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Abstract: In 2021, approximately 51% of patients diagnosed with kidney tumors underwent surgical
resections. One possible way to reduce complications from surgery is to minimise the associated
blood loss, which, in the case of partial nephrectomy, is caused by the inadequate repair of branching
arteries within the kidney cut during the tumor resection. The kidney vasculature is particularly
complicated in nature, consisting of various interconnecting blood vessels and numerous bifurcation,
trifurcation, tetrafurcation, and pentafurcation points. In this study, we present a mathematical
lumped-parameter model of a whole kidney, assuming a non-Newtonian Carreau fluid, as a first
approximation of estimating the blood loss arising from the cutting of single or multiple vessels. It
shows that severing one or more blood vessels from the kidney vasculature results in a redistribution
of the blood flow rates and pressures to the unaltered section of the kidney. The model can account
for the change in the total impedance of the vascular network and considers a variety of multiple
cuts. Calculating the blood loss for numerous combinations of arterial cuts allows us to identify the
appropriate surgical protocols required to minimise blood loss during partial nephrectomy as well
as enhance our understanding of perfusion and account for the possibility of cellular necrosis. This
model may help renal surgeons during partial organ resection in assessing whether the remaining
vascularisation is sufficient to support organ viability.

Keywords: blood loss; kidney tumor; renal arteries; vessel cutting; surgery; resection; mathematical
modelling; lumped-parameter model

1. Introduction

Surgery is the treatment most likely to cure patients [1]. Data from 2004 to 2014 [2]
suggest that there was a 27% increase in surgery, with over 10 million operations being
performed [3]. In 2020, due to COVID-19, over 1.5 million surgical procedures were
cancelled in England and Wales, representing, approximately, a 35% reduction [4]. Due
to COVID-19, the waiting lists for cancer surgery grew substantially, possibly leading to
more deaths. Approximately 51% of patients diagnosed with kidney tumors underwent
surgical resections in 2021 [5]. The economic cost of surgery in the UK was approximately
GBP 55 billion between 2009 and 2014 (approximately GBP 10.9 billion per annum) which
amounts to 9.4% of the total NHS budget (GBP 117 billion, 2013–2014) [6]. Complications,
such as bleeding during surgery, are an important risk to patients and put surgeons under
constant pressure [7–9].

An example of an operation with a high bleeding risk is partial nephrectomy for
the treatment of kidney tumors, due to cutting into the organ to excise the tumor before
repairing it with sutures. Jaramillo et al. [9] highlight the necessity of developing more
accurate methods to both estimate and measure blood loss and emphasise the limitations
and inaccuracies of direct measurements. Clinical findings by Rosiello et al. [10] have shown
that excessive blood loss puts a patient at risk of chronic kidney disease. Anatomically,
the renal vasculature is particularly complex in structure and morphology, consisting of
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many blood vessels connected via multiple bifurcation, trifurcation, tetrafurcation, and
pentafurcation points. The kidney has been successfully imaged by Puelles et al. [11]
via optical projection tomography and Schutter et al. [12] via MRI, while Nordsletten
et al. [13] proposed an automated segmentation technique for reconstruction from µCT
images. A comprehensive understanding of blood flow within the kidney vasculature
can enhance the efficacy of renal surgery and the precision of targeted localised drug
delivery, such as the use of drug-loaded ultrasound contrast agent microbubbles alongside
high-frequency ultrasound [14,15]. A typical healthy human kidney has blood flow rates
of 600 mL/min [16], with both kidneys requiring roughly 20% of an average adult’s
cardiovascular blood output. In a partial nephrectomy, the main renal artery of the kidney
is usually clamped to excise the tumor and repair the kidney with sutures; therefore, an
estimation of the possible blood loss percentage during renal surgery is of high importance
for the surgeon. There are several studies that highlight a link between general surgery and
chronic kidney disease [17–21].

Several existing works have contributed to the understanding of renal haemody-
namics and blood flow autoregulation [22–37], as well as stenosis in human or animal
kidney models. For example, Sgouralis and Layton [38], Postnov et al. [39], Cury et al. [40],
and Deng and Tsubota [41,42] offered key insights into healthy renal haemodynamics
using various numerical modelling approaches. Specifically, Postnov et al. [39] used a
probability-based topological approach to develop a mathematical model of a kidney
arterial network. Cury et al. [40] developed a computational model of the kidney arte-
rial structure. Mathematical approximations for renal blood flow autoregulation were
developed by Holstein-Rathlon and Marsh [43] and Sgouralis et al. [44]. Important contri-
butions to the appreciation of renal stenosis were made by Hao et al. [45] via mathematical
modelling. Basri et al. [46] developed a computational model to simulate the blood flow
behavior in the abdominal aorta. There are a large number of other previous works focus-
ing on the computational and mathematical modelling of various arterial networks [47–55].
Furthermore, several numerical approaches were previously tested in a wide range of
arterial geometries [56–63]. Clinical research in the field of renal blood loss was conducted
in recent years by Rosiello et al. [10]. However, none of these studies have considered the
cutting of blood vessels as a result of surgery and its impact on the haemodynamics of the
remaining kidney vasculature.

The novelty of this work lies in the near-real-time estimation of blood loss for single-,
double-, and cross-vessel cuts for a complex extended renal vasculature. The presented
simplified mathematical lumped-parameter model calculates, fast and reliably, the per-
centage of blood loss arising as an immediate effect of severed vessels during the partial
nephrectomy of an asymmetric whole-kidney vascular network and prior to autoregulation
recovery. This tool can be translated into the clinic and be personalised for specific patients.
It can assist renal surgeons in evaluating the sufficiency of the remaining vascularisation
to support organ viability during partial nephrectomy, thus allowing the best decision
to be made for each individual patient. Furthermore, this study can offer a theoretical
framework for assessing the adequacy of vascularisation in functional tissue engineering,
drug development, and surgical planning applications.

