 
[23]. Then, each cropped patch is manually labelled as “crack” or 
“non-crack background”. Here, small-sized patches rather than full im
ages are preferred as patches can demonstrate better prominent crack 
features, whereas full images may contain a large proportion of irrele
vant features. However, CNN systems typically require a sufficient 
number of labelled images for training, and the associated manual 
labelling process can be excessively laborious. In addition to the inten
sive labour cost for labelling enough patches, another challenge of 
manual labelling is to ensure that a consistent labelling standard is used. 
This becomes particularly challenging when the crack feature has small 
size or is in low contrast with respect to the background [25]. To 
overcome these challenges, an automated labelling approach governed 
by a consistent labelling standard was introduced in [25] to efficiently 
generate the training dataset. 

This article utilises a new application of automated crack feature 
detection in superheaters to demonstrate a transferrable data-driven 
framework for various anomaly inspection in complex pressure vessel 
structures. Specifically, the training, validation and testing datasets of 
crack features in superheaters are prepared using the automated label
ling technique [25]. On this basis, an autonomous system is developed 
via the transfer learning technique to detect crack features in the tube 
plate upper radius of superheaters used in nuclear power plants. Due to 
the black-box nature of the CNN operation, the explicability of the 

Fig. 1. Detail of the superheater structure. (a) Cross-section view of the superheater. (b) Bird’s-eye view of the tube plate. Superheater is one major type of pressure 
vessel assets used in nuclear power plants to constitute the boiler units and convert saturated steam into overheated steam for the electricity generation process. 
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classification mechanism for crack features is investigated to demon
strate the confidence of classification results to an extent. The remainder 
of this article is organised as follows: Section 2 presents the detailed 
configuration of the training, validation and testing datasets. Section 3 
describes the framework of the CNN classification for crack features via 
transfer learning. The performance of the crack-feature detection system 
is presented and discussed in Section 4. The conclusions of this article 
are given in Section 5. 

2. Dataset preparation 

Data preparation is important as it facilitates the training, validation 
and testing processes and even affects the feature types of interest learnt 
by the CNN system for decision-making. The automated labelling tech
nique proposed in [25] is applied to generate the training, validation 
and testing datasets. The implementation of the automated labelling 
technique is outlined in [25] and therefore not repeated herein for 
brevity. 

In our study, a total of 423 ground-truth frames containing crack 
features at the superheater tube plate upper radius are extracted from 27 
inspection videos. These videos were recorded during the real-time in
spections at different nuclear power plant sites in the UK. Each video is 
accompanied with an inspection logbook which records the timing and 
shapes of crack features in the video. These records are used to obtain 
the indices of the ground-truth crack feature frames in the inspection 
videos. The patch resolution is set to 224 × 224 × 3 pixels, the same as 
the input image size of the CNN system (i.e., GoogLeNet [26]) used in 
our study. An illustration of the frame-to-patch process to constitute the 
“crack feature” and “non-crack background” datasets is given in Fig. 2. 

To prevent data leakage between the datasets, the ground-truth 
frames from a specific video are only used in one of the training, vali
dation or testing datasets. Specifically, 15 inspection videos which 

contribute 293 ground-truth frames are used to construct the training 
dataset. Another 5 videos which are the sources of 58 ground-truth 
frames are used to prepare the validation dataset. The remaining 7 
videos which produce 72 ground-truth frames are used to constitute the 
testing dataset. The videos for each dataset are carefully selected to 
present a wide variety of crack features that are of interest to inspection 
engineers in practice. 

The detail of the dataset constitution is summarised in Fig. 3 and 
Table 1. In total, 800 “crack feature” patches and 800 “non-crack 
background” patches are obtained from all the 423 ground-truth frames. 
The balanced training, validation and testing datasets account for 60.5 
%, 15.5 % and 24 % of all the 1600 patches, respectively. Examples of 
the labelled “crack feature” and “non-crack background” patches are 
shown in Figs. 4 and 5, respectively. 

3. CNN implementation 

3.1. Brief background of CNN 

The convolutional neural network (CNN) [27] approach has been 
widely used in automated anomaly detection in numerous fields such as 
building defect inspection [18] and cancer diagnosis [28]. This is due to 

Fig. 2. Illustration of the frame-to-patch process to constitute the datasets.  

