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Abstract  Water vapour permeability (WVP) data on 
brick, stone, plaster and cement-based materials from 
some seventy publications are reviewed and assessed. 
Almost all sources use standard cup-test methods or 
close variants. Comparisons of WVP values from dif-
ferent sources on similar materials confirm that repro-
ducibility between different laboratories is poor. Some 
deficiencies of cup-test methods are discussed, including 
uncertainties arising from the use of saturated-salt humi-
distats and desiccants. There is evidence that the water 
vapour resistance factor decreases as volume-fraction 
porosity increases, and data support a simple porosity–
tortuosity relation. Data also show that the resistance 
factor decreases with increasing mean relative humidity 
across the test specimen, with the wet-cup value consist-
ently lower than the dry-cup values for a given material. 
The contribution of liquid film flow to mass transfer is 
discussed. It is shown how film thickness and film-flow 
permeability may be estimated from the water-vapour 

sorption isotherm; and a related regression equation is 
developed It is concluded that available data are inad-
equate to establish the fundamental physics of WVP; 
vapour-only permeability data for engineering purposes 
should be obtained in dry-cup tests at low humidity; and 
research studies should aim to integrate the WVP into the 
framework of unsaturated flow theory.

Keywords  Water vapour permeability · Water 
vapour diffusivity · Water vapour resistance factor · 
Cup test · Humidity · Porosity · Film flow · Sorption 
isotherm · Schirmer equation

Abbreviations

AAC​	� Autoclaved aerated concrete
CS	� Calcium silicate hydrate insulation 

board
GAB	� Guggenheim–Anderson–de Boer
OPC	� Ordinary portland cement
WVP	� Water vapour permeability

List of symbols

as	� Specific surface area (m2 kg−1)
b	� Schirmer exponent
cG	� GAB parameter
cw	� Mass concentration of water vapour 

(kg m−3)
Dv	� Water vapour permeability (s)
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Dvf	� Film-flow contribution to permeabil-
ity (s)

Dw	� Diffusivity of water vapour (m2 s −1)
Dw(0, 1)	� Water vapour diffusivity in still air at 

temperature 0 ◦C  (m2
s
−1)

Dwf	� Film-flow contribution to diffusivity 
(m2 s−1)

f	� Volume fraction porosity
F	� Mass fraction water content
Fv	� Liquid film cross-section area per 

unit bulk cross-section area
g	� Standard acceleration due to gravity 

(m s−2)
G	� Geometrical tortuosity factor
H	� Fractional humidity RH/100
Hc	� Lower bound H for capillary 

condensation
Hm	� H at monolayer coverage
H	� Mean of cup H and chamber H
jm	� Mass flux of water (kg m−2 s−1)
jmf	� Mass flux of water in liquid film (kg 

m −2 s −1)
kG	� GAB parameter
Kf	� Film hydraulic conductivity (m s−1)
Kn	� Knudsen number �∕Λ
L	� Length (m)
m	� Archie law exponent
mG	� GAB parameter
Mw	� Molar mass of water (kg mol−1)
NA	� Avogadro constant (mol−1)
pc	� Liquid water capillary pressure (Pa)
pw	� Vapour pressure of water (Pa)
pw0	� Saturated vapour pressure of water 

(Pa)
P	� Total pressure (Pa)
q	� Parameter of Iversen tortuosity 

model
R	� Gas constant (J mol−1 K−1)
rwd	� Denotes quantity �wet∕�dry

RH	� Relative humidity (percent)
RHc	� Lower bound RH for capillary 

condensation
RHm	� RH at monolayer coverage (percent)
RH	� Mean of cup RH and chamber RH 

(percent)
RHwet	� Wet-cup RH  (percent)
T	� Thermodynamic temperature (K)
x	� Space coordinate (m)
�	� Denotes quantity RT∕(Mwg) (m)

�	� Quantity defined in Eq. 13 (s)
�	� Film thickness (m)
�	� Dynamic viscosity of liquid water 

(Pa s)
�	� Mean free path water in air (m)
Λ	� Characteristic length (length scale) 

of porosity (m)
�	� Water vapour resistance factor
�dry	� Dry-cup resistance factor
�wet	� Wet-cup resistance factor
Ψ	� Hydraulic potential (m)
�w	� Density of liquid water (kg m−3)
�w	� Surface tension of liquid water 

(N m−1)
�	� Tortuosity
�	� Volume fraction water content
�m	� � at monolayer coverage

1  Introduction

The water vapour permeability (WVP) is a mate-
rial property used in building physics, in particular in 
hygrothermal analysis of building performance and in 
related engineering design models. The WVP describes 
the rate of transport of water vapour within a porous 
material under a humidity gradient at constant tem-
perature. The WVP is almost always measured by one 
of several long-established standard ‘cup-test’ methods 
[1–4], all of which are similar to a procedure originally 
described some sixty years ago [5]. Although used for 
many decades, the cup test has been shown often [6–9] 
to be of poor reproducibility between laboratories, 
although repeatability within a single laboratory may 
be good. It is surprising that despite this long history of 
use there has not previously been a review of published 
WVP data. Our aim here is to gather together the meas-
ured WVP values of inorganic materials from a wide 
range of literature sources and to consider the variation 
and consistency of these in groups of similar materials. 
We use the published data to examine how WVP val-
ues depend on specimen porosity and on the humidity 
conditions used. We comment also on the uncertainties 
in the humidity of saturated salt solutions, a matter not 
discussed elsewhere, and make several recommenda-
tions about the reporting of WVP data.
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2 � Measurement

2.1 � Definitions and theory

In standard cup tests, the gradient of water vapour 
pressure is created by sealing a specimen of the test 
material of uniform thickness over the mouth of a cup 
containing either a saturated salt solution or a desic-
cant which acts as an internal humidistat to provide a 
constant relative humidity (RH).The relative humid-
ity RH = 100 ⋅ pw∕pw0 where pw is the vapour pres-
sure of water over the saturated salt solution or desic-
cant, and pw0 is the saturated vapour pressure of pure 
water both at the same temperature. The cup/speci-
men assembly is then placed in a closed chamber 
kept at a different RH, and all maintained at constant 
temperature. The rate of transfer of water through the 
specimen is measured by weighing the cup from time 
to time. If the different RHs of cup and chamber are 
both constant, there is a constant RH gradient across 
the specimen, and a steady state is established. The 
steady rate of change of the weight of the cup pro-
vides the primary measurement from which the WVP 
is calculated. When the RH inside the cup is greater 
than that in the external chamber, water transfer 
is outwards and the test is described as wet-cup; in 
a dry-cup test, the cup contains a desiccant (or less 
commonly a saturated salt solution of low RH), and 
the direction of mass transfer is inwards into the cup.

