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Abstract
This report documents several formulations of the optimal power flow problem (OPF) that are im-
plemented as part of the Network Innovation Allowance project: Application of convex optimisation
to enhance National Grid’s NOA process. The code of formulations is made available on a GitHub
repository [1]. The implemented models are tested on a 24-bus IEEE reliability test network and a
36-zone representative GB network. The results demonstrate that the convex approximation of the OPF
problem can approximate the solution of the nonlinear OPF to good accuracy. Linear approximations
to the OPF depends on the choice of initialisation and can only provide a good approximation if the
initialisation is close to the optimal solution. The impact on voltages of committing a bank of capacitors
is also demonstrated on the 36-zone network
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Nomenclature
Sets
B Buses, indexed by b.

L Lines, indexed by bb′.

G Generators, indexed by b.

D Loads, indexed by b.

Bb Buses connected to bus b.

Gb Generators located at bus b.

Db Demands located at bus b.

Parameters
GB

b ,B
B
b Shunt conductance, susceptance at bus b.

gbb′ ,bbb′ Conductance, susceptance of line bb′.

bC
bb′ Shunt susceptance of line bb′.

τbb′ Off-nominal tap ratio of line bb′.

V LB
b ,V UB

b Min., max. voltage magnitude at bus b.

PLB
g ,PUB

g Min., max. real power outputs of generator g.

QLB
g ,QUB

g Min., max. reactive power outputs of generator g.

PD
d ,QD

d Real, reactive power demands of load d.

S+l Real power loss limit of line l.

Θ
+
bb′ Max. angle across the line bb′.

fg(pG
g ) Generation cost function for generator g.

Variables
vb,θb Voltage magnitude and phase at bus b.

cbb′ cosθbb′ . Note cbb′ = cb′b.

sbb′ sinθbb′ . Note sbb′ =−sb′b.

pG
g ,q

G
g Real, reactive power outputs of generator g.

pD
d ,q

D
d Real, reactive power supplied to load d.
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Table 1. A list of optimisation models implemented in this project.

Model Name Code Tag Type Capacitor/Reactor commitment Suggested Solver

AC Optimal Power Flow ACOPF NLP 7 ipopt [9]

Convex relaxation of ACOPF OPF_Convex QCP 3 cplex [10]

Linearised ACOPF OPF_LP LP 3 cplex [10]

PWL ACOPF OPF_PWL LP 3 cplex [10]

DC OPF DCOPF LP 3 cplex [10]

1. Introduction
The optimal power flow problem (OPF) is one of the most frequently and commonly solved optimisation problem in
power systems analysis. The problem was first introduced by Carpentier [2] in 1962 and since then it has been used
in numerous applications and has been extended in several ways to address questions in power systems [3, 4, 5].
The OPF problem is a nonlinear optimisation problem and there are two main issues involved in solving it. The
first issue is the convergence of an OPF solution to an infeasible point and the second is the convergence to a local
solution. Given the nonlinear nature of OPF, it is very challenging to overcome these two issues. The convergence
of a solver to an infeasible point is usually detected by a solver, and feasibility might be restored by repeating the
search from a different starting point. There are techniques in literature which aim to restore the feasibility of the
OPF problem e.g. homotopy techniques to find a feasible solution for an OPF problem [6]. This is therefore not as
serious problem as finding a local optimum without realising there is a better global solution.

This technical report provide details of several convex and linear approaches to solve the OPF problem. The
advantage of convexifing or linearising the OPF problem is that it overcomes the issue of infeasibility and convergence
to a local solution in the OPF problems. Table 1 presents the formulations that are discussed in this note. The code
of these formulations is made available in a private1 GitHub repository [1].

Each implementation of the OPF problem is classified as a nonlinear programming problem (NLP), quadratic
convex programming (QCP) and linear programming problme (LP). This classification provides insights into the
complexity of the problem. For example, linear problems are generally quicker to solver and always converge to a
solution if the overall problem is feasible. However, the NLP problems are not guaranteed to converge even if the
problem is feasible.