The remainder of this article consists of a Methods section explaining the mathemat-
ical model, a Results section presenting calculations both schematically and in a tabular
form, and a Discussion section, which considers the implications of the results and their
potential impact on renal surgery. The limitations of the presented model and future
work are also discussed.

2. Materials and Methods

In the following sections, we present a mathematical lumped-parameter model of the
renal vasculature and an estimation of blood loss during partial nephrectomy. First, we
describe the complex arterial network of a single kidney with 25 vascular nodes (Section 2.1,
Figure 1); then, we discuss the numerical approximations made in this study (Section 2.2); in
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Section 2.3, we conduct a sensitivity analysis on a parent–daughter bifurcation to investigate
the effects of the fluid model assumption; in Section 2.4, we provide details on model
verification and validation; and, lastly, we explain the modelling of vessel cuts (Section 2.5).
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Figure 1. (A) Schematic of the single-kidney vasculature used in our mathematical model (based
on the image procured by Puelles et al. [8]). (B) An example of applying the proposed model in
the bifurcation of vessel R4 to vessels R6 and R7 (uncut), where the flux conservation (Equation (1))
and the continuity of pressure at the bifurcation node (Equation (2)) are used. The impedance Zk

of each blood vessel was determined using the three-element Windkessel model. (C) A schematic
representing two severed blood vessels resulting in zero blood flow and zero blood pressure. The
outlet blood vessels that still connected to the vascular network had a constant pressure, given by
Ohm’s Law.

2.1. Generating the Renal Vasculature

The optical projection tomography image procured by Puelles et al. [11] was our
template for generating the geometry of a complex whole-kidney vascular network (Fig-
ure 1A). The asymmetric network consisted of 25 vascular nodes (including bifurcations,
trifurcations, tetrafurcations, and pentafurcations, portrayed in Figure 1A as black circles)
and 61 individual blood vessels (represented as line segments), organised in left and right
branches according to the first bifurcation node of the main renal artery to the two primary
daughter vessels, L1 and R1. The labelling of the vessels, respectively, on the left and right
sides, started at the first node and continued following the vessel segments downstream
towards the periphery. Hence, the whole-kidney network was comprised of 10 vascular
nodes and 23 blood vessels (L1–L23) on the left side and 14 nodes and 38 vessels on the
right side (R1–R38), in addition to the first node. The main daughter vessels’ radii (L1, R1)
were calculated using Murray’s law [64], while the remaining vessel radii (L2–L23, R2–R38)
were given values previously used by Cury et al. [40]. We could not apply the splitting
method [65] in this work because the daughter/sub-daughter blood flux ratios for each
individual branching node were unknown. Since the blood vessels were of a similar order
of magnitude in length, for the purposes of simplicity, all blood vessels were assumed
equal in length, like in the model of Cury et al. [40]. We also assumed that the vessels were
cylindrical, with a constant cross-section (i.e., neglecting arterial tapering), and that the
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angle and 3D orientation were negligible, based on a previous study showing that the blood
flow rate in a 1D model was not influenced by the angular orientation of each node [66].

2.2. Numerical Approximations

Several assumptions were made to model the flow in the vascular network of Figure 1A.
(a) The flow was considered laminar and steady, governed by the flow equations for the
conservation of flux and the continuity of pressure at each branching node. Taking as an
example the bifurcation of vessel R4 to vessels R6 and R7 (Figure 1B), then, for each node,
we solved a system of linear equations, such as

QR4 = QR6 + QR7 (1)

PR6 + ∆PR6 = PR7 + ∆PR7 (2)

where Qk (here k = R4, R6, R7) is the vessel flux, ∆Pk (here k = R6, R7) is the pressure
gradient, and Pk is the pressure obtained from Ohm’s Law Pk = ZkQk, with Zk being the
vessel impedance.

(b) The blood was assumed as an incompressible non-Newtonian fluid, following the
Carreau fluid model [67], which accounts for the shear thinning effects. The Carreau model
is given by the equation.

µ = µ∞ + (µ0 − µ∞)

(
1 + λ2

.
γ2
) n−1

2
, (3)

where µ0 and µ∞ represent the viscosities at the respective physical boundaries, and
n is a non-dimensional number obtained empirically. The terms λ and

.
γ represent the

relaxation term and the shear strain rate, respectively. The shear strain rate for a typ-
ical unblocked artery is

.
γ = 600 s−1, the relaxation time is λ = 3.313 s, µ0 = 0.056 Pas,

µ∞ = 0.00345 Pas, and n = 0.3568 [67]. Applying the conservation of flux and the continu-
ity of pressure at the example bifurcation point to vessels R6 and R7 (Figure 1B) results
in a system of equations with

ZR6QR6 +

(
2LR6

RR6

)
.
γ

[
µ∞ + (µ0 − µ∞)

(
1 + λ2

.
γ2
) n−1

2
]
= ZR7QR7 +

(
2LR7

RR7

)
.
γ

[
µ∞ + (µ0 − µ∞)

(
1 + λ2

.
γ2
) n−1

2
]

. (4)

Using the conservation of flux Equation (1) and Equation (4) and rearranging yields

ZR6QR6 − ZR7(QR4 −QR6) + 2
.
γ

(
LR6

RR6
− LR7

RR7

)[
µ∞ + (µ0 − µ∞)