Fig. 3. Constitution of each dataset and its use.  

Table 1 
Size and number of patches in the training, validation, and testing datasets.  

Dataset Size (RGB 
channels) 

Total 
number 

Crack 
patches 

Non-crack 
patches 

Training 224 × 224 × 3 968 484 484 
Validation 224 × 224 × 3 248 124 124 
Testing 224 × 224 × 3 384 192 192  
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the data-driven feature of the CNN approach and its capability of 
autonomously learning the features of interest from training images for 
decision-making [18]. 

Generally speaking, the CNN system uses the Convolution Layer and 
Pooling Layer to extract features of interest and deploys the Fully- 
Connected Layer and Softmax Layer for classification. In the Convolu
tion Layer, a set of filters are used to extract specific features from the 
input image. Here, each filter is a matrix to perform element-wise 
products with subparts of the input image in a manner controlled by 
strides, resulting in a feature map. Then, all the feature maps are pro
cessed using the rectified linear unit (ReLU) activation function which 
set negative elements in the feature maps to zeros, in order to accelerate 
the training process [18]. After the ReLU operation, the Pooling Layer is 
used to reduce the size of the feature maps via either the max pooling or 
mean pooling option. The feature maps from the Pooling Layer are then 
flattened into a one-dimensional array which becomes the input of the 
Fully-Connected Layer. The Fully-Connected Layer combines extracted 
features from previous layers and outputs a one-dimensional array of N 
elements where N is the classification category number. Every output 
element of the Fully-Connected Layer is contributed by all the input 
elements multiplied by different weights. These output elements are 
passed to the Softmax Layer to calculate the score of each category 
which is used in the Classification Layer to predict the category of the 
input image. The summation of all the category scores is one, with each 

score ranging between zero and one. Note that other layer types such as 
the Batch Normalisation Layer [29] and Dropout Layer [30] could be 
seen in some CNN structures to improve the performance. 

Deep CNN systems can be constructed using repetition and combi
nation of the aforementioned layer types to improve the performance. 
Given a specific classification task, one can choose to either develop a 
customised CNN structure or use a pre-trained deep CNN system such as 
GoogLeNet [26], VGG [31] and ResNet series [32]. This is because the 
first few layers in these pre-trained deep networks are used to extract 
elementary features (e.g., edges) from images and can be shared across 
different classification tasks. The transfer learning technique [33] needs 
to be applied to perform new classification tasks using pre-trained net
works. This technique usually requires less training data, and its 
implementation only requires small modifications of the pre-trained 
network. In our study, the detection of crack features in the super
heater tube plate upper radius is implemented using transfer learning 
based on the GoogLeNet. 

The CNN system needs to be trained before being used for classifi
cation tasks. During the training process, the parameters of the CNN (e. 
g., the filters in the Convolution Layer and the weights in the Fully- 
Connected Layer) are optimised using the training images via the sto
chastic gradient descent (SGD) technique [34], in order to minimise the 
deviation between the predicted and actual categories. The training 
process is iterated for multiple times until a satisfactory classification 

Fig. 4. Examples of “crack-feature” patches in: (a) the training dataset, (b) validation dataset and (c) testing dataset. A wide range of crack feature types with 
different background textures and variant illumination conditions are represented in each dataset. 

Fig. 5. Examples of “non-crack background” patches in: (a) the training dataset, (b) validation dataset and (c) testing dataset. Note that the “non-crack background” 
patches with complex line features are included in the training dataset to help prevent False-Positive detections. Such features are included in the validation and 
testing datasets to comprehensively evaluate the classification system performance. The annotations show the locations of these “non-crack background” examples in 
the superheaters. 
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accuracy on the validation dataset is achieved. Please refer to [18,34] 
for a comprehensive mathematical operation of the CNN system and its 
training process. 

3.2. Transferable classifier implementation 

The classifier architecture is established based on the GoogLeNet 
architecture provided in the MATLAB environment. The GoogLeNet 
system was originally developed to classify 1,000 different categories in 
the ImageNet dataset [35]. The classifier architecture can be divided 
into three main blocks shown in Fig. 6. Specifically, the Convolution 
Layers in Block A are frozen during the training process. The learnable 
parameters (e.g., weight and bias) in Blocks B and C are updated during 
the training process using the crack-feature training dataset, in order to 
tailor the classifier for the crack-feature detection task. As the classifier 

is designed to take an image patch as the input and produce a binary 
label (either “crack feature” or “non-crack background”) for the content 
of the patch, minor structural change is made to Block C by setting the 
output number of the Fully-Connected Layer and Classification Layer to 
two. This presented methodology of classifier implementation can be 
directly applicable to new domains of automated anomaly inspection in 
other pressure vessel types. 

