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Abstract

Image segmentation is a fundamental task in the field of
imaging and vision. Supervised deep learning for segmen-
tation has achieved unparalleled success when sufficient
training data with annotated labels are available. However,
annotation is known to be expensive to obtain, especially
for histopathology images where the target regions are usu-
ally with high morphology variations and irregular shapes.
Thus, weakly supervised learning with sparse annotations
of points is promising to reduce the annotation workload. In
this work, we propose a contrast-based variational model
to generate segmentation results, which serve as reliable
complementary supervision to train a deep segmentation
model for histopathology images. The proposed method
considers the common characteristics of target regions in
histopathology images and can be trained in an end-to-end
manner. It can generate more regionally consistent and
smoother boundary segmentation, and is more robust to un-
labeled ‘novel’ regions. Experiments on two different his-
tology datasets demonstrate its effectiveness and efficiency
in comparison to previous models. Code is available at:
https://github.com/hrzhang1123/CVM_WS_
Segmentation.

1. Introduction
Histopathology images are of great importance for clini-

cal diagnosis and prognosis of diseases. With the thriving of
artificial intelligence (AI) techniques over the past decade,
especially deep learning, automatic analysis of histopathol-
ogy images in some tasks has achieved comparable or even
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Figure 1. Two examples of histopathology images with target re-
gions (e.g. tumor (top row) and stroma (bottom row)) annotated
by contours (b) or in-target and out-of-target points (c).

surpassing performance in comparison with human pathol-
ogists’ reviewing [2, 13, 28, 50]. However, most competent
methods are based on supervised learning, and their perfor-
mances critically rely on a large number of training samples
with detailed annotations. Yet such annotations usually re-
quire experienced pathologists and are expensive (in terms
of cost and time consumption) to obtain, and also subject
to human errors. The annotation problem for histopathol-
ogy images is particularly demanding, not only due to the
large size of such an image but also resulting from irregular
shapes of target tissues to be annotated (See Figure.1).

Weakly supervised learning is a promising solution to
alleviate the issues of obtaining annotations. The anno-
tations for the “weakly supervised” can specifically re-
fer to image-level labelling (multiple instance learning)
[23, 25, 27, 41, 48, 51], partial annotations within an image
(point or scribble annotation) [26], or full annotation in par-
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tial images (semi-supervised learning) [31]. Amongst these
three categories, learning by partial annotations has excel-
lent target localization capability, yet requires comparably
less cost to annotate.

Interactive segmentation with scribbles or points has
been widely studied for a few decades [4]. Conventional
methods relied on user interactive input for object segmen-
tation, such as grab-cut [39], Graph-cut [4], active contour-
based selective segmentation [37], random walker [17]. In
recent years it has been a hot topic to develop segmentation
models that can be trained by utilizing only the scribble or
point annotations, formulated as partially-supervised learn-
ing problem [8, 12, 22, 24, 26, 34, 36, 46, 49, 52]. Yet, exist-
ing partially-supervised methods were designed mainly for
natural images or medical images with relatively regular-
shaped objects and consistent textures, and very few are di-
rectly applicable to histopathology images given the above
challenges.

In this work, we focus on partially-supervised learning
for histopathology image segmentation based on in-target
and out-of-target point annotations, where in-target points
refer to those labelled inside the target regions and out-
of-target points refer to the outside ones. Histopathology
images are significantly distinguished from other types of
images. In many histopathology images, the target objects
present distinct regional characteristics. Specifically, as the
example shown in Figure.1, the tumors usually cluster in-
side large regions, in which morphological features or tex-
tures are similar and visually different to the outside re-
gions, and there exist comparably clear boundaries. Ex-
isting works on partially-supervised learning do not well
utilize this characteristic. Moreover, a histopathology im-
age scanned from a tissue section often contains some non-
target regions that are visually or morphologically unique to
those in other images. If such regions are not labelled, they
will be ‘novel’ to a trained machine learning model, and the
predicted categories of them will depend on their similarity
to the neutral tissue and to the target tissue. If such novel re-
gions are more similar to target tissues, they will be wrongly
predicted as the target category, leading to false detections.
Existing methods are limited in tackling this situation, es-
pecially for those methods based on consistency training on
data augmentation [15, 30], as consistency supervision may
amplify such errors.