Figure  1a is a schematic of the test arrangement. 
The underpinning theory is a simple application of 
Fick’s first law by which the mass flux jm is

where cw is the mass concentration of water vapour 
and Dw is the diffusivity of water vapour in air 
(dimension �2�−1 ). To express the flux in terms of the 
water vapour pressure pw , we note that cw is the same 
as the water vapour density and therefore assuming 
ideal gas behaviour cw = pwMw∕(RT) , where Mw is 
the molar mass of water, R the gas constant and T the 
thermodynamic (kelvin) temperature. Then we have 
from Eq. 1

(1)jm = −Dw

dcw

dx
,

(2)

jm = −
DwMw

RT
⋅

dpw

dx
= −Dv

dpw

dx
= Dv

pwA − pwB

L
.

The composite (lumped) quantity Dv = DwM∕(RT) is 
the water vapour permeability (dimension � ; unit s, 
but often written as kg  (m  Pa  s)−1 ). In denoting the 
WVP as Dv we follow common practice [10], but the 
symbol �p is sometimes used, for example in [1, 3].

As noted elsewhere [10–13], the WVP is not a per-
meability in the Darcian sense of advection in response 
to a gradient of total hydraulic pressure, but rather it 
is a tracer diffusivity. In Fig.  1a, the mass flux arises 
from molecular diffusion of dilute water vapour in air, 
where the air is essentially stationary. We discuss later 
whether this simple Fick’s law theory provides an ade-
quate description of the cup test. A typical test arrange-
ment is shown in Fig. 1b.

2.2 � Water vapour resistance factor

Cup test results are often reported as the water vapour 
resistance factor � = Dw0∕Dw , where Dw0 is the water 
vapour diffusivity in still air at the temperature T and 
atmospheric pressure P at which the cup test was car-
ried out. In building physics, Dw0 is usually calcu-
lated from an empirical equation proposed in 1938 by 
Schirmer [14] who reviewed the sparse experimental 
data then available. This equation is of the form

where Dw(0, 1) is the water vapour diffusivity in 
still air at temperature T0 = 273.15  K ( 0◦C ) and 
total pressure P0 = 1  atm, and where P� = P0∕P . 
Schirmer recommended the values Dw(0, 1) 
= 2.306 × 10−5  m2  s−1 , and b = 1.81 . In 1998 Mass-
man [15], with the benefit of many new experimental 
data, supported the use of Eq.  3, retaining Schirm-
er’s b exponent but recommending a lower value of 
Dw(0, 1) = 2.178 × 10−5 m2  s−1 . Most recently, Hell-
mann [16] has calculated the water vapour diffusiv-
ity of water in air from molecular kinetic theory. Over 
the temperature range of interest in building physics 
(say −40 to +60 ◦C), Hellmann’s results agree closely 
with those of Massman, and when fitted to Eq. 3 yield 
Dw(0, 1) = 2.154 × 10−5 m2 s−1 and b = 1.91 (our cal-
culation). In this review we use the Hellmann param-
eter values, but it is remarkable that the Schirmer 
equation has proved so accurate. The water vapour 
permeability Dv0(T ,P) derived from the Hellmann 
values is given by the interpolating equation

(3)Dw0(T ,P) = Dw(0, 1)P
�
(

T

T0

)b
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where M is the molar mass of water, 
0.018015  kg  mol−1 , and R the gas constant 
8.3145 J mol−1 K−1 ). The values of Dw0 and Dv0 cal-
culated from the reference correlations of Hellmann, 
Massman and Schirmer are compared in Table 1 for 
several temperatures.

In ASTM E96 [1] the permeability of still air, 
there denoted �a , is calculated from an interpolating 
equation equivalent to �a = Dw0 ⋅M∕(RT) = Dv0 , 
where Dw0 is given by Eq. 3, with the Schirmer val-
ues of Dw(0, 1) and b. The corresponding equation 
in ISO 12572 [3] contains several errors and can-
not be used for calculation, as comparison with the 
ASTM equation for �a or with Eq. 4 shows.

Uncertainty in the value of Dw0 (or equally in 
Dv0 ) contributes to uncertainty in the value of the 
resistance factor � . Table 1 shows that the Schirmer 
values of Dw0 are about 6  percent larger than the 
preferred values of Hellmann (or of Massman, 

(4)Dv0(T ,P) = 2.154 × 10−5 ⋅
MP�

RT

(

T

T0

)1.91 which for practical purposes in building physics are 
the same). Hellmann estimates that the expanded 
( k = 2 ) uncertainty in Dw0 calculated from Eq. 3 is 
3 percent at T < 300 K and 2 percent at T > 300 K. 
Using Hellmann (or Massman) values rather 
than Schirmer values achieves a small but useful 
improvement in the accuracy of estimates of �.

2.3 � Critique of test methods

Deficiencies of the cup test have often been discussed 
(notably in [5–7, 11, 12, 17–19]). The most serious 
of the shortcomings [12] lies in the lack of control 
of water vapour pressure pw (or RH) at the specimen 
surface, especially in the interior of the cup. Since 
there is a mass flux from the surface of the salt solu-
tion or desiccant to the surface of the specimen, there 
must necessarily be an RH gradient within the cup, 
and therefore the RH at the surface of the test speci-
men must be different from that of the humidistat 
itself. Similar issues may arise on the outer surface 
of the specimen, depending on how the humidity is 

Fig. 1   Water vapour diffusion through a porous material. (a) 
Schematic of water vapour diffusion mass flux jm in a porous 
barrier of thickness L separating air-filled compartments A and 
B with water vapour pressures pwA > pwB , relative humidities 
RHA > RHB and total pressure P. (b): Typical test arrangement, 

with dry-cup containing saturated salt solution or desiccant at RH1 
in a chamber with dynamic humidity control at RH2 > RH1 ; alter-
natively, the chamber humidity may be maintained by a second 
saturated salt solution; not to scale
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controlled in the chamber. These problems are recog-
nised in at least one standard [3] which describes a 
time-consuming method using specimens of different 
thicknesses to correct for the associated error. This 
correction is rarely mentioned in WVP publications, 
and it seems unlikely that it is often applied.

Other deficiencies lie in practical issues such as 
specimen sealing and specimen geometry that have 
often been noted, for example in [6, 7]. Here we dis-
cuss an important aspect of humidity control which 
has not been considered in earlier publications.