3.3. Training process 

Data augmentation is performed on the training patches to prevent 
overfitting and improve the variety of the training dataset. Different 
data augmentation options are applied, including random horizontal 
reflection, horizontal and vertical translation up to 30 pixels, and hor
izontal and vertical scaling up to 10 % of the original size. For each 

Fig. 6. Simplified classifier framework based on GoogLeNet provided in the MATLAB environment. The number of filters in the Convolution Layers of each Inception 
Module may vary. 

Fig. 7. Training and validation accuracy rates at each epoch. (a) Original plot with Y-axis in the range of [0, 100 %]. (b) Detailed “zoom-in” plot of the training and 
validation accuracy curves between [82 %, 100 %]. 
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training epoch, the training patches are transformed using random 
combinations of the data augmentation options. As a result, the training 
dataset varies slightly for different epochs. 

The training process of our classification system is performed in the 
MATLAB environment using the SGD technique, based on a CPU of 2.8 
GHz and RAM of 32 GB, with the mini-batch size of 10, maximum epoch 
number of 30 and momentum of 0.9. The global learning rate is initially 

set to 0.001 and drops every two epochs by multiplying the decaying 
factor of 0.8. Here, the piecewise decreasing learning rate is used to 
facilitate the efficient optimisation of the learnable parameters [36]. The 
learning rate of the final Fully-Connected Layer is set to 10 times the 
global learning rate to accelerate the learning of parameters in this layer. 

4. Results and discussion 

4.1. Patch-level classification 

The training and validation accuracy rates at each epoch are shown 
in Fig. 7. Here, the accuracy rate is defined as the ratio of the correctly 
classified patch number to the total patch number in the dataset. The 
training accuracy is calculated at the end of each epoch using the orig
inal training patches without data augmentation changes. As shown in 
Fig. 7, the converged training and validation accuracy rates at the 30th 
epoch are 99.90 % and 95.16 %, respectively. This performance is 
achieved using a training time of 65 min. The trained network at the 
30th epoch is used as the classification system for the analysis hereafter. 

The testing dataset is then used to extensively evaluate the classifi
cation system performance. The values of True Positives (TP), True 
Negatives (TN), False Positives (FP) and False Negatives (FN) are given 
in the confusion matrix in Fig. 8. Accuracy is calculated to be 92.97 % 
with a recall of 91.15 % and precision of 94.59 %, resulting in F1-Score 
of 92.84 %. 

Note that the testing accuracy of 92.97 % is not as high as the 
training accuracy (99.90 %) or validation accuracy (95.16 %) at the 30th 
epoch. This could be partly due to certain crack-feature types in the 
testing dataset which are not well represented in the training dataset. 
This is because the crack features at the superheater tube plate upper 
radius could take various forms and the number of the provided in
spection videos is limited. As a result, certain crack-feature forms are not 
commonly shared between the datasets. Further provision of super
heater inspection videos from different sites is deemed useful to increase 
the crack-feature diversity in the training dataset and therefore improve 

Fig. 8. Confusion matrix on the testing dataset.  

Fig. 9. Examples of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) classification results.  
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the classification system performance. 
Examples of TP, TN, FP and FN classifications are shown in Fig. 9 to 

demonstrate the wide diversity of crack-feature types, background tex
tures and lighting conditions in the testing patches. Specifically, Fig. 9 
(a) presents a TP example with small crack indication in the dim illu
mination condition. In contrast, an example of correct classification with 
large crack size in strong brightness is given in Fig. 9(b). Therefore, the 

classification system is not susceptible to the variant crack-feature sizes 
and illumination conditions. Fig. 9(c) and (d) present two correctly 
classified “non-crack background” patches containing deceptive line 
features. It is clear that the classification system is able to differentiate 
crack features from some complex background textures. However, the 
classification system may see certain line features as crack features, as 
illustrated by the two FP examples in Fig. 9(e) and (f). Such 