A solver is required to run the OPF models implemented in the code. A local installation of a solver is
recommend, however, the code provides a way to access an online solver service NEOS [7] that can be used if a
local installation of solver is not available. Table 1 provide two recommended solvers for solving the implemented
formulations of the OPF problem. This is not an exhaustive list and other solvers could be used e.g. gurobi [8]
instead of cplex and ipopt.

The rest of the technical note is arranged as follows. Section 2 presents the formulation of the nonlinear OPF
problem in polar coordinates. A complete mathematical model the convex relaxation of the OPF is presented in
Section 4.1. The proposed approach is tested on the IEEE 24-bus test case in Section 6. Finally, Section ?? provides
a brief description of the future steps involved in the project,

2. The Optimal Power Flow Problem

This section presents a nonlinear mathematical formulation of the ACOPF problem. As noted earlier, the OPF
problem is to minimise the cost of generation while supplying all the load and satisfying the bus voltage limits, the
apparent power line limits and the real and reactive generator output power limits. The mathematical formulation in
the polar coordinates is gives as follows:

1The private repository is not open-access. Contact waqquas.bukhsh@strath.ac.uk to gain access to the code
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min ∑
g∈G

f (pG
g ) (1a)

subject to

∑
g∈Gb

pG
g = ∑

d∈Db

PD
d + ∑

b′∈Bb

pL
bb′+GB

b ub (1b)

∑
g∈Gb

qG
g = ∑

d∈Db

QD
d + ∑

b′∈Bb

qL
bb′−BB

b ub (1c)

pL
bb′ = ubGbb +(Gbb′ybb′+Bbb′zbb′) (1d)

qL
bb′ =−ubBbb +(Gbb′zbb′−Bbb′ybb′) (1e)

ub = v2
b (1f)

xbb′ = vbvb′ (1g)

ybb′ = xbb′cbb′ (1h)

zbb′ = xbb′sbb′ (1i)

cbb′ = cos(θb−θb′) (1j)

sbb′ = sin(θb−θb′) (1k)

θb0 = 0 (1l)

−Θ
+
bb′ ≤ θb−θb′ ≤Θ

+
bb′ (1m)

V LB
b ≤ vb ≤V UB

b (1n)

PLB
g ≤ pg ≤ PUB

g (1o)

QLB
g ≤ qg ≤ QUB

g (1p)

pL
bb′

2
+qL

bb′
2 ≤ (Smax

bb′ )
2 (1q)

where (1a) is the objective function, equations (1b)-(1c) are Kirchhoff’s Current Law (KCL) enforcing active and
reactive power balance, (1d)–(1e) are KVL, (1j)–(1k) are the trigonometric functions of angle difference across
lines, (1l) removes the degeneracy in the bus voltage angles by fixing it to zero at the arbitrary reference bus, (1m) is
the constraint on the angle difference, (1n)–(1p) are constraints on voltage and power generation, and (1q) are the
line flow constraints. The line conductance gbb′ and susceptance bbb′ are defined by

gbb′ =
rbb′

r2
bb′+ x2

bb′
, bbb′ =

−xbb′

r2
bb′+ x2

bb′
,

where rbb′ , xbb′ are the line resistance and reactance, and parameters Gbb′ and Bbb′ are defined by

gbb′ =−τbb′Gbb′ =−τbb′Gb′b = Gb′b′ = τ
2
bb′Gbb,

bbb′+0.5bC
bb′ = Bb′b′ = τ

2
bb′Bbb,

−bbb′ = τbb′Bb′b = τbb′Bbb′ ,

where bC
bb′ is the line charging susceptance and τbb′ = 1 except in transformer “lines”, where it is the tap ratio and

(as in the MATPOWER [11] convention) the ideal transformer is at the b end of the line. This formulation os OPF is
nonconvex and in [12] test cases are reported with local solutions of OPF.

3. Nonlinearities in the ACOPF problem
Equations 1 presented the nonlinear ACOPF formulation. We note that the nonlinearities are present in equations (1f
- 1k), (1q).
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Figure 1. Voltage squared for ±20% of the nominal voltage. Dashed lines are the operational voltage bounds from
the SQSS [13]
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Figure 2. Bilinear function of voltages at either end of a line.