(
1 + λ2

.
γ2
) n−1

2
]
= 0. (5)

(c) Blood pulsation was not included since the flow behavior in small vessels can be
approximated using the quasi-steady solution [68]. (d) The backflow associated with the
pulse wave propagation within the vasculature was assumed small enough to be negligible.
(e) The inlet blood flow rate at the main renal artery was taken equal to 600 mL/min [16].
(f) A physiological value of haematocrit φ = 0.4 was considered [69]. (g) The blood
vessel walls were rigid and, for simplicity, due to the complexity and scale of the kidney
vasculature, the non-linear viscoelastic characteristics of the vessel walls were negated.
(h) We assumed that the simulated vessel cuts resulted in zero blood flow and, therefore,
zero blood pressure. The outlet blood vessels that still connected to the vascular network
had a constant pressure, given by Ohm’s Law (Figure 1C). (i) The impedance Zk of each
blood vessel of the vasculature of Figure 1A (k = L1,. . .L23, R1,. . .R38) was determined
using the three-element Windkessel model [50], comprised of a resistor Zk1 in parallel with
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a capacitor Ck, and both in series with another resistor Zk2. The capacitor represents the
compliance of a blood vessel, given by

Ck =
∆Vk
∆Pk

, (6)

where ∆Vk is the difference in volume. The pressure Pk can be expressed as a function of the
time t and the angular frequencyω, where P0 is the amplitude of the pressure, such that

Pk = P0exp(jωt). (7)

Using Equations (6) and (7), the vessel flux, Qk, is given by

Qk = Ck
dPk
dt

= jωCkPk. (8)

where j2 = −1,ω = 2πf, and f is the frequency. The impedance associated with the compli-
ance, represented by ZCk, is written as

ZCk =
1

jωCk
. (9)

Using Equation (9) and applying basic circuit theory, we take

Zk =
Zk1 + Zk2 + jωCkZk1Zk2

1 + jωCkZk1
. (10)

The modulus of Equation (10) provides the magnitude of the total impedance of each
blood vessel (where k = L1, . . . L23, R1, . . . R38).

2.3. Effect of the Fluid Model Assumption on a Single-Node Asymmetric Bifurcation

In order to investigate the effect of the fluid model assumed on the calculated blood
flux and pressure for each blood vessel in the complex kidney vasculature, we conducted
a sensitivity analysis on a simple asymmetric parent–daughter bifurcation with a single
vascular node (Figure S1 of Supplementary Material). For that, we used the Hagen–
Poiseuille model with haematocrit, without and with backflow (Section S1.1, Section S1.2,
respectively), a power law fluid model (Section S1.3) and the Carreau model (Section S1.4),
which accounts for the non-Newtonian shear thinning behaviour of blood [67,70]. The radii,
lengths, and impedances values used in this bifurcation are physiologically correct (Table
S1), characteristic of a healthy kidney [40,71–73]. The physical parameters for the Carreau
and the power law models are from Bessonov et al. [67] and Sochi [70], respectively.

The data from this sensitivity analysis illustrate that the effects of backflow (Qreflection)
were so small as to be negligible, being approximately 1.4% of the total flux. There was
little difference between the flow rates for the Hagen–Poiseuille fluid model with a constant
viscosity, the power law, and the Carreau model. It is worth noting that the Carreau model
is dependent on the shear strain rate, which influences the viscosity of blood, with higher
shear strain rates resulting in a lower blood viscosity. Therefore, we primarily focused on
the Carreau model without backflow when calculating the blood fluxes and blood losses
that arise from the kidney vasculature in Figure 1A. Focusing on the Carreau model rather
than the Newtonian model offers more flexibility since it allows us to account for shear
thinning effects and varying shear rates.

2.4. Modelling Vessel Cuts

Since there were 61 individual blood vessels in the network in Figure 1A, there were
potentially an equal number of vessels which could be cut and thousands of potential
multiple-vessel cuts. Each cut has a unique, distinct set of equations that describe the
conservation of flux and the continuity of pressure at each of the respective nodes. The
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schematic of Figure 1C represents an example of two severed blood vessels (R6 and R7)
resulting in zero blood flow and zero blood pressure. The outlet blood vessel (R4) that
still connected to the vascular network had a constant pressure, given by Ohm’s Law. To
model the 61 single cuts, we had to construct an equivalent number of different sets of
algorithms to determine the blood loss, blood flow, and blood pressure within the altered
vascular network. Each unique set of equations consisted of numerous linear equations
with unknown fluxes and pressures, which we determined numerically via the symbolic
computing platform Mathematica© (v. 13.0) [74]. Developing all 61 separate and distinct
sets of algorithms means that the presented blood loss model can account for the change
in the total impedance of the vascular network system arising due to the severing and
extraction of a particular blood vessel.

Since there were potentially thousands of possible combinations of cutting two or
more vessels, in this study, we focused on the most significant multiple cuts, placing
emphasis on the internal primary vessels within the kidney vasculature model. This was
because the primary internal vessels within the vascular network exhibited the greatest
blood flow rates due to their smaller impedances and larger radii and would, therefore,
highlight the greatest blood losses and largest differences in blood flow rates and blood
pressures. The severing of multiple vessels resulted in a new set of linear equations that
accounted for the total change in impedance within the network. These were also solved
numerically via Mathematica© to determine the blood losses from each of the severed
vessels as well as to evaluate the blood flow and pressures in the remaining unsevered
vessels. We were able to validate and confirm computationally that the blood flux at each
bifurcation/trifurcation/tetrafurcation and pentafurcation node was always conserved.