Based on the above observations and insights, we pro-
pose to adopt a variational segmentation model to provide
complementary supervision information to assist the train-
ing of a deep segmentation model. This variational seg-
mentation model itself will be guided by annotated in-target
and out-of-target points for the segmentation of target re-
gions in the images. Variational methods are powerful tools
for segmenting structures in an image. Often posed as an
optimisation problem, energy functionals can be carefully

constructed to satisfy certain desired properties, for exam-
ple, maintaining consistency inside the evolving contour, or
constraining the length of the boundary to ensure a smooth
boundary [11, 40].

The uniqueness of variational methods highly fits the
characteristic of target regions in histopathology images, as
mentioned above. However, existing variational methods
cannot be directly applied to high-dimensional deep fea-
tures, which contain higher-level semantic information. To
tackle this problem, we introduce the concept of contrast
maps derived from deep feature correlation maps and for-
mulate a variational model applied to the obtained contrast
maps. Specifically, a set of correlation maps are generated
based on the annotated points on an image. The correspond-
ing contrast maps can then be obtained by the pairs of corre-
lation maps of in-target and out-of-target points through the
subtraction operation. A variational formulation is used to
aggregate the obtained contrast maps for the final segmen-
tation result. Finally, the variational segmentation provides
complementary supervision to the deep segmentation model
through the uncertainty-aware Kullback–Leibler (KL) di-
vergence. Besides, the proposed model can alleviate the
aforementioned issue of unlabeled novel tissue regions, re-
sulting from the subtraction operation in obtaining the con-
trast maps.

In summary, the main contribution of this work is the for-
mulated contrast-based variational model, used as reliable
complementary supervision for training a deep segmenta-
tion model from weak point annotations for histopathology
images. The variational model is based on the proposed new
contrast maps, which incorporate the correlations between
each location in an image and the annotated in-target and
out-of-target points. The proposed model is well suited for
the segmentation of histopathology images and is robust to
unlabeled novel regions. The effectiveness and efficiency of
the proposed method are empirically proven by the experi-
mental results on two different histology datasets.

2. Related works

2.1. Variational segmentation methods

Variational segmentation methods have been well stud-
ied over the past few decades. The seminal work by Mum-
ford and Shah [33] is perhaps the most influential varia-
tional model, aiming to find a piecewise smooth approx-
imation to a given image, as well as a discontinuity set
of edges. As it is difficult to solve directly many works
have their roots in the Mumford-Shah model, with variants
proposed [1, 9] and convex relaxations [7, 35]. A famous
example is the model by Chan and Vese [11], in which
the piecewise-smooth condition is relaxed to be piecewise-
constant, drastically simplifying implementation.

Selective segmentation is one type of variational seg-



(a) Overview of the end-to-end training process. An image with a high resolu-
tion is fed into the deep segmentation model (comprised of a feature extractor
and a segmentation network) which outputs the segmentation result. Mean-
while, the contrast-based variational model is fed with the feature map from
the convolutional segmentation network and the annotated points and gener-
ates the variational segmentation. The deep segmentation model is supervised
by the variational segmentation and the annotated points simultaneously by
the weighted KL divergence and the partial cross-entropy, respectively. The
whole network can be trained in an end-to-end manner. In particular, the varia-
tional model is only used to train the deep segmentation model and is not used
in the inference stage. The red dots represent the annotated in-target points,
while the blue dots are the annotated out-of-target points.

(b) Diagram of the proposed contrast-based variational model.

Figure 2. Overview of the proposed method.

mentation method that utilizes user input points to seg-
ment region of interest. It is usually implemented by in-
corporating the distance constraints into the energy func-
tional to optimize. The distance constraints are based on
the locations of the input points. Some examples are point-
wise Euclidean distance constraints [16, 29], normalised
Euclidean distance constraints [42] and normalised edge
weighted geodesic distance constraints [6, 37]. However,
conventional selective segmentation methods mainly rely
on geometrical relationships and image pixel values, with-
out considering high-level region correlation in an image.
Thus they are deficient in dealing with regions of compli-
cated textures and irregular shapes, particularly those in
histopathology images.