2.4 � Humidity control

We note that there are some inconsistencies in the RH 
values assigned to several of the saturated-salt humi-
distats used in the cup test. In most cases, the values 
employed can be traced to the 1977 tabulation of 
Greenspan [20] (and reproduced in [21]). Since that 
date, there has been much new work, both experi-
mental and theoretical, on the properties of aqueous 
electrolyte solutions. We comment on two favoured 
saturated salt systems.

Potassium nitrate KNO3 . This is a wet-cup 
humidistat frequently used, and recommended in 
ISO 12572. Greenspan gives its RH at 20 ◦C  as 94.62 
percent and at 25 ◦C  as 93.58 percent (but given as 
93.2 percent at 20  ◦C    in EN 1015). Several more 
recent publications [22–27] have found lower values 
in the range 91.7–92.7 at 25 ◦C.

Lithium chloride LiCl This salt is recommended in 
EN 1015, where the RH of its saturated solution at 
20  ◦C    is given as 12.4 percent. The Greenspan RH 
is 11.31 percent at 20  ◦ C, and 11.28 at 25  ◦ C. The 
use of LiCl is complicated by the existence of sev-
eral hydrates, notably the dihydrate LiCl.2H2O , sta-
ble below 19–20  ◦C    [28, 29], and the monohydrate 

LiCl.H2O , stable above that temperature. It is likely 
that in cup tests using lithium chloride the solid phase 
present in the saturated slurry is the monohydrate, 
for which a recent estimate of the slurry RH [29] 
is close to the Greenspan value at 25 ◦C  but a little 
lower (10.99) at 20  ◦ C. Experimental measurements 
of vapour pressures over saturated LiCl solutions are 
somewhat erratic, suggesting the occasional presence 
of metastable hydrates. Other estimates [23, 30] of 
the RH of the saturated solution lie in the wider range 
11.1–12.1 percent at 25 ◦C.

Desiccants Other uncertainties are associated with 
the use of dry-cup desiccants such as silica gel and 
calcium chloride. Silica gel is not a true phase-invar-
iant humidistat and does not provide a constant RH 
independent of its water content: the contiguous RH 
rises continuously as the amount of adsorbed water in 
the desiccant increases [31]. To maintain an RH below 
1 percent at 25 ◦ C, it is necessary to limit the amount 
of adsorbed water to about 1.3 percent of the weight of 
the dry silica gel. At 5 percent by weight of adsorbed 
water the RH has risen to about 5.5 percent, the exact 
relation depending on the grade of silica gel used [32].

In contrast, calcium chloride CaCl2 can perform 
as a low-RH humidistat when dry: in the temperature 
range 15–30  ◦ C, anhydrous CaCl2 takes up water to 
form a series of hydrates [33, 34]. Provided that at 
least some of the unhydrated salt is present, the water 
vapour pressure is stable and the RH < 0.7  percent. 
However when all the anhydrous solid has been con-
verted to the highest hydrate, CaCl2.6H2O , humidity 
rises until the deliquescence RH is reached at about 
28 percent at 25 ◦C.

 Magnesium perchlorate  Mg(ClO4)2 (listed in 
ISO  12572 and EN  12086 [35]) behaves similarly 
[36, 37]. Provided that the desiccant has not absorbed 
enough water to convert entirely to the hexahydrate 

Table 1   Water-vapour diffusivity and water vapour permeability in still air at 1 atm pressure

(1) For the temperature range of interest, at most −40 to +60 ◦ C, Hellmann’s interpolating equations for D
v0

 (equations 16 and 17 of 
[16], valid for a large temperature range), are indistinguishable from the simpler Eq. 4 derived here. (2) These values are the same as 
can be calculated from Eq. 5 of ASTM E96 [1]

10
5
D

w0
 (m2 s−1) 10

10
D

v0
 (s)

–20 ◦C 0 ◦C 20 ◦C 25 ◦C 0 ◦C 20 ◦C 25 ◦C

Hellmann [16] 1.861 2.157 2.470 2.550 1.593 1.711 1.825 1.853 Note 1
Massman [15] 1.898 2.178 2.475 2.552 1.625 1.728 1.829 1.845
Schirmer [14] 2.009 2.306 2.620 2.702 1.720 1.829 1.937 1.963 Note 2
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(about 48 percent by weight) it maintains an RH 
≤ 0.2 percent at 25 ◦C.

It is beyond our scope here to determine the pre-
ferred values of the RH of saturated salt solution 
humidistats in the light of current knowledge, but this 
task now seems overdue. Likewise a more precise 
statement of the RH established by the commonly 
used desiccants would be timely.

3 � Review of published WVP data

3.1 � Scope and general remarks

For this review, we have identified some 70 published 
reports that contain primary WVP data on inorganic 
construction materials. (In this task we have ben-
efited from a recent survey [38] of humidity-related 
properties of plasters). We have also included some 
data from [39] that are collated from earlier sources, 
including [40], and some of which are unpublished 
and otherwise inaccessible. Several commercial data-
bases to which we do not have access, and which in 
any case contain mostly secondary data, have not been 
considered. We have not included inorganic-organic 
composite materials with large amounts of organic 
component. Thus materials such as hemp-lime plas-
ters are excluded. Organic materials often contain 
components (notably cellulosics) which take up water 
in rather different ways from inorganic materials 
and are subject to swelling. Other organic materials, 
such as the common synthetic polymers, are strongly 
hydrophobic, and their surface interactions with water 
at molecular level are fundamentally different from 
those of inorganic mineral-based materials.

The quality of the primary reports is variable. 
Some general observations about these sources of 
data follow.

•	 Building conservation provides the motivation 
and context for the majority of studies. There are 
numerous reports of the WVP of plasters and 
building stones, while data on concrete are scanty, 
and on brick are unexpectedly rare.

•	 Almost all studies use a standard cup-test 
method or a variant of it; most commonly this is 
ISO 12572 [3], in a few cases EN 1015 [2] or ISO 
12086 [35]. ASTM E96 [1] is little mentioned. 

Non-standard experimental procedures are few 
[13, 41–43].

•	 Many reports provide either wet-cup or dry-cup 
data, but few give both; only rarely are tests car-
ried out at more than two sets of RH conditions 
(but see [8, 44]). In some cases, the RH conditions 
in the cup and/or chamber are not stated or not 
specified adequately.

•	 Across all materials, wet-cup measurements are 
twice as numerous as dry-cup.