2.5. Model Validation and Verification

Validation of our methodological modelling approach was conducted through
comparing our calculations with the experimental findings of Zhao and Lieber [75]
and Shroter and Sudlow [76] for a Y junction in the bifurcation plane, using the same
physical parameters. Differences of 3.4% and 3.6% were found, respectively, for each
study, demonstrating the suitability of our lumped-parameter mathematical model to
predict experimental results. We further validated our model in the entire network of
Figure 1A against the work of Jaramillo et al. [9], who studied one hundred patients
undergoing urological surgery, measuring mass blood loss and blood volume loss under
controlled conditions. Jaramillo et al. [9] highlighted the inaccuracy and unreliability of
direct blood volume loss measurements and used three formulae in their study in order
to provide the most accurate estimation of blood volume loss. A typically healthy patient
had a mean blood volume loss of 3.64% (mean 198.2 mL based on a cardiac output of
5448 mL) using the López-Picado formula [77], which has shown agreement with directly
measured blood loss, while we have calculated a blood volume loss of 2.46%, as a result
of cutting the QR2 and QR10 blood vessels.

We also validated our model on both Y- and T-junction geometries based on those
studied by Boumpouli et al. [56] for the pulmonary arteries, using the same physical
dimensions and flow conditions. The mathematical model’s predictions were in good
agreement with the flow rates and pressures found by Boumpouli et al. [56], who used
a well-validated open source CFD code (OpenFOAM) for their flow analysis, with a
difference of 1.1% and 1.6%, respectively, for the Y and T junction. This verifies the
minimal influence of both varying branching angles and the inclusion of time evolution
in the modelling process.

Using a simple Y bifurcation model (Figure S1A), we further explored the parameter
space for the daughter vessel radius, the branch length, the haematocrit, the shear rate, and
the impedance of the branching vessel (Tables S1 and S2; see Supplementary Material for
the full range of parameter values examined). Changing the radius RL1 from 2.5 × 10−3 m
to 1 × 10−3 m altered the daughter flux QL1 by 0.3%, whereas varying the length LL1 from
4 × 10−2 m to 5 × 10−3 m changed the flux QL1 by 0.2%, indicating that both the length
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and radii have very little effect on the flux calculation. Similarly, altering the haematocrit
φ from 0.40 to 0.55 changed QL1 by 0.05%. Changing the shear rate

.
γ from 600 s−1 to

10,000 s−1 altered QL1 by 1.3%, suggesting that the model has a very small dependency on
viscosity. We also explored the parameter space for the impedance of a daughter vessel
by changing ZL1 from 3.3 × 109 kgm−4s−1 to 4 × 109 kgm−4s−1, which represents a 21.2%
change, and found that the flux QL1 changed by 9.6%, implying that the single-node Y
bifurcation model is more susceptible to small variations in the impedance since it has
only two outputs. However, testing the effect of the impedance on the entire network of
Figure 1A, using the same value percentage change, resulted in only 0.9% difference in
QL1. This is because of the scale and structure of the complex vascular network studied
consisted of multiple parallel branches (61 vessels and 25 vascular nodes), which makes it
much less dependent on the impedance of the primary daughter vessel.

As discussed by Black et al. [62], the impedance and other Windkessel parameters
may indeed require an iterative calibration when applied to specific patients, which is
a challenging problem on its own for the small renal vessels. Future advances in high-
resolution 4D flow MRI with improved velocity-to-noise levels may allow more detailed
in vivo patient-specific flow measurements of the renal vasculature that can facilitate
accurate calibration of the Windkessel parameters.

To allow transparency and reproducibility for the presented model, we have added
the in-house Mathematica® scripts focussing on the healthy kidney, a cross-sectional cut to
vessels QL18 and QR33, and a kidney resection at QL1 to the open source database of the
University of Strathclyde (https://doi.org/10.15129/78fb70eb-0e8d-4a11-9d6d-97b05026
6743, made available on 29 November 2023).

3. Results

We present, first, the flow rate and pressure distributions in a healthy (uncut) asym-
metric whole-kidney vascular network (Section 3.1) and, subsequently, the possible blood
loss arising from various cases of partial nephrectomy (Sections 3.2–3.4).

3.1. Modelling the Healthy (Uncut) Kidney Vascular Network

Before we consider modelling the blood loss from both single- and double-vessel
cuts, we modelled the blood flow in a typical healthy vascular network. Using the
Carreau fluid model denoted by Equation (3), alongside the conservation of flux and the
continuity of pressure at each bifurcation/trifurcation/tetrafurcation and pentafurcation
node (Equations (1) and (4)), we calculated the blood fluxes through the healthy (uncut)
vasculature represented by Figure 1A, using the physical data from Tables 1 and 2. The
calculations for each individual vessel are displayed in Figure 2. Figure 2 presents the
flow distribution in mL/min (1 m3s−1 = 6 × 107 mL/min). Table 3 provides a detailed
account of the blood flux and the blood pressure for a healthy (uncut) kidney using the
Carreau model.

Figure 2 highlights the asymmetry in the kidney vasculature, with the major left
and right primary branch blood fluxes being QL1 = 213 mL/min and QR1 = 387 mL/min,
respectively. This indicates that the right section of the healthy kidney had a lower total
impedance than the left section due to its primary branch, QR1, possessing a higher blood
flow rate. Blood flows along the path of least resistance, which is due to multiple paths
usually arising from various parallel branches. Hence, the more parallel branches and
alternative paths in the vascular network, the more possible routes there were for the blood
to flow. The result of Figure 2 highlights how the right section of the kidney had more
paths and parallel branches compared to the left section.

https://doi.org/10.15129/78fb70eb-0e8d-4a11-9d6d-97b050266743
https://doi.org/10.15129/78fb70eb-0e8d-4a11-9d6d-97b050266743
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Table 1. Physical parameters for the kidney vascular network model in Figure 1, based on the image
obtained by Puelles et al. [8].