Fig. 10. Left column: four TP classification examples. Middle column: corresponding saliency maps for the classified “crack-feature” category, produced using the 
Saliency Map technique based on guided backpropagation. Right column: corresponding localisation maps to show the most important regions (highlighted in red) 
for the classified “crack-feature” category, produced using the Grad-CAM technique. 
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misclassifications may be due to the close resemblance between the 
crack features and other line features formed by discolouration marks. 
Finally, Fig. 9(g) and (h) present two FN examples which contain light 
trace of crack features. Although being not easily identifiable due to 
small size and low contrast, such light crack features are still reportable 
to engineers. The correct classification in this scenario is challenging but 
could be improved by increasing the representations of light crack fea
tures in the training dataset. To continuously widen the range of clas
sifiable crack-feature types, a human-in-the-loop feedback mechanism 
needs to be developed. In this feedback mechanism, misclassified or 
unseen images from new inspections will be fed into the training dataset 
to update the classification system. It should be noted that while we have 
demonstrated the utility of our approach for crack feature detection in 
superheaters using the GoogLeNet structure, the same approach with 
other network structures could be straightforwardly adopted by other 
researchers for their own applications on detecting image regions con
taining defects, anomalies or other regions of interest. The possible 
candidates for adoption include but are not limited to: VGG [31], ResNet 
[32], AlexNet [37], and other data-driven techniques such as the 
Bag-of-Visual-Words approach [3]. A complete comparison of different 
networks and approaches is beyond the scope of this article. 

4.2. Explicability of decision-making 

The CNN classification is conventionally considered a black-box 
operation. Therefore, it is necessary to understand the decision- 
making mechanism of our classification system. This understanding is 
useful for engineers to obtain insights into the decision-making process 
and gain confidence in the classified results. Such interpretability is 
exceptionally imperative in the highly-regulated nuclear power gener
ation industry. Techniques such as Saliency Map [38] and 
Gradient-Weighted Class Activation Mapping (Grad-CAM) [39] were 
proposed to help understand why the CNN makes a specific classifica
tion for the input image. 

Specifically, the Saliency Map technique is used to produce a pixel- 
level resolution map of the input image to show which pixels are most 
important to contribute to the predicted category of the input image. 
This resolution map is obtained by computing the derivative of the 
classification score for the predicted category with respect to each pixel 
in the input image. On the other hand, a localisation map can be pro
duced using the Grad-CAM technique to show what regions of the input 
image most affect the classification score for the predicted category. The 
Grad-CAM technique is performed by calculating the gradients of the 
classification score for the predicted label with respect to the activations 
of the final feature maps. 

In this section, the Saliency Map technique based on guided back
propagation [40] and the Grad-CAM technique are applied to the four 
TP examples to visualise which regions of the patches are most impactful 
on the “crack-feature” classification results. The results are given in 
Fig. 10. Taking Fig. 10(a) for example, the left of Fig. 10(a) shows a 
testing patch correctly classified as “crack feature”. The corresponding 
saliency map in the middle of Fig. 10(a) reveals which pixels are most 
impactful to contribute to the “crack-feature” decision. As can be seen, 
the most impactful pixels correspond to the crack-feature region in the 
testing patch. On the right of Fig. 10(a), the localisation map is placed on 
top of the testing patch to show the most important region contributing 
to the classified “crack-feature” category. As can be seen, the 
crack-feature region highlighted in red has the greatest impact on the 
classified “crack-feature” decision. In this example, both the Saliency 
Map and Grad-CAM techniques suggest that the trained network focuses 
on the correct region to make the “crack-feature” classification. Such 
consistency is seen in other TP examples from Fig. 10(b)–10(d). There
fore, it is suggested that the classification system uses the crack-feature 
regions in patches to make “crack-feature” decisions, which enhances 
the trustworthiness of classification results. 

4.3. Frame-level detection 

With the classification explicability investigated, the trained network 
is now used to detect crack-feature regions in the frames extracted from 
the testing videos. The frame-level detection consists of multiple patch- 
level classifications at different detection window locations in the frame. 
The full-grid scanning mechanism in Fig. 11 is used for our study. The 
detection window is of the same size as the patch. The scan starts from 
the top left of the frame and slides in horizontal and vertical directions 
with a step size of 224 pixels until the distance from the nearest frame 
border is smaller than the step size. Any regions classified as “crack 
feature” are highlighted using red borders. 