3.1 Voltage squared
The voltage squared term is a nonlinear function and it appears in the power balance equations (1b,1c) and the power
flow equations (1d,1e). In the nonlinear ACOPF, we have denoted the voltage square at a bus b by the variable ub.

Figure 1 presents the graph of voltage squared term within ±20% of the nominal value of a voltage at a bus b.
The dashed lines presents the SQSS operational bounds on the voltage magnitude which are ±5% of the nominal
value. We observe that within these bounds the voltage squared term can be approximated quite accurately with a
linear function.

3.2 Binlinear term
Equation (1g) is a nonlinear function that is defined by the product of voltage magnitudes at either end of a line
connection two buses b and b′, respectively. Figure 2 presents a graph of the bilinear function for voltage ranges of
±10%. We observe that the surface of the bilinear function can be approximated by a plane with good accuracy.

3.3 Sine function
The nonlinear sine function appears in the power flow equations. Figure 3 presents the graph of a sine function for
an angle differences between −60 and 60 degrees. We note that the sine function can be approximated by a linear
function when the angle differences are small. However, as the angle differences increase the curvature of the sine
function increases.
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Figure 4. Cosine function.

3.4 Cosine function
Figure 4 presents the graph of the cosine function. This is a tricky function to approximation with a linear function
as the rate of change of this function changes sign at 0.

3.5 Product of trigonometric and bilinear functions
In the previous subsections, we discussed the individual nonlinear functions that are presents in the OPF formulation.
The power flow equations involve product of these nonlinear functions i.e. Equations (1h,1i). These bilinear
equations in the new variables again needs to be linearised (or convexified) which not only adds to the complexity of
the overall approximation but also introduces approximation errors. The next section provides a step wise approach
to several convex and linear approximations of the OPF problem.

4. Convex and linear approximations of the ACOPF

4.1 A convex approximation of the ACOPF problem
This section presents a convex relaxation of the problem defined in Equations 1. The approach presented here is
motivated by the work of [14].

4.1.1 Convex Envelopes for quadratic terms
Let V LB

b , V UB
b be the lower and upper bound of the voltage at bus b. The relaxation of quadratic term is given by the

following two inequalities:

v2
b ≤ ub, (2a)

ub ≤ (V LB
b +V UB

b )vb−V LB
b V UB

b . (2b)
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Figure 5. Convex envelopes of the voltage square term.
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Figure 6. Convex relaxation of trigonometric functions.

The inequalities in (2a-2b) are convex and linear respectively. The feasible region defined by the two inequalities
for±10% voltage bounds is shown in gray in Fig. 5. For this case the maximum error of 0.01p.u. in the approximation
of (2) occurs at 1 p.u.

4.1.2 Relaxation of Bilinear Terms
The bilinear functions can be approximated linearly using McCormick inequalities [15]. These inequalities bound
the bilinear function using linear planes. The linear approximation of Equations 1g is provided as follows:

xbb′ ≥V LB
b vb′+V LB

b′ vb−V LB
b V LB

b′ , (3a)

xbb′ ≥V UB
b vb′+V UB

b′ vb−V UB
b V UB

b′ , (3b)

xbb′ ≤V LB
b vb′+V UB

b′ vb−V LB
b V UB

b′ , (3c)

xbb′ ≤V UB
b vb′+V LB

b′ vb−V UB
b V LB

b′ . (3d)

The above four inequalities forms a vertex polyhedral enclosing the bilinear function vbvb′ . For the voltage
bounds of ±10% of the 1 p.u., and the bilinear function is quite flat in this region and the maximum error in the
approximation using McCormick inequalities is 0.01 p.u. and it occurs at 1 p.u.