•	 Often the composition of the test materials is 
poorly characterised in respect of mineralogy and/
or mix composition (notable exceptions are [45–
48]). When this information is absent, it is impos-
sible to develop any physicochemical understand-
ing of WVP behaviour.

•	 In nearly all cases the atmospheric pressure cor-
rection [3, 13] is not mentioned, although it may 
or may not have been applied; often the test tem-
perature is not stated, although it may be implied 
by reference to a standard test method.

•	 In a few cases, there are internal inconsistencies in 
the data, and these datasets have been excluded.

•	 Often, there are no estimates of uncertainty or error.
•	 Many reports provide porosity data; where porosi-

ties are not given (or cannot be estimated from 
density data) our analysis of the WVP data has 
been limited. A few publications provide sorption 
isotherm data (see for example [42, 49]). Data on 
specific surface area are rare.

•	 Statistical analyses of WVP data in relation to 
other thermophysical properties are infrequent, 
but see [50, 51].

•	 There is often no comparison of results with 
prior published data on similar materials (but for 
example see [47]).

•	 There are few theoretical discussions or analy-
ses, a feature which highlights the lack of an 
accepted physically based model of vapour dif-
fusion/permeability in construction materials. 
Exceptions are [44, 52–54]. There are only infre-
quent references to publications on diffusion in 
porous media from outside the field of construc-
tion materials.

•	 Of the sources identified, only about one third 
provide adequate data for analysis. These yield 
a dataset of about 350 individual WVP measure-
ments on a wide variety of materials.



Mater Struct           (2024) 57:39 	 Page 7 of 20     39 

Vol.: (0123456789)

3.2 � Preliminaries

Publications may report one or more of the quanti-
ties Dw , Dv and � . We have chosen mainly to com-
pare the resistance factor � , since it is a dimension-
less number usually in the range 1–50, and is less 
sensitive to temperature and atmospheric pressure 
than Dw and Dv . Where sources give only values of 
� , we have used those values. Where Dw and/or Dv 
are given, we have calculated � using the Hellmann 
value of Dw0 and/or Dv0 at the test temperature (if 
stated).

The symbol RH is used to designate the mean of 
the reported values of cup RH and chamber RH. We 
then classify all datasets where RH ≥ 70 percent as 
wet-cup; and all datasets where RH ≤ 45 percent as 
dry-cup. The few cases (for example [13, 44, 55]) 
where data are obtained under conditions where 
45 < RH < 70 percent are unclassified. These defini-
tions of wet-cup and dry-cup conditions are consist-
ent with the usage in standards [1–4, 35]. The termi-
nology is not entirely logical since test results should 
be independent of the direction of flow (in or out of 
the cup). The main consideration is the moisture state 
[10] of the specimen, for which we use RH as a sim-
ple metric. In figures, dry-cup data points are plot-
ted as unfilled (open) symbols, and wet-cup as filled 
symbols.

3.2.1 � The role of porosity

In what follows we use the volume-fraction (open) 
porosity f as one explanatory variable. The open 
porosity is straightforward to measure, and gener-
ally has low uncertainty/error [10, 56, 57]. Within 
a group of similar materials the rate of water vapour 
diffusion must tend to increase with the porosity 
f. In an isotropic material, the available fractional 
area for transport in any cross-section equals f. Of 
course, in a random pore structure as f decreases, 
the meandering path-length penalty or tortuosity � 
tends to increase. Therefore on an elementary view 
of molecular gas diffusion in a porous material [52, 
58–62] the diffusivity Dw ∼ f∕� (where ∼ denotes 
varies as or scales as). The tortuosity itself also 
varies roughly as 1∕f m−1 where m is the Archie law 
exponent which has a value around 2 [10, 63, 64]. 
So the elementary model has

for 0 ≤ f < 1 and where � → 1 as f → 1 as it must 
for pure vapour diffusion. Alternatively expressed, 
Dw = Dw0f

m , and likewise Dv = Dv0f
m . Recent 

analyses [65, 66] broadly support these relations for 
vapour diffusion. For simple vapour diffusion through 
a porous material, Eq.  5 is a universal relation with 
only the single parameter m.

We note three limitations of this model. First, it 
assumes that molecular-kinetic diffusion is unaf-
fected by the dimensions of the pore structure, 
specifically that the mean free path of water mol-
ecules in air, � , is smaller than the length scale of 
the porosity Λ : that is, that the Knudsen number 
Kn = 𝜆∕Λ ≪ 1 [67]. For most of the materials of 
interest here this is true, although we may expect to 
find evidence of the transition to Knudsen diffusion 
in some nanoporous cement-based materials [68], 
since at 25 ◦C  � = 0.13 � m. In such cases the dif-
fusivity is reduced by a factor 1∕(1 + Kn) . Second, 
the elementary model takes no account of the con-
nectivity of the pore system: for example there are 
a few high-porosity materials such as aerated con-
crete in which pores may nevertheless be poorly 
connected.

3.2.2 � The role of humidity

The third limitation of a simple porosity-controlled 
view of WVP properties, and the one of the most 
general importance, is that the transport of water 
through the barrier is assumed to be entirely due to 
molecular diffusion in the gas/vapour phase. It is 
often said that there may be a contribution to the 
transport from capillary flow of liquid water. This 
is sometimes stated to arise from capillary conden-
sation at higher humidities. In fact, classical pore-
filling capillary condensation (in the sense of the 
Kelvin equation) can be ruled out in materials such 
as brick, stone, concrete and plasters except at the 
very highest humidities, say above about 98 percent 
RH [10] (but with an exception for some cement-
based materials [68] where nanopores are filled at 
lower RH). What cannot be ruled out across a wide 
range of higher humidities in most materials is the 
formation of multilayer liquid films by water vapour 
adsorption [69]. These may indeed contribute to 

(5)� = Dw0∕Dw = 1∕f m,
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water transport, thus adding a second term to the 
denominator of Eq. 5:

where Dwf accounts for the contribution to the dif-
fusivity from film flow. The film diffusivity Dwf , 
dimension ���−� , depends on the fractional humid-
ity H = RH∕100 and hence on � , the volume-fraction 
water content of the specimen. While Dw0∕Dw is nec-
essarily ≥ 1 , � as defined in Eq. 6 can now take values 
< 1 at high humidities.