Physical Parameter Value

RTOT = RL1 = RR1 2.7 × 10−3 m

RL5 = RL9 = RL18 2.5 × 10−3 m

RR10 = RR20 = RR29 = RR33 2.5 × 10−3 m

The remaining radii, R 1.6 × 10−3 m

All lengths, L 4 × 10−2 m
.
γ 600 s−1

λ 3.313 s

µ0 0.056 Pas

µ∞ 0.00345 Pas

n 0.3568

f 10 Hz

ZTOT = ZL1 = ZL5 = ZL9 = ZL18 1.649 × 109 kgm−4s−1

ZR1 = ZR10 = ZR20 = ZR29 = ZR33 1.649 × 109 kgm−4s−1

All remaining impedances, Z 3.185 × 109 kgm−4s−1

QTOT 600 mLmin−1 (10−5 m3s−1)

Table 2. Individual vessel impedances and compliances for the three-element Windkessel model used.

Branch Z1 (kgm−4s−1) Z2 (kgm−4s−1) C (kg−1m4s2) |Z| (kgm−4s−1)

QTOT = QL1 = QL5 = QL9 = QL18 1.180 × 109 4.830 × 108 1.840 × 10−12 1.649 × 109

QR1 = QR10 = QR20 = QR29 = QR33 1.180 × 109 4.830 × 108 1.840 × 10−12 1.649 × 109

All remaining vessels 6.136 × 109 2.512 × 109 9.568 × 10−12 3.316 × 109
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Table 3. Blood flux and pressure values for a healthy (uncut) kidney vasculature using the Carreau
fluid model. Note that the blood flux rates in our Mathematica codes were expressed in m3s−1;
however, here, the results are converted to ml/min (1 m3s−1 = 6 × 107 mL/min), which is more
commonly used in the literature.

Branch. Blood Flux
(mL/min)

Blood Pressure
(mmHg) Branch Blood Flux

(mL/min)
Blood Pressure

(mmHg)

QL1 212.68 44.42 QL2 37.86 15.27

QL3 18.93 7.64 QL4 18.93 7.64

QL5 174.82 36.52 QL6 35.08 14.15

QL7 17.54 7.08 QL8 17.54 7.08

QL9 139.75 29.19 QL10 44.08 17.78

QL11 16.15 6.51 QL12 27.93 11.27

QL13 13.97 5.63 QL14 13.97 5.63

QL15 32.29 13.03 QL16 16.15 6.51

QL17 16.15 6.51 QL18 63.38 13.24

QL19 16.94 6.83 QL20 16.94 6.83

QL21 29.51 11.90 QL22 14.75 5.95

QL23 14.75 5.95

QR1 387.32 80.90 QR2 85.93 34.67

QR3 18.93 7.64 QR4 33.50 13.51

QR5 33.50 13.51 QR6 16.75 6.76

QR7 16.75 6.76 QR8 16.75 6.76

QR9 16.75 6.76 QR10 301.40 62.95

QR11 96.50 38.93 QR12 17.54 7.08

QR13 17.54 7.08 QR14 30.71 12.39

QR15 15.36 6.20 QR16 15.36 6.20

QR17 30.71 12.39 QR18 15.36 6.20

QR19 15.36 6.20 QR20 204.90 42.80

QR21 32.29 13.03 QR22 16.15 6.51

QR23 16.15 6.51 QR24 44.08 17.78

QR25 16.15 6.51 QR26 27.93 11.27

QR27 13.97 5.63 QR28 13.97 5.63

QR29 128.53 26.85 QR30 16.94 6.83

QR31 16.94 6.83 QR32 16.94 6.83

QR33 77.72 16.23 QR34 15.54 6.27

QR35 15.54 6.27 QR36 15.54 6.27

QR37 15.54 6.27 QR38 15.54 6.27

3.2. Modelling the Blood Loss for Single Cuts in the Kidney Vasculature

We calculated the blood loss and blood fluxes for all possible individual single cuts
to the vasculature represented by Figure 1A but, for purposes of conciseness, we only
consider here the blood losses for the severing of a number of major and minor branches of
the network. The calculations were performed, as for the healthy kidney, using the Carreau
fluid model for each bifurcation node via Equations like (1), (3), and (4), in conjunction
with the physical data from Table 1. Note that we have expressed each blood loss as a
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percentage of the total amount of blood capacity in the human body (cardiac output), which
was assumed to be 5000 mL/min [13].

Figure 3 shows the blood fluxes in the altered kidney network for a single-vessel cut
after the node at QR1. Table 4 highlights how the blood loss for the major vessels QL1
and QR1 was significantly smaller than the blood flow rates through the healthy (uncut)
vascular network, where QL1 = 213 mL/min and QR1 = 387 mL/min, respectively. This is
due to the redistribution of blood flow within the vascular network because of the cutting
of a single blood vessel, since it alters the total impedance of the system (blood flowing to
the sections of the network with a lower impedance).
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3.3. Modelling the Blood Loss for Double Cuts in the Kidney Vasculature

We computed the blood loss and blood fluxes for numerous double cuts to the vascular
network of Figure 1A but, for conciseness, we present the blood losses from severing a
small sample of the branches of the vasculature. Like in the healthy and single-cut cases,
the computations were based on Equations like (1), (3), and (4) for each bifurcation node
and Table 1. Table 5 provides the blood loss for double cuts to several major vessels in the
vascular network using the Carreau fluid model. We can compare the blood loss rate from
double cuts (Table 5) with that from single cuts given in Table 4. In general, the combined
blood loss rate associated with double cuts was larger than that for a single cut if major
vessels were severed rather than minor ones. For example, the total blood loss rate for the
double cuts after the nodes at QL10 and QL18 was 1.2% of the total blood flow rate (cardiac
output), whereas the single cut after the node at QL18 was 0.77%.