4.1.3 Quadratic Relaxation of cosine function
A quadratic relaxation of cbb′ defined in Equation 1j is given as follows:
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cbb′ =
cos(Θ+

bb′)

(Θ+
bb′)

2 φbb′ , (4a)

(θb−θb′)
2 ≤ φbb′ , (4b)

φbb′ ≤ (Θ+
bb′)

2. (4c)

Note that here we have used φbb′ ∼ (θb−θb′)
2. Fig. 6a shows the quadratic relaxation of (1− cos) function over

the interval [−60◦,60◦]. The relaxation evaluates exactly on 0◦, and at the end points.
The real power lost in a line bb′ is proportional to 1− cos(θb−θb′). So we expect that the objective of OPF

to push towards the interior of this function. However it is generally not true, especially in the cases where global
solution has high line losses. In these cases this approximation will perform poorly because of the error introduced
by the constraint 4c. An alternate way of approximating cosine function is to use special ordered sets of type 2
(SOS2) [16]. To do this we introduced an order set of variable weights {α−bb′ ,α

0
bb′ ,α

+
bb′} and replace the inequality

in (4c) with the following:

φbb′ ≤−α
−
bb′Θ

+
bb′+α

+
bb′Θ

+
bb′ (5a)

α
−
bb′+α

0
bb′+α

+
bb′ = 1, (5b)

0≤ α
−
bb′ ,α

0
bb′ ,α

+
bb′ ≤ 1. (5c)

The green dashed line in Fig. 6a shows the improvement using SOS2 formulation. Now we provide two
approximations of ybb′ as follows:

Approximation 1 Let XLB
bb′ , XUB

bb′ be the lower and upper bound of xbb′ , respectively. Also let CLB
bb′ , CUB

bb′ be the
lower and upper bound of cbb′ . Following inequalities gives the approximation of ybb′ :

ybb′ ≥ XLB
bb′ cbb′+CLB

bb′ xbb′−XLB
bb′C

LB
bb′ , (6a)

ybb′ ≥ XUB
bb′ cbb′+CUB

bb′ xbb′−XUB
bb′ C

UB
bb′ , (6b)

ybb′ ≤ XLB
bb′ cbb′+CUB

b′ xbb−XLB
bb′C

UB
bb′ , (6c)

ybb′ ≤ XUB
bb′ cbb′+CLB

bb′ xbb′−XUB
bb′ C

LB
bb′ . (6d)

Approximation 2 In [14], the approximation of ybb′ is done by the following set of constraints:

ybb′ =

(
1− cos(Θ+

bb′)

(Θ+
bb′)

2

)
V LB

b V LB
b′ φbb′ , (7a)

(θb−θb′)
2 ≤ φbb′ , (7b)

φbb′ ≤ (Θ+
bb′)

2. (7c)

Note that in this approximation the nonlinear term vbvb′ is not approximated by the McCormick inequalities.
Numerical tests shows that the objective function change upto 1% by modelling the bilinear function using
McCormick inequalities.
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4.1.4 Convex Relaxation of sine function
Let SLB

bb′ , SUB
bb′ be the lower and upper bound of the sine function. The polyhedral envelope of sine function (see

Fig. 6B) is given by the following two inequalities:

sbb′ ≤ cos
(

Θ
+
bb′

2

)(
θb−θb′−

Θ
+
bb′

2

)
+ sin

(
Θ

+
bb′

2

)
, (8a)

sbb′ ≥ cos
(

Θ
+
bb′

2

)(
θb−θb′+

Θ
+
bb′

2

)
− sin

(
Θ

+
bb′

2

)
. (8b)

The bilinear function zbb′ can be approximated by the McCormick inequalities as:

xbb′ ≥ SLB
bb′ubb′+XLB

bb′ sbb′−SLB
bb′X

LB
bb′ , (9a)

xbb′ ≥ SUB
bb′ ubb′+XUB

bb′ sbb′−SUB
bb′ X

UB
bb′ , (9b)

xbb′ ≤ SLB
bb′ubb′+XUB

bb′ sbb′−SLB
bb′X

UB
bb′ , (9c)

xbb′ ≤ SUB
bb′ ubb′+XLB

bb′ sbb′−SUB
bb′ X

LB
bb′ , (9d)

where SLB
bb′ =−sin(Θ+

bb′), SUB
bb′ = sin(Θ+

bb′), ULB
bb′ =V LB

b V LB
b′ , UUB

bb′ =V UB
b V UB

b′ .