Equation 6 can equally well be written as

where the film permeability Dvf (dimension � ) 
accounts for the contribution to the WVP from mass 
transfer in the film. The lower limit to the range of 
RH in which film flow contributes to the total mass 
flux is set approximately by RHm , the RH at which a 
molecular monolayer of water is formed. The value 
of RHm (or Hm = RHm∕100 ) can be obtained from 
analysis of the water vapour sorption isotherm, and 
is usually in the range 15–30 percent RH. The upper 
limit is set by the RH at which capillary condensa-
tion occurs, approximately RHc = 100Hc where 
H

c
= exp[−2�

w
M

w
∕(ΛRT�

w
)] = exp[−1.049 × 10

−9
m∕Λ] 

for water at 25 ◦ C. Here Λ , as previously, is a char-
acteristic length of the pore structure of the material, 
and �w is the density of liquid water. Broadly speak-
ing we can expect film flow to contribute significantly 
to the WVP in some or most of the RH range above, 
say, 60 percent for the inorganic materials of interest 
here: brick, stone, concrete and plasters.

Several regression or interpolation equations 
have been used to described the RH dependence of 
the WVP, for example � = A1 + B1 exp(C1 ⋅ RH) in 
[70], and the reciprocal form

in [39, 40, 53]. These are both empirical equa-
tions without clear theoretical basis. The quantities 
A1,B1,C1 and A2,B2,C2 , are regression parameters.

However, it is possible to obtain a physically-
based regression equation for the dependence of 
the WVP resistance factor � on the relative humid-
ity RH using the theory of flow in liquid films. In 
recent work on unsaturated flow in soils physically 

(6)� = Dw0∕[Dw + Dwf(H)]

(7)� = Dv0∕[Dv + Dvf(H)]

(8)� = 1∕[A2 + B2 exp(C2H)]

based theoretical relations between film conductiv-
ity and film thickness, hydraulic potential and pore 
size have been developed [71–73]. In these analy-
ses the film thickness is calculated from hydraulic 
potential. Here we prefer to obtain the film thickness 
�(H) directly from the sorption isotherm F(H) of the 
material. The basis for this approach is described in 
Appendix 1, where we show that the quantity Dvf  in 
Eq. 7 depends on the fractional humidity H through 
the isotherm F(H) by the relation Dvf = � ⋅ F3∕H . 
Therefore

where the quantity � , which does not depend on H, 
is defined in Appendix 1. For the purposes of obtain-
ing a physically-based regression equation for �(H) 
we use the Guggenheim–Anderson–de Boer [GAB] 
isotherm model, an approximate form of which can 
be written F = mG∕(1 − kGH) (Appendix 1). Then we 
have from Eq. 9

where A3 , B3 and C3 are regression parameters. If the 
GAB parameter kG is known then C3 = kG . We test 
the use of this regression equation below in a small 
number of cases where WVP data are available.

We next discuss available WVP data on groups 
of materials.

3.3 � Clay brick

WVP data on brick are sparse. Of 11 sources, two 
are excluded for lack of information on RH test con-
ditions. Notable among the nine retained is a set of 
wet-cup measurements on thirteen brick ceramics of 
varied clay composition [50]; and also the round-
robin measurements on a single brick material by 
several laboratories [8, 18, 74]. The WVP data in 
[39] are collated from four earlier unpublished stud-
ies. Figure 2 shows � versus 1/f. The range of poros-
ity f, 0.20–0.50, spans that of most commercial 
bricks [56]. Data are extremely scattered, and there 
is little or no separation between dry-cup and wet-
cup values. There is no clear correlation between � 
and 1/f.

(9)�(H) =
Dv0

[Dv + �F3∕H]
,

(10)�(H) =
1

[A3 + (B3∕H)(1 − C3H)−3]
,
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3.4 � Sandstones

There are WVP data on sandstones from 11 sources, 
one without essential test information. Materials 
come from several different countries. Figure 3 shows 
� versus 1/f. Here the trends are somewhat clearer 
than for brick. Dry-cup values of � lie mostly well 
above wet-cup values at similar porosity f. In the 

dataset as a whole wet-cup � values tend to increase 
as 1/f increases (or as f decreases), although the scat-
ter is too large for a quantitative regression. This trend 
is also clear in several individual datasets, in particu-
lar in the wet-cup data from [44–46]. The trend is 
also seen in the dry-cup data from [78].

The data spread is considerable, covering the range 
0.04–0.31 in f, and 5–155 in � . Sandstones may be 
considered as grain packs with well connected poros-
ity [82]. The sandstones of the dataset are varied 
both mineralogically and microstructurally. Some are 
quarry materials, while others are recovered from his-
toric buildings. The WVP sandstone data are mostly 
accompanied by comprehensive characterisation of 
mineralogy or thermophysical properties, or both.

3.5 � Limestones

Unlike sandstones, limestones have been little stud-
ied. Only five sources [51, 77, 81, 83, 84] provide 
both WVP and porosity data on a total of 14 mate-
rials (Fig.  4), reduced further by some duplication 
between [83] and [84]. All but one are wet-cup � val-
ues. Although meagre, the data may suggest a trend 
towards higher wet-cup � as f decreases.

3.6 � Lime mortars and plasters

Mortars and plasters made from hydraulic and non-
hydraulic (air) limes form the largest subset of WVP data. 

Fig. 2   Water vapour resistance factor � for fired-clay brick: 
published data. Key:  [50] (assumed to be wet-cup), △  
[75],     [41], 

⨀

 [74],  [18], ▶ [51],  [76],  
[8],  [39]. For data of [39], porosity f estimated from 
reported bulk density. Open symbols: dry cup; filled symbols: 
wet cup. Porosity f decreases from left to right

Fig. 3   Water vapour resistance factor � of sandstones from 
several countries: published data. Key: German,  [45],   
[46], ▶ [77]; Czech, 

⨀

 [78],  [79],  [80],  
[49]; Chinese,  [44]; Scottish,  [47]; French, △ [81]. 
Open symbols: dry cup; filled symbols: wet cup

Fig. 4   Water vapour resistance factor � of limestones: pub-
lished data. Key:  [84], ◀ [77], ▶ [51], ▽ [81],   [85],  
[83] (an extreme outlier at � = 225 , 1∕f = 190 is not shown). 
Open symbols: dry cup; filled symbols: wet cup
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There are 16 sources. Six of these give incomplete infor-
mation on test conditions or have errors of calculation. 
Of those retained, ten provide porosity data, and of 
these five provide both wet-cup and dry-cup � values. 
Figure 5 shows � versus 1/f for these materials. WVP 
data from an excellent study of repair mortars [48] is 
not included since the porosity was not measured. The 
separation of wet-cup and dry-cup values of � is clear. 
The wet-cup values are uniformly rather low, with 
𝜇 < 14 in most materials. There is no trend in the dry-
cup � to higher values as porosity f decreases.