Table 5. Blood loss for double cuts of several major vessels in the vasculature using the proposed
model.

Branch Cuts Blood Loss
(mL/min) % Blood Loss Blood Loss

(mL/min) % Blood Loss % Total Blood Loss

QL2 and QL5 QL2 = 26.65 QL2 = 0.53 QL5 = 53.00 QL5 = 1.06 QL2 & QL5 = 1.59

QL10 and QL18 QL10 = 19.91 QL10 = 0.40 QL18 = 39.99 QL18 = 0.80 QL10 & QL18 = 1.20

QL15 and QL21 QL15 = 19.09 QL15 = 0.38 QL21 = 17.69 QL21 = 0.35 QL15 & QL21 = 0.73

QR2 and QR10 QR2 = 41.44 QR2 = 0.83 QR10 = 81.57 QR10 = 1.63 QR2 & QR10 = 2.46

QR11 and QR20 QR11 = 31.28 QR11 = 0.63 QR20 = 61.95 QR20 = 1.24 QR11 & QR20 = 1.87

QR17 and QR29 QR17 = 21.04 QR17 = 0.42 QR29 = 43.68 QR29 = 0.87 QR17 & QR29 = 1.29

QR24 and QR29 QR24 = 22.38 QR24 = 0.45 QR29 = 44.76 QR29 = 0.90 QR24 & QR29 = 1.35

QL18 and QR33 QL18 = 41.16 QL18 = 0.82 QR33 = 38.48 QR33 = 0.77 QL18 & QR33 = 1.59

We further examine how severing blood vessels can alter the total impedance of the
system and redistribute the blood flow within the vascular network by comparing double
cuts that were restricted to either the left or right section of the kidney.

For the cuts after the nodes QL2 and QL5 (Figure 4A), the blood flux was significantly
smaller for the primary left branch (QL1 = 80 mL/min) and higher for the right branch
(QR1 = 520 mL/min), compared to the healthy (uncut) blood fluxes of QL1 = 213 mL/min
and QR1 = 387 mL/min. Severing numerous vessels from the left section of the vascular
network resulted in the blood flow being redistributed, with blood fluxes increasing in the
uncut section of the network and decreasing in the altered (cut) left section. This implies
that the altered left section’s total impedance had increased due to the extraction of various
blood vessels and, thus, potential pathways for the blood to flow along.

We then considered severing the nodes after branches QL15 and QL21. Figure 4B il-
lustrates the blood fluxes for the altered kidney vascular network. For these cuts, the
blood fluxes through the key primary left and right branches were QL1 = 194 mL/min and
QR1 = 406 mL/min in contrast to the blood fluxes of QL1 = 80 mL/min and QR1 = 520 mL/min
for the severed nodes cut after QL2 and QL5. The significant difference in blood fluxes for both
QL1 and QR1 for these two different partial renal resection cases can be explained in terms of
the change in the total impedance of the respective vascular networks. Severing the nodes
after branches QL15 and QL21 resulted in fewer blood vessels being cut compared to severing
nodes after QL2 and QL5, thus providing more vessels for the blood to flow through. The
provision of more pathways due to the presence of more blood vessels infers that the total
impedance of the system is reduced. Our model highlights that the severing and extraction of
blood vessels from either the left or right section of the kidney vascular network redistributed
the blood flow to the uncut/unaltered section of the kidney. It is also important to note that
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the more blood vessels were cut, the greater the change or difference in blood fluxes compared
to the healthy vascular network.
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For the right section of the kidney vascular network, we saw a similar effect. We
considered cutting the nodes after branches QR2 and QR10. Figure 5A illustrates the blood
flux for the altered kidney vascular network as a result of vessel severing.
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For these cuts (QR2 and QR10), the blood fluxes for the key primary left and right
branches were smaller (QL1 = 477 mL/min) and higher (QR1 = 123 mL/min), respectively,
compared to those for the healthy (uncut) kidney vasculature (QL1 = 213 mL/min and
QR1 = 387 mL/min). Note that a similar effect was found when cutting blood vessels on
the right section of the network to that seen when altering the left section of the vascular
network. Hence, cutting more blood vessels resulted in a greater total impedance for the
altered section of the vasculature, thus lowering the altered section’s blood fluxes. Once
again, a redistribution of blood flux was observed, with the larger blood fluxes occurring
in the uncut section of the vascular network, which, in the case of Figure 5A, was the left
partition of the vascular network.

Figure 5B considers a case of cross-cutting in both the left and right sides of the
vasculature (after nodes QL18 and QR33, respectively). It shows how the blood fluxes
redistributed for cross-cutting within the network, with blood flowing to the region of the
kidney which had the greater number of pathways and, therefore, a lower impedance.