Fig. 12 shows the examples of classified frames where the crack- 
feature regions are detected and highlighted. As shown in Fig. 12(a) 
and (b), the crack-feature regions in the frames can be accurately 
detected even in the presence of complex background textures formed 
by the tube hole contours or discolouration marks. Fig. 12(c) and (d) 
demonstrate that the classification system can correctly locate the crack- 
feature regions at reflective surface and in the dim lighting condition. 
More examples are shown from Fig. 12(e) to Fig. 12(o). Therefore, the 
classification system can be used to perform crack-feature detection at 
frame level via the full-grid scanning mechanism, even in challenging 
scenarios with the variant illumination condition and complex back
ground textures. Though fixed bounding-box level detection is chosen in 
this article, recent research [20,21] demonstrates an increasing trend to 
investigate pixel-level crack segmentation, which could potentially be 
useful for our study by providing detailed morphology information of 
crack features. It is noted that the pixel-level crack segmentation is not 
pursued in this article. This is because the main objective is to provide 
decision support to the human-in-the-loop decision-making process, not 
extending to describe the morphology of crack features. This is done by 
flagging the presence of crack features through identifying the frames 
containing crack features in the video footage and reporting the obser
vations of such findings to engineers. For this main target, the proposed 
patch-level classification is acceptable. Note that a refined search of 
crack features in frames is possible by reducing the step size of the 
scanning strategy, at the cost of an increased computational burden. 
Furthermore, more refined crack feature localisation is possible with 
bounding box level detection through Faster R–CNN techniques [16] to 
offer flexibility to the sizes of the bounding boxes. This can be particu
larly useful in the presence of various sizes and scales of input images. 
The success of the patch-level and frame-level detection lays a solid 
foundation to explore the accurate and efficient video-level detection of 
crack features as the future work. Furthermore, the successful 

Fig. 11. Full-grid scanning plan of the frame using a detection window sliding 
in horizontal and vertical directions with the step size of 224 pixels. 
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development of the automated crack-feature detection system via the 
deep learning approach is a valuable asset to be transferred to other 
domains of anomaly detection in pressure vessels. 

5. Conclusions 

This article has introduced a data-driven framework to support 
automated remote visual inspection of anomalies in pressure vessel 
structures, showcased via successfully developing a new automated 

Fig. 12. Examples of classified frames with different resolution sizes, where the crack-feature regions are automatically detected using the classification system. Note 
that these frames are cropped from the original ones to remove the confidential site location and timing stamps. 
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detection system of crack features in nuclear power plant superheaters. 
Specifically, a good accuracy of 92.97 % has been achieved at the patch- 
level classification. On this basis, the frame-level classification has been 
implemented using the full-grid scanning strategy to accurately detect 
the crack-feature regions even in the presence of variant lighting con
ditions and complex background textures. The explicability of the clas
sification results has been investigated to enhance the trustworthiness of 
the classification system. Note that whilst this article has used a CNN 
classifier combined with the sliding window technique to localise 
defected crack features, bounding box level detection is possible to 
realise more refined crack localisation, especially when the input images 
have different sizes and scales. Furthermore, pixel-level crack feature 
segmentation could also be useful to bring advance in providing more 
accurate crack feature localisation and its detailed morphology infor
mation, through image processing (e.g., Hessian-matrix-based tech
nique) or deep learning based techniques. Comparative studies of 
different networks and approaches for a wider range of anomaly 
detection in steam cycle components will also be useful. 

Three major aspects of the future work have been identified in this 
study. Firstly, due to the limited variety of crack features in the provided 
inspection videos, the future work will focus on developing a human-in- 
the-loop feedback mechanism to feed new crack-feature types or mis
classified results into the training dataset and update the classification 
system. As a result, the crack-feature variety in the training dataset can 
be continuously increased to widen the adaptability of the classification 
system. The second aspect of the future work is the accurate and efficient 
video-level detection of crack features. Finally, the transfer learning 
process in this article will be translated to a broader scope of automated 
anomaly inspections of pressure vessels at nuclear power plants. 
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