4.1.5 Overall formulation of the OPF as a QCP
We replace the nonconvex constraints in Equations 1 by their linear/convex counterparts to obtain a quadratic convex
programming problem (QCP). The overall formulation is as follows:

min ∑
g∈G

f (pG
g ), (10a)

subject to

∑
g∈Gb

pG
g = ∑

d∈Db

PD
d + ∑

b′∈Bb

pL
bb′+GB

b tb, (10b)

∑
g∈Gb

qG
g = ∑

d∈Db

QD
d + ∑

b′∈Bb

qL
bb′−BB

b tb, (10c)

(3−6),(8−10), (10d)

θb0 = 0, (10e)

−Θ
+
bb′ ≤ θb−θb′ ≤Θ

+
bb′ , (10f)

V LB
b ≤ vb ≤V UB

b , (10g)

PLB
g ≤ pg ≤ PUB

g , (10h)

QLB
g ≤ qg ≤ QUB

g , (10i)

pL
bb′

2
+qL

bb′
2 ≤ (Smax

bb′ )
2. (10j)

4.2 Strengthening Convex relaxation of optimal power flow with redundant constraints
The real and reactive power lost in a line can be obtained by adding the real and reactive power flows from either
ends of the line respectively:

pL
bb′+ pL

b′b = v2
bGbb + v2

b′Gb′b′+2vbvb′Gbb′cbb′ , (11a)

qL
bb′+qL

b′b =−v2
bBbb− v2

b′Bb′b′−2vbvb′Bbb′cbb′ . (11b)

Using the convex relaxation of nonlinearities, we can write Eqs. (11) in the following form:
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pL
bb′+ pL

b′b = tbGbb + tb′Gb′b′+2Gbb′(ubb′−wbb′), (12a)

qL
bb′+qL

b′b =−tbBbb− tb′Bb′b′−2Bbb′(ubb′−wbb′), (12b)

but numerical tests show that including the Eqs. (12) in the formulation does not make any difference. Another way
of writing the loss in a transmission line is:

pL
bb′+ pL

b′b = gbb′
(
(v̂b− vb′)

2 +2wbb′
)
, (13a)

qL
bb′+qL

b′b =−bbb′
(
(v̂b− vb′)

2 +2wbb′
)
, (13b)

where v̂b =
vb

τbb′
. Let dbb′ ∼ (ṽb− vb′)

2. The convex relaxation of (13) can be written as:

pL
bb′+ pL

b′b = gbb′ (dbb′+2wbb′) , (14a)

qL
bb′+qL

b′b =−bbb′ (dbb′+2wbb′) , (14b)

(v̂b− vb′)
2 ≤ dbb′ , (14c)

dbb′ ≤ (DLB +DUB)(ṽb− vb′)−DLBDUB, (14d)

where DLB =
V LB

b
τbb′
−V UB

b′ and DUB =
V UB

b
τbb′
−V LB

b′ .
Authors in [14] reported that including constraints (14) in the convex relaxation of OPF the gap can be improved

by 90% in some cases.

4.3 A linear approximation of the ACOPF problem
In this subsection, a linear approximation of the ACOPF problem is provide that is build using first order Taylor
series approximation. A Taylor series approximation of a function with three variables is given as follows:

f (x,y,z)≈ f (x0,y0,z0)+(x− x0)
∂ f
∂x

+(y− y0)
∂ f
∂y

+(z− z0)
∂ f
∂ z

(15)

where (x0,y0,z0) is a point where the linear approximation is based. We note that the accuracy of the Taylor series
approximation depends on point of linearisation.

Table 2 presents a comparison of nonlinear and linearised function evaluations of the nonlinear functions that
appear in the ACOPF formulation. We note that the LP approximation is exact at the point of linearisation (first row
in the table). However, as we move away from the point of linearisation the accuracy of the linearisation deteriorates
(second and third row in the table).

4.4 A piecewise linear approximation of the ACOPF problem
As noted earlier in this report, cosine function is a particularly challenging function to approximate because of it’s
curvature. A linear approximation of cosine is poor. This section propose a formulation that using piecewise linear
approximation of the cosine function.

Figure 7 presents a piecewise linear approximation of the cosine function using two and four sections, respectively.
We note that the accuracy of the approximation improves with increasing number of sections. The number of section
is a parameter in the code that a user can choose.