2.2. Partially supervised segmentation

Most partially-supervised methods for segmentation are
based on region or scribble annotations. Point annotation
essentially is a special form of scribble annotation, but it
provides sparser and weaker supervision information [3,15,

24, 36, 49, 52], in return to speed up the annotation process.
A large body of methods addresses the partially-

supervised learning problem through synthesizing labels
generated from partial annotations, by which the learn-
ing process virtually becomes fully supervised. The syn-
thesizing labels can be generated from graphical models
[8, 26], auxiliary architectures [30, 32], temporal predic-
tions [22], Voronoi partition [36], concentric circle exten-
sion [24] etc. Nevertheless, many existing synthesizing
methods are based on the consistency among different aug-
mented versions of the same image [15,22,30], which is de-
ficient in dealing with unlabeled novel regions. Particularly,
histopathology images usually have some special regions in
each that are unique to those in other images.

Apart from synthesizing labels, segmentation regular-
ization from graphical models has also been proven to be
an effective strategy, such as the CRF loss [45], edge de-
tection [49], Normal-cut [44], size constraint [19], level-
set [20]. However, these regularizations are less applicable
to histopathology images, as the tissue regions usually con-
tain complicated textures or irregular shapes.

3. Preliminary: Selective segmentation by vari-
ational model

The two-phase segmentation model by Chan and Vese
[11] is widely used and successful, and many subsequent
works use the Chan-Vese framework. Of particular inter-
est is the work by Chan et al. [10], who reformulated the
non-convex Chan-Vese model into a convex version. This
was investigated further by Bresson et al. [5], who proposed
incorporating an edge detector into the total variation term.
Given an image f defined on a continuous domain Ω ⊂ R2,
their model aims to partition it into two phases, Ω1 and
Ω2, with a set of edges Γ defining the boundary, so that
Ω = Ω1

⋃
Ω2

⋃
Γ. Their model is given as:

FCCV (u, c1, c2) =

∫
Ω

g(|∇f |)∇u(x)| dx (1)

+

∫
Ω

(
(f − c1)

2 − (f − c2)
2
)
u(x) dx,

where c1 and c2 are the mean intensities of f inside Ω1 and
Ω2 respectively, u(x) ∈ [0, 1] and g(s) = 1

1+ιs2 is an edge
detector. The presence of g encourages the contour to settle
on edges. The region Ω1 is found by thresholding u: Ω1 =
{x ∈ Ω : u(x) > γ}, where γ = 0.5 is usually fixed.

Regarding selective segmentation models, the convex
models proposed by Spencer and Chen [42] and Roberts
et al. [37] both take a general form:

FSS(u, c1, c2) =

∫
Ω

g(|∇f |)|∇u(x)| dx+ θ

∫
Ω

Du(x) dx

+ λ

∫
Ω

(
(f − c1)

2 − (f − c2)
2
)
u(x) dx.



The addition of the distance constraint, D, forces the region
of interest to be close to the annotated points. The distance
constraint in the Spencer-Chen model is a normalised Eu-
clidean distance, whereas in Roberts model is a normalised
edge weighted geodesic distance. See [37,42] for details on
definitions for these terms.

4. Method
4.1. Network architecture

Histopathology images usually have high resolutions.
Direct segmentation on lower-resolution (down-sampled)
images may lose relevant information contained in higher-
resolution details. To preserve such information, as well
as to fit a histopathology image into a deep neural network
with the consideration of memory and computation limits
of a computing unit (typically a GPU), we adopt a two-
component architecture as shown in Figure.2a, which en-
ables the end-to-end training and inference. The first com-
ponent is a feature extractor (the yellow box in Figure.2a).
When fed with a high-resolution image, the feature extrac-
tor will generate a reduced-dimension feature map that ex-
tracts the high-level representation of the input image. The
generated feature map is then forwarded into the second
component, a regular deep segmentation network for seg-
mentation (the orange box in Figure.2a). The segmentation
network then outputs segmentation results. Images of regu-
lar sizes can skip the feature extraction module and be fed
directly to the segmentation network. The feature extractor
and the segmentation network combined is defined as the
deep segmentation model.