3.7 � Cement‑based materials

Of twelve reports of WVP in cement-based concretes 
and mortars, five provide porosity data and com-
plete test details [8, 13, 55, 75, 94, 95], and these are 
shown in Fig. 6. Only three sources provide dry-cup 
values. The materials, mixes and compositions are 
unconventional and the data provide little guidance 
on the WVP properties of standard cement mortars 
and concretes. These data support the notion that the 
resistance factor � increases as porosity f decreases, 
but with the caveat that there is no such trend within 
the individual low porosity and high porosity clusters 
considered separately. These cement-based materials 
have the largest range of wet-cup � values of any of 
the groups of materials reviewed.

3.8 � Unfired clay materials

WVP data on unfired clays and earth bricks are 
needed for moisture buffering calculations and there 
are eight reports of test results on purely inorganic 
clay materials. Of these three use both wet-cup and 

Fig. 5   Water vapour resistance factor � of lime plasters and 
mortars: published data. Key: ⊡ [86],  [87],  [88], 

 [47], ▶ [89],  [90],  [51],   [91],   [92], 
 [93]. Open symbols: dry cup; filled symbols: wet cup

Fig. 6   Water vapour resistance factor � of cement mortars and 
concretes: published data. Key:  [95] (lightweight mortars, 
cement:aggregate 3.5:1 by volume),  [55] (OPC, pozzolan, 
slag and limestone powder concretes),   [75] (commercial 
masonry mortar),  [8] (AAC),   [94] (AAC),  [13] 
(AAC, RH 54 percent, unclassified). Open symbols: dry cup; 
filled symbols: wet cup

Fig. 7   Water vapour resistance factor � of unfired clay materi-
als: published data. Key:  [96],  [97],  [98] (mean 
� parallel and normal to extrusion axis),   [99], ▽ [86], 

 [100],  [101], ▶ [102]. Open symbols: dry cup; filled 
symbols: wet cup
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dry-cup conditions. Three provide porosity data, but 
others report the bulk density from which a reason-
able estimate of the porosity can be made [10], given 
that kaolinite and quartz are the predominant mineral 
constituents. Figure  7 shows � versus 1/f for these 
unfired clay materials. Wet-cup � values are generally 
lower than dry-cup values and show little variation 
with porosity.

3.9 � Calcium silicate sheet

Calcium silicate sheet (CS) is a commercial 
material with an exceptionally high porosity (f 
0.89–0.91), formed by hydrothermal reaction and 
consisting mainly of the fibrous calcium silicate 
hydrate mineral xonotlite [103, 104]. Four of the 
six available datasets [8, 13, 18, 74] report meas-
urements on the same CS product, while one other 
[105] uses closely similar materials. The data (26 
values, some no doubt the mean of replicates) 
include both wet-cup and dry-cup measurements 
made at several different RH conditions. (Other data 
[11] on an unspecified calcium silicate insulation 
material of lower bulk density are included only in 
Fig.  11). Figure  8 shows the spread of reported � 

values plotted against the mean fractional humidity 
H . As expected for a material of such high porosity 
� is in all cases rather low, but the scatter is con-
siderable. There is a weak trend towards higher � 
at lower RH. For this material the ratio �dry∕�wet is 
about 1.4. We note two wet-cup values of 𝜇 < 1 at 
RH ≈ 90 percent. Figure 8 shows a data fit to Eq. 9.

4 � Analysis and discussion

4.1 � Dependence of WVP on porosity

Elementary physics requires that pure vapour dif-
fusion in a porous material depends on the volume-
fraction porosity f, as indicated in Eq. 5. The data of 
Figs. 2, 3, 4, 5, 6 and 7 provide some indications of a 
correlation between WVP and porosity in groups of 
similar materials, but with much scatter. The trend is 
clearest in data for sandstones (Fig.  3) and cement-
based materials (Fig. 6).

However by taking all the available data together we 
find stronger evidence of a systematic overall trend of 
increasing resistance factor � with decreasing poros-
ity. Fig. 9a, b show composite plots of all WVP data 
from Figs. 2, 3, 4, 5, 6 and 7 on logarithmic axes. Data 
from dry-cup and wet-cup tests are plotted separately, 
with more than twice as many wet-cup data points as 
dry-cup. While there is some scatter, the trend line for 
both dry-cup and wet-cup datasets is clear and in broad 
agreement with Eq. 5, with Archie exponent m ≈ 2.

Several factors no doubt contribute to the scatter, 
including those responsible for the poor reproducibil-
ity in round-robin tests. The wet-cup values of � may 
be reduced by contributions to transport from film-
flow, the magnitude of which may vary from mate-
rial to material. In addition � may depend on other 
microstructural and compositional features besides 
the porosity. A multi-factor analysis [51] of a small 
suite of limestones, fired-clay bricks, and cement and 
lime plasters finds that features of the pore-size dis-
tribution explain the wet-cup WVP better than poros-
ity alone. A study of fired-clay bricks also shows that 
WVP values are influenced by the pore-size distribu-
tion [50]. Both analyses are based on wet-cup data 
only, where both vapour and film transport probably 
occur. We are unable to extend and confirm these 
analyses here since none of the published sources we 
review provide pore size data.

Fig. 8   Water vapour resistance factor � of calcium silicate 
sheet: unfilled symbols, dry cup; filled symbols, wet cup; + 
unclassified; temperature 23 ◦C  except as noted. Key: + [13], 
25  ◦ C;  [8];  [106], 25  ◦ C, interpolated; ▿▾ [18]; 
▵ ▴ [74] and Jianhua Zhao, private communication;  [105]. 
Solid line is a least-squares fit of Eq. 10 to the data, A3 0.353 , 
B3 8.19 × 10−4 , C3 = kG 0.979 (from authors’ unpublished 
sorption isotherm data)
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To test Eq. 5 further requires WVP data obtained 
at low RH where film flow does not occur, ideally on 
a suite of materials of different porosities but of simi-
lar microstructure and tested in the same laboratory. 
If we consider dry-cup data only, available datasets 
in which porosity varies between specimens of simi-
lar morphology and microstructure are rare [47, 78]. 
These two datasets, both sandstones, are shown in 
Fig. 10. The data fit to Eq. 5 is far from conclusive, 
but provides some support. In this matter also further 
study is needed.