Figure 6 illustrates the percentage of total blood loss (expressed in terms of the cardiac
output, CO) against the total number of vessels severed for the various scenarios presented
in Tables 4 and 5. It is noted that the plot of Figure 6 is not exhaustive of all possible
vessel cuts; thus, the data sample is constrained to the single and double cuts presented
here. Nonetheless, the plot shows that as the number of severed vessels increase during a
partial nephrectomy, there is an increase in the total blood loss, as one would expect. Linear
regression analysis on this data sample gives:

% Total blood loss = 0.0473n + 0.4156 (R2 = 0.7844), (11)

where n is the total number of severed vessels, and total blood loss (mL/min) = % Total
blood loss × CO.
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3.4. Blood Pressures for Multiple Cuts in the Kidney Vascular Network

Altering the vascular network not only redistributed the blood flux but also affected
the blood pressure within each vessel of the system. Here, we considered how the blood
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pressure in each vessel was affected by the cutting of various blood vessels in the kidney
vascular network.

The uncut, healthy kidney vasculature shown in Figure 7A, based on the Carreau
fluid model, had blood pressures of PL1 = 44.4 mmHg and PR1 = 80.9 mmHg for the
major primary blood vessels, whilst the altered vascular network with cuts after the
nodes PL2 and PL5 (Figure 7B) had considerably smaller (PL1 = 16.6 mmHg) and higher
(PR1 = 108.7 mmHg) blood pressures, respectively. Cutting multiple blood vessels influ-
enced the pressures in the network due to the change in blood fluxes within the system.
The cut left section of the vascular network saw a reduction in blood fluxes and a significant
reduction in the various pressures for the vessels in this region due to an increase in the
impedance of the altered left section of the network.
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Figure 7C, with cuts after the nodes PL15 and PL21, had blood pressures of PL1 = 40.6 mmHg
and PR1 = 84.7 mmHg, respectively, which are relatively like those for the healthy (uncut)
network (Figure 7A), thus highlighting the redistribution of blood pressures due to the change
in total impedance of the altered left section of the vascular network. A similar effect was
observed when blood vessels were severed from the right section of the vascular network.

Figure 7D illustrates how cross-cutting influences the redistribution of blood pressures
within each blood vessel in the network. The influence of cross-cutting on the network is
dependent on the location of the cuts and the number of blood vessels that are severed.
Figure 7D has a small number of minor blood vessels that have been cut in both regions of
the network and, therefore, shows a very small redistribution of blood pressure.

4. Discussion

We developed a mathematical lumped-parameter model, using the Carreau fluid
approximation and the three-element Windkessel model, that can estimate the rate of
blood loss from a severed vessel or vessels in a complex kidney vasculature. The novelty
of this model lies in the near-real-time calculation of blood loss in single-, double-, and
cross-vessel cuts in a complex kidney vascular network without the application of surgical
clamping, which is the worst-case scenario clinically. It can also calculate the blood fluxes
and pressures of all the uncut blood vessels within the network. Our model accounted
for the change in the total impedance of the vasculature for single- or multiple-vessel cuts.
This methodological approach, despite being a first-order approximation, has a significant
major advantage over recent state-of-the-art models [49,78] in that it is not computationally
expensive in terms of either computer processing time or memory, yet still captures the
key physics of blood modelling for a complex vascular network in a fast processing time of
approximately 30 s.

The results of this work showed that vessel severing yielded a redistribution of blood
fluxes and pressures from the altered (cut) section of the network to the uncut section.
This is because the severing of a single or more pathways inhibited the flow of blood and,
thus, increased the impedance of the altered section of the vasculature. This resulted in
an increased impedance in the altered section and a larger blood flux in the uncut side
due to its lower impedance. This redistribution of blood fluxes and the change in the total
impedance of the system subsequently influenced the blood pressures in the individual
vessels within the network, with higher pressures in the regions of the network where
the blood fluxes were larger. Rosiello et al. [10] report that there is an increase in the
probability of a patient developing chronic kidney disease if they experience a total blood
loss above 500 mL. Our model showed that a single cut, such as cutting QR1, resulted in a
blood loss rate of 89.27 mL/min, whilst performing a double cut on both QR2 and QR10
together resulted in a total blood loss rate of 123.01 mL/min. The threshold predicted
by Rosiello et al. [10] is achievable from potentially either a single or a double cut if the
bleeding is not stopped within a time frame of approximately 5 min. Kalantarinia et al. [79]
have measured a mean arterial blood pressure of 80 mmHg for a healthy human kidney
using enhanced ultrasound contrast agents. Prior to any vessel cutting, our mathematical
model of the healthy kidney has also calculated a blood pressure of 80 mmHg for the
major renal artery PR1.

4.1. Clinical Relevance

The time required for the estimation of blood loss with this model was approximately
30 s for an experienced user of a specialised symbolic computing platform (Mathematica©).
The benefits of these near-real-time calculations include not only a reliable measurement of
blood loss but also a vessel-by-vessel evaluation of the transient haemodynamic changes
immediately following the surgical severing of blood vessels and prior to the recovery of
autoregulation, which are difficult to assess in vivo. This is highly relevant to the surgical
times of a partial nephrectomy and the times required for autoregulation recovery [80].



Fluids 2023, 8, 316 16 of 21

Despite its simplification and limitations, the presented mathematical model can
optimise and improve the efficacy of renal surgery by identifying the appropriate pre-
surgical protocols to help minimise blood loss. We suggest that information on the expected
blood loss rate will guide the surgeon as to whether off-clamp partial nephrectomy is safe.
Furthermore, it might be helpful to identify the key areas of the vasculature where tissue
necrosis is a possibility due to blood flow deprivation arising via renal surgery [81]. The
key medical parameters that we used in this study are of the correct order of magnitude
to the small number of known, experimentally verified parameters from a couple of
studies [69,71,73]. In practical terms, this model could be translated into the clinic as an easy-
to-use executable tool. It could be further personalised for specific patients, in conjunction
with 4D flow MRI measurements for calibration of the Windkessel parameters [47,62],
and/or adjusted based on artificial intelligence or machine learning algorithms that are
trained on multiple renal surgery patient data.