The n-sections in piecewise linear approximation of the cosine function are created by equidistant (n+1) points
on the x-axis. An alternate approach is to dynamically choose the (n+1) points such that the points are closer
near to the origin (where the curvature of the cosine function is greater) and less at the edges where curvature is
small. Figure 8 presents a dynamic selection of the points on the x-axis. This can be achieved by the providing an
error estimate ε in the code that automatically creates a set of points on the x-axis such that the piecewise linear
approximation error is always less than the epsilon.



Convex approximations to the nonlinear AC Optimal Power Flow Problem — 12/18

Table 2. Comparison of function values of nonlinear and LP approximation

Function Function Value LP Approximation
(v1 = v2 = 1,δ12 = 0)

v2
1 1.0000 1.0000

v1 = v2 = 1.00,δ12 = 0 v1v2 sin(δ12) 0.0000 0.0000
v1v2 cos(δ12) 1.0000 1.0000

v2
1 0.9025 0.9000

v1 = v2 = 0.95,δ12 = 15◦ v1v2 sin(δ12) 0.2336 0.2618
v1v2 cos(δ12) 0.8717 0.9000

v2
1 1.1025 1.1000

v1 = v2 = 1.05,δ12 = 30◦ v1v2 sin(δ12) 0.5512 0.5236
v1v2 cos(δ12) 0.9548 1.1000
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Figure 7. Piecewise linearization of the cosine function
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(a) A typical generator’s capability curve [17]
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(b) Modelling of generator capability using piecewise function of
Q-limits.

Figure 9. A typical generator’s capability curve, also known as ‘D-curve’ can be approximated using linear cuts to
the standard rectangular feasible region defined by the active and reactive power constraints. The exact definition of
these linear cuts depends on individual generating units.

5. Modelling of Electrical Components

5.1 Modelling of Generator Capability Curves
In most OPF implementations, the active and reactive power generator outputs are modelled independently using the
following constraints:

PLB
g ≤ pg ≤ PUB

g (16a)

QLB
g ≤ qg ≤ QUB

g (16b)

This is an approximation and a detailed model is required to accurately characterise generator capability curves,
which are also known as ‘D-curves’. A typical generator capability curve is presented in Figure 9(a) and an
approximation of it using linear constraints is presented in Figure 9(b).

PLB
g ≤ pg ≤ PUB

g (17a)

qLB
g (pg)≤ qg ≤ qUB

g (pg) (17b)

5.2 Modelling of the SVCs
Static Var Compensators (SVC) is a type of shunt FACT devices, which react to a system’s conditions and provide
reactive power support to minimise system losses and maintain a steady voltage profile. The installation of SVCs in
a system has the potential of increasing a system active power transfer capabilities while meeting voltage constraints.
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In an optimal power flow problem, an SVC can be modelled as a generator using the following constraint:

0≤ pg ≤ 0 (18a)

Qmin ≤ qg ≤ Qmax (18b)

Note that an SVC can be capacitive or inductive within a range specified by it’s bounds [18].

5.3 Commitment of capacitors/reactors
The capacitor banks and reactors can be switched in or out of the system depending on the operational conditions.
Let η ind

b , η
cap
b be binary variables that models the commitment of capacitor and a reactor at bus b, respectively. Their

commitment can be modelled using the following expression on the RHS of the Equation 1c.

(
−Bind

η
ind
b +Bcap

η
cap
b

)
v2

b (19)

Note that the above equation is nonlinear as it involved product of a binary variable with voltage square. Instead
of using the above nonlinear expression, we use the following linear inequalities

QMin
b (1−η

ind
b )−Bindub ≤ qind

b ≤ (1−η
ind
b )QMax

b (20a)

QMin
b η

ind
b ≤ qind

b ≤ η
ind
b QMax

b (20b)

QMin
b (1−η

cap
b )−Bcapub ≤ qcap

b ≤ (1−η
cap
b )QMax

b (20c)

QMin
b η

cap
b ≤ qcap

b ≤ η
cap
b QMax

b (20d)

where qind
b ,qcap

b are the inductance and conductive contribution of the committed reactors and capacitors, respectively.