4.2 � Dependence of WVP on humidity

There is a large subset of reports where both wet-
cup and dry-cup WVP data are given (and a few 
cases where wet-cup data are provided at more 
than one RH ). For this subset we calculate the ratio 
rwd = �wet∕�dry . Figure 11 shows rwd versus RHwet . 
There is no clear clustering of different groups of 
materials but for the entire dataset rwd ≤ 1 . That 
is to say, �wet is almost always less than �dry , and 
usually much less. Taken overall, rwd values are 
distributed about a mean of 0.58 (s.d 0.21), with 
range 0.13–1.00. We can say cautiously that the 

resistance factor at RH > 70 percent is often about 
one-half that at RH < 45  percent, but with much 
scatter in the values reported for individual materi-
als. In this large dataset ( n = 124 ) as a whole there 
is no clear indication of a strong decrease of rwd 

Fig. 9   Water vapour 
resistance factor � versus 
1/f: all data from Figs. 2, 
3, 4, 5, 6 and 7. Porosity f 
decreases from left to right. 
(a) Dry-cup (low humid-
ity) data (number of data 
points n = 97 ); dashed 
line (- -), Eq. 5 with best 
fit on log-transformed 
data m = 2.01 ± 0.15 . (b) 
Wet-cup (high humidity) 
data ( n = 249 ); dashed line 
(- -), Eq. 5 with best fit 
m = 1.80 ± 0.06

Fig. 10   Variation of dry-cup resistance factor � of sandstones 
with porosity f.  [47];  [78] (one outlier datapoint omit-
ted). Solid line (—): fit to Eq. 5, m = 1.91 ; dotted line (- - -): 
extension of fitted line to � = 1 at f = 1
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with increasing RHwet at RH > 55 percent, although 
there may be a weak trend to lower rwd . This is 
contrary to what is sometimes asserted, for exam-
ple in [39, 110].

Stronger evidence of a rapid decrease in the 
resistance factor � at high RH can however be 
found in the few cases where WVP data have been 
obtained by an individual laboratory at several RH 
values on a single material. Notable examples are 
reported in [11, 39, 40], from which two datasets, 
one for a concrete and one for calcium silicate CS 
board, are shown in Fig  12. In Fig  12a we show 
that the regression equation Eq.  10 describes rea-
sonably well the variation of � with H at higher 
humidities. Accordingly, these few data suggest 
that film transfer makes an increasingly important 
contribution at RH > 50–60 percent. The last two 
decades have produced no new data to test this 
conclusion.

The value of using WVP data from a single 
source is evident in comparing Fig. 12a with Fig. 8, 
where the trend of decreasing � with increasing RH 
is largely if not entirely masked by the data scatter 
between laboratories. In Fig. 11 the scatter almost 
completely conceals any such trend.

Fig. 11   Ratio rwd = �wet∕�dry of different groups of materials 
versus RHwet , the wet-cup mean RH. Symbols: Brick, + [18, 
41, 75, 76]; sandstones, × [44, 47, 49, 79, 80]; cement-based 
materials ⊡ [11, 18, 39, 55, 75, 93]; gypsum,  [39, 107–
109]; lime plasters 

⨀

 [47, 87, 88, 92]; earth bricks △ [96, 97]

Fig. 12   Variation of resist-
ance factor � with fractional 
humidity H = RH∕100 . 
Open symbols: dry cup; 
filled symbols: wet cup. (a) 
Dense concrete [39, 40], �b 
2176 kg/m3 : Solid line, fit 
to Eq. 9, A3 = 3.40 × 10−3 , 
B3 = 4.47 × 10−4 , 
C3 = 0.807 . (b) Calcium sil-
icate sheet [11]: Solid line, 
fit to Eq. 9, A3 = 0.111 , 
B3 = 6.38 × 10−3 , 
C3 = 0.699



	 Mater Struct           (2024) 57:39    39   Page 14 of 20

Vol:. (1234567890)

4.3 � Humidity, moisture state and film flow

Figs. 8 and 11 show that WVP data are reported over 
a wide range of RH , from 17 to 98 percent (and cup 
RH from 0 to 100 percent). This means that the mois-
ture state of the specimen varies widely from test to 
test. This range of RH is more or less the same as 
the range spanned in water vapour sorption isotherm 
measurements on inorganic materials, and from 
which the variation of equilibrium moisture content is 
found as a function of RH. From such measurements 
we know that in brick, stone, concrete and plaster 
materials, a complete water monolayer is formed at 
some well defined RH, here denoted RHm , different 
for each material but commonly around 15–30  per-
cent, and that as the RH rises beyond RHm multilayer 
films of increasing thickness are formed. These may 
be 5–50 molecular layers thick at the higher RHs 
(say 80–90 percent), and are liquid films with proper-
ties close to those of bulk water. For illustration, the 
sorption isotherm of the material of calcium silicate 
sheet has RHm = 24.0 percent, at which RH its vol-
ume-fraction water content �m = 1.4 × 10−3 (authors’ 
unpublished data). At 90  percent RH, �90 ≈ 8.5 �m , 
the additional adsorbed water forming multilayer 
films.

Film flow has received little mention in the field of 
construction materials (but see [111]). In soils, film 
flow of water is considered to make an important, 
sometimes dominant, contribution to mass transfer in 
the range of hydraulic potential Ψ = 100–1.5 × 104  m 
[69, 71–73], corresponding to RH 99–30  percent. 
It cannot be assumed that these numbers transfer 
directly to brick, stone and concrete materials, but 
they are indicative. We note also that the film conduc-
tivity Kf (and hence Dvf ) varies not only with Ψ but 
also with the specific surface area, scaling roughly as 
Λ−1 [71]. The contribution of film flow to mass trans-
fer is therefore greater in fine-pored materials than in 
coarse-pored because the film area is greater. Film 
flow depends strongly on pore size as it increases 
with surface area. In contrast, pure vapour diffusion is 
generally independent of pore size except in the nano-
porosity Knudsen regime.

The film conductivity Kf is also understood to 
scale as �2 , where � is the film thickness, approxi-
mately 0.3  nm for each molecular layer [72]. These 
results suggest that the interpretation of how WVP 
data vary with RH and and with material composition 

could usefully draw on information from the sorp-
tion isotherm, since this provides information on film 
thickness and surface area as a function of RH (or H). 
Parts of that task are implemented in [111] to obtain 
the film conductivity of several brick and cement-
based materials, using however the van Genuchten 
water retention function �(pc) rather than the sorption 
isotherm �(H).

It is probably only at RH < RHm that mass transfer 
occurs entirely by vapour diffusion, so that if a true 
WVP is required from a cup test it should be obtained 
by using a humidistats or desiccants that ensure that 
RH < RHm on both faces of the specimen. It may be 
that the chamber RH set-point of 50 percent, widely 
used in dry-cup tests, is too high.