This work is further aligned with the development of a virtual-reality-based simulation
with haptic feedback (for example, the one discussed in Miyata et al. [82]) that can be used
clinically by surgeons in real-time renal surgical training and planning to minimise blood
loss. Such a system requires a model that will calculate, fast and reliably, the percentage
of blood loss from severed vessels, and the presented lumped-parameter model is a first
attempt in that direction. This model can aid renal surgeons during partial organ resection
in assessing whether the remaining vascularisation is sufficient to support organ viability.

4.2. Limitations

The mathematical model presented is a first approximation to estimate the blood
loss from renal resection and has some key assumptions. First, a key limitation is the
assumption of steady, non-pulsating flow. However, the presented results are expected to
adequately capture the nature of the flow since it is well established that the blood pressure
pulse attenuates towards the periphery and particularly in the smallest vessels, where
the pulse is smoother compared to central arteries [83]. Nonetheless, we aim to include
pulsatile flow in future models to increase the modelling accuracy.

Another limitation is the assumption of the Windkessel parameters from the literature
(Tables 1 and 2, [71,73]). Because the calibration of these parameters to specific patients
is not easy with the available medical imaging modalities, the use of approximate values
is somewhat unavoidable. Since our results used the same inlet and initial boundary
conditions, including the impedance and other Windkessel parameter assumptions, it
is expected that any error would be systematic rather than random. High-resolution
4D flow MRI could help in calibrating and, thus, personalising these parameters [47,62].
In addition, expressing the blood loss as a percentage of the cardiac output and/or the
flow rates is anticipated to give the same relative changes. The comparable sensitivity
analysis conducted (see Supplementary Material) highlights that the impedance changes
in a primary daughter vessel had a small influence on the blood flux rates of the healthy
vascular network in Figure 1A.

Further, we assumed that the lengths of the blood vessels in the network were all
equal [40], and that the daughter branch radii were related via Murray’s Law [64], with
the remaining sub-daughter radii being allocated physical values of the correct order
of magnitude for the kidney vasculature [40]. Since the sensitivity analysis indicated a
negligible effect of these parameters on the flux estimation, we do not anticipate that more
precise data will significantly alter the findings in relation to the blood flow and pressure
redistribution arising from cutting various blood vessels in the network. Finally, our model
did not consider the viscoelastic characteristics of arterial blood vessels and assumed that
the walls were rigid in nature [83]. We made this assumption primarily due to the sheer
complexity and scale of the vasculature in Figure 1A. One area of future research will be to
include the effects of viscoelasticity in our model [55,78].

Last, the Windkessel impedance model is simpler than other 1D approaches [84]
involving the solution of coupled partial differential equations for the mass and linear
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momentum equations and, subsequently, a non-linear momentum flux equation using
a root-finding technique at each bifurcation node. However, these approaches are
more computationally expensive and time-intensive and could be more difficult to be
translated clinically.

4.3. Future Work

We intend to extend our work from a lumped-parameter approach to a 1D time-
evolving model and, ultimately, a 3D computational model that accounts for the geometry
and the viscoelasticity of the blood vessels based on clinical data obtained via medical
imaging. Developing a time-dependent model will allow us to account for the pulsation of
blood and the regulation and autoregulation of blood vessels during the bleeding process.
We further plan to extend our current model to account for coagulation and calculate blood
loss over a period of a few minutes [85–87]. These models can then be validated against
3D-printed experimental physical models.

The presented lumped-parameter model can also be extended to consider a two-kidney
system alongside a primary arterial output branch that connects both kidneys and allows
blood to flow to the rest of the human body. The main motivation for doing this is to
investigate how cutting blood vessels in one kidney influences the flow of blood and the
redistribution of blood pressure between the healthy and the altered kidneys as well as the
arterial output to the human body.

Since rheological factors of blood are patient-specific, we intend to enhance our future
modelling by considering multiparametric blood models [88] instead of the Carreau fluid
model. To further enhance clinical translation, we intend to personalise the model by
accounting for patient-specific data with the use of 4D flow MRI for parameter calibration
and dispersion amongst patients.

5. Conclusions

We present a mathematical lumped-parameter model that can estimate in near-real
time, for the first time, according to our knowledge, the blood loss arising from single-
, double-, and cross-vessel cuts for a complex extended renal vasculature. This model
efficiently estimates the blood flow and pressure maps for numerous cases of the altered
vasculature. The study also accounts for the transient change in the total impedance of
the vascular network immediately following the severing of various blood vessels during
partial nephrectomy and prior to autoregulation recovery. The work highlights that cutting
blood vessels from the vascular network results in a redistribution of blood flow rates and
pressures to the unaltered region of the kidney. Determining the blood loss for multiple
possible arterial cuts will allow renal surgeons to plan the appropriate surgical approach
required to minimise blood loss as well as enhance their understanding of perfusion, thus
allowing them to account for the possibility of cellular necrosis in the kidneys.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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Physical parameters for the various fluid models examined in the single-node bifurcation of Figure S1;
Table S2: Individual impedances and compliances for the three element Windkessel model for the
single-node bifurcation cases of Figure S1; Table S3: Daughter fluxes for the sensitivity analysis for the
various asymmetric single-node parent-daughter bifurcation models; Table S4: Sensitivity analysis
for the radius rL1 using the data from Tables S1 & S2; Table S5: Sensitivity analysis for the length LL1
using the data from Tables S1 & S2; Table S6: Sensitivity analysis for the shear rate,

.
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