6. Demonstration
Figure 10(a) presents the single line diagram of the 24-bus IEEE reliability test network. The test network consists
of 24 buses, 33 generators and 33 branches. There are 5 transformers which connect the two 138 kV and 230 kV
voltage areas. Figure 10(b) presents a 400 kV representative GB network with 36 zones, 96 generators and 66 lines.

Figure 11 presents voltage profile of results obtained by the models ACOPF and convex OPF, respectively.
Figure 11(a) is the voltage profile when both the models run without any voltage targets and the optimisation is
free to choose voltages at the buses in a network. We observe that the convex solution always underestimate the
voltage magnitude at the buses. And since the convex model is a relaxation it also underestimates the cost of meeting
demand i.e. it can meet demand at lower losses than the nonlinear ACOPF. Figure 11(b) presents the voltage profile
when the convex ACOPF model is run with fixing the voltages at the generators’ terminals. The voltages at the
generators terminals are fixed at values obtained by the nonlinear ACOPF. We observe that in this case, the convex
OPF is significantly accurate.

Figure 12 present the voltage profile on the 36-zone representative GB network with four different models.
These models include the nonlinear ACOPF, the convex ACOPF, linear OPF started from the convex solution and
linear OPF started from a cold start (i.e. all voltage magnitudes equal to 1 p.u. and all angle differences equal to
zero). In this case, the voltage at generator terminals is not fixed because the generator transformers are collapsed at
the zonal level. We observe that the convex OPF performs reasonably well and is able to predict the voltage profile
with some errors. The ACOPF_LP model performs poorly for both initialisation point of the convex solution and the
cold start. As noted earlier, the performance of the ACOPF_LP model is dependent on the initialisation point. This
model is only useful when a solution is known and small changes are being made to a part of the network.

Table 3 presents the performance of the ACOPF and its approximations. We note that the convex formulation
approximates the line losses with good accuracy, however, the flows in the network are slightly different as highlighted
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(a) Single line diagram of the IEEE 24-bus reliability test
system [19].

(b) 36 zone GB representative network

Figure 10. Two test cases used for demonstration of the results.

by the root-mean squared error (RMSE) values. This is because the convex formulation is an approximation of the
non-linear terms and it routes power in the network slightly differently than the ACOPF solution. The cold-start
linear approximation performs poorly. As expected, the linear approximation using the ACOPF solution as a starting
point is very accurate.

Figure 13 presents the voltage as a heat-map on the geographical map of the 36-zone GB network. For this
network, the generators are modelled using the transformers so in total there are 132 buses. The demand in the
network is increased by 40% at all buses and the convex OPF problem is solved on the model. Figure 13(a) presents
the heat-map of voltages. We observe low voltages in zones 25 and 35 (zones indicated by an arrow). Figure 13(b)
presents the results of the convex OPF with the commitment of a capacitor bank at zone 25. We note that the model
decides to commit the capacitor bank because that results in improvement of the zonal transfers and results in
reduced line loses. We also observe that the red colour which is indicative that the voltages are at their lower bound
have disappeared following the commitment of the capacitor bank in Figure 13(b) in zones 25 and 35, respectively.
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Figure 12. Voltage profile of the 36-zone network with four different models.

Table 3. Comparison of the approximation models with the solution of the nonlinear ACOPF problem when tested
on the 36-zone representative GB test network. The approximation OPF_LP requires an initialisation: cold refers to
a flat starting point, convex refers to the solution of the convex model and ACOPF refers to the solution of the
nonlinear problem.

Model Loss (%) RMSE-Flows (MW) RMSE-qG (MVar)

ACOPF 2.1 - -

OPF_Convex 2.0 17.3 26.8
OPF_LP (cold) 0.2 73.2 210.3
OPF_LP (convex) 1.5 34.8 130.5
OPF_LP (ACOPF) 2.1 2.5 3.1
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(a) Low voltages in two zones 25 and 35. These
two zones are highlighted by an arrow.

(b) Low voltages improve by committing bank of
capacitors in the zones 25 and 35.

Figure 13. Comparison of running an convex ACOPF problem with and without commitment of capacitor bank in
zones 25 and 35.
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