More generally, it should be recognised that the 
WVP measured with any particular set of RH test 
conditions is sampling a value on a continuous 
hydraulic conductivity function that runs from satura-
tion to dryness.

It is useful to note that the cup-test, for all its draw-
backs, has the virtue of establishing a one-dimen-
sional steady-state flow. As such it has a simple solu-
tion in unsaturated flow theory [10]. This should allow 
the conductivity function itself to be obtained from a 
series of cup-test values of WVP on a material in dif-
ferent moisture states (or RH) . Much of this was set 
out in [41], and partially developed in [68, 111, 112].

5 � Conclusions

•	 The review of WVP data published over four dec-
ades shows that much of the available information 
is of poor quality, with many reports lacking infor-
mation on test conditions and materials.

	   There is a large amount of scatter in data on 
subsets of data on similar materials. This finding 
is consistent with the poor reproducibility seen in 
round-robin exercises.

•	 Despite the scatter, there is evidence of a decrease 
in resistance factor � with increasing porosity, as 
expected from physical arguments. The data tenta-
tively support the use of Eq. 5 to estimate dry-cup 
WVP properties. If that is confirmed by further 
study using more accurate WVP data, then good 
estimates of � may be obtained from porosity 
measurements by calculation.
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•	 Similarly the available data as a whole confirm 
that the wet-cup � values are consistently lower 
by a factor of about two than dry-cup values on 
the same material. Limited data support the notion 
that transport by flow of adsorbed water films con-
tributes to the total mass flux at higher humidities. 
We propose here that film thickness and film-
flow conductivity can be estimated directly from 
the water-vapour sorption isotherm of the mate-
rial. The decrease in � at high humidity (say RH 
> 60–70 percent) is sufficiently great that the RH 
dependence of � should be allowed for in hygro-
thermal calculations, and more carefully investi-
gated in WVP cup tests.

•	 The scatter in WVP data published over many 
years is unsatisfactory for practitioners and 
researchers alike. Many of the available WVP data 
have limited value either for engineering calcula-
tion or for research purposes. It is recommended 
that to obtain engineering data WVP should be 
measured at low RH where mass transfer occurs 
by vapour diffusion only. Wet-cup tests should 
take account of the strong dependence of WVP on 
RH. It is further recommended that for research 
purposes the steady-state cup-test configuration 
should be supported by a comprehensive unsatu-
rated flow theory and experiments should acquire 
data over a wide range of well-defined moisture 
states.

•	 To obtain more reliable data requires improve-
ments in several aspects of the WVP measure-
ment process: the design of test procedures and 
their practical implementation, the validation and 
reporting of results, and the reviewing of data 
before publication. The task of developing and 
using WVP test methods is hampered by the lack 
of standard reference materials having well vali-
dated and traceable WVP values [113]. We sug-
gest that sintered borosilicate glass filter plates 
[114] may be suitable for this purpose. These are 
manufactured in a wide range of pore sizes and 
with specified air permeabilities.
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Appendix 1: Isotherms, film thickness and film 
flow

The film thickness � and its variation with fractional 
humidity H can be obtained from the water vapour 
sorption isotherm F(H), where F is the mass fraction 
water content at H. To show this, we use the Guggen-
heim–Anderson–de Boer (GAB) isotherm model. The 
GAB model, a simple extension of the widely used 
BET isotherm model, generally represents well the 
experimental F(H) behaviour of inorganic construc-
tion materials up to high RH [10]. The GAB equation 
is

where mG , cG and kG are dimensionless parameters. 
The quantity mG is the mass fraction water content at 
which a complete monolayer exists. The correspond-
ing fractional humidity at monolayer coverage is 
Hm = 1∕[kG(1 + c

1∕2

G
)] , which for inorganic construc-

tion materials lies typically in the range 0.15–0.30. 
The thickness of the monolayer water film is taken as 
�m = 0.27  nm [115] from molecular dimensions. At 
higher humidities H > Hm , the thickness of the water 
film � = �mF(H)∕mG . If the specific surface area as 
is known, then �(H) = F(H)∕(as�w) . For illustra-
tion, Fig. 13 shows how � varies with H for calcium 
silicate sheet and a dense concrete, the materials 
for which WVP data are shown in Fig.  12. For CS, 
Hm = 0.24 and for C, Hm = 0.30 . For the purpose of 
calculating the film thickness, the simpler formula 
F(H) = mG∕(1 − kGH) is an excellent approximation.

When the film thickness � is known, standard 
results from the theory of free-surface liquid film 
flow (for example [116]) can be used to estimate the 
liquid permeability of the film

where pc is the capillary pressure, which is assumed 
to drive film flow. Finally, to estimate the film-flow 

(11)F =
mGcGkGH

(1 − kGH)[1 + kGH(cG − 1)]
,

(12)kmf = −jmf

dpc

dx
=

�w�
2

3�
,
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contribution to the overall mass flux in the cup test 
kmf is scaled by the film cross-section area per unit 
cross-section of the bulk solid, Fv = � = F�b∕�w 
and also by a geometrical tortuosity factor G. 
For dimensional consistency with Dv , the driv-
ing force for flow is expressed in terms of the water 
vapour pressure pw = pw0H via the relation 
dpc∕dx = (�wRT∕Mwpw) ⋅ dpw∕dx Then the film flow 
contribution to Dv , valid for H > Hm , is

The quantity � = G�b�wRT�
2
m
∕(3�Mwpw0m

2
G
) , 

dimension � , does not depend on H. If film flow is 
to make a discernible contribution to the overall 
mass flux under wet-cup conditions the quantity Dvf 
must be of a similar magnitude to Dv0 . For calcium 
silicate sheet all quantities in Eq. 13 are known with 
good accuracy, except for G which we take to lie in 
the range 0.05–0.5. Using the GAB parameter val-
ues for calcium silicate sheet given in the caption to 
Fig.  13 and � = 8.90 × 10−3  Pa  s, pw0 = 3.17  kPa, 
�b = 270  kg m −3 , and G = 0.1 yields values for Dvf 

(13)Dvf =
G�b�wRT

3�Mwpw0
⋅

F�2

H
= � ⋅

F3

H
.

at 25 ◦C    and H = 0.7, 0.8 and 0.9 of 6.7 × 10−12  s, 
1.9 × 10−11  s     and 1.0 × 10−10  s respectively. These 
should be compared with the Hellmann value of Dv0 
1.85 ×10−10 s.
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