The feature extractor can either be a convolution network
or a vision transformer [14]. Without loss of generality, we
used the convolutional module in the ResNet34 [18] as the
feature extractor. The U-Net [38] is adopted as the segmen-
tation network. Note that another feature extraction option
is to extract a feature vector from each patch from the im-
age, and stitch all the feature vectors into a feature map [43].
This is the typical operation to process gigapixel whole slide
images with deep learning model. Also, note that the opti-
mization of a patch-level feature extraction model can be
implemented by multi-stage back-propagation [43].

4.2. Loss function for training

We consider only the binary segmentation for
histopathology images, i.e., the target and the non-
target regions. The extension of the proposed method to
multiple categories will be straightforward.

Let ŷ be the segmentation result, i.e., the probability map
of being the target regions outputted from the deep seg-
mentation model. In the proposed method, the overall loss
function to train the deep segmentation model is formulated
based on two sub-loss functions, namely, the partial cross

entropy (Lpce) and the weighted KL divergence (Lwkl),

L = Lpce(ŷ,yS) + Lwkl(ŷ,u) (2)

where yS is the ground-truth labels for the pixel set S that
are annotated, and u is the segmentation result from the
proposed contrast-based variational model (CVM).

Note that the deep segmentation model trained with only
the partial cross-entropy is seen as the baseline model.

4.2.1 Partial cross-entropy training

Partial cross-entropy is usually adopted for the case when
only partial pixels in an image are with labels. Given an
image with the set of annotated pixels S, the partial cross-
entropy is defined as,

Lpce(ŷ,yS) = − 1

|S|
∑
i∈S

yi log ŷi+(1−yi) log(1−ŷi) (3)

where ŷi is the probability of pixel i being in the target re-
gion, yi is the corresponding pixel ground-truth label, and
|S| is the size of the annotated pixel set.

4.2.2 Uncertainty-aware KL divergence loss

The segmentation result u represents the probability map
obtained from the CVM. It provides complementary super-
vision information to train the deep segmentation model.
To implement, one straight-forwarding way is to cutoff u
into a binary mask by a threshold (usually 0.5), and then
use it as the pseudo ground-truth labels in the cross-entropy
for training. However, the pixels in u with high uncertainty
values may introduce noise labels in this way. Alternatively,
we adopt the weighted KL divergence to directly align the
distributions of output segmentation results ŷ and u.

Lwkl(ŷ,u) =
1

|K|
∑
i∈K

wiDKL(ui||ŷi)

= − 1

|K|
∑
i∈K

wi

(
ui log

ui

ŷi
+ (1− ui) log

1− ui

1− ŷi

)

where K is the pixel index set of the image. The weight wi

is based on entropy measurement, defined as,

wi = e−2hi

hi = −ui log ui − (1− ui)log(1− ui)

where hi is the entropy value. A larger entropy value (a
probability value around 0.5) indicates a larger uncertainty,
leading to a smaller value of wi, thus the corresponding
pixel in u contributes less in the Lwkl.



4.3. Contrast-based variational model for segmen-
tation

In this section, the detailed introduction of the proposed
CVM is provided, and the diagram is shown in Figure.2b.

4.3.1 Contrast Map

A contrast map is formed based on the corresponding corre-
lation maps of a pair of in-target and out-of-target annotated
points. A correlation map of an annotated point w.r.t. a
feature map measures the higher-level correlations between
each location in the image and the target location that cor-
responds to the annotated point.

Given a feature map A ∈ RC×W×H (in this paper it is
the Feature Map 2 in Figure.2a), and the coordinate of an
annotated point p w.r.t. to A is (w, h), and fw,h ∈ RC×1

the feature vector extracted from A corresponding to the
annotated point, the correlation is defined as the cosine sim-
ilarity, thus the correlation map of point p w.r.t. A is defined
as,

Sp = CSM(fw,h,A),

where Sp ∈ RW×H and the element in it located at (i, j)
is,

Sp,(i,j) =
fT
w,hai,j

∥fw,h∥2∥ai,j∥2
(4)

where T is the transpose operation, and ai,j is the feature
vector extracted from A located at (i, j).

Given a pair of in-target and out-of-target annotated
points, denoted as p and q, respectively, with the corre-
sponding correlation maps, Sp and Sq . The corresponding
contrast map Cp,q ∈ RW×H is then defined by the differen-
tial operation,

Cp,q = N
(
(ReLU (Sp − ηSq))

2 )
, (5)

where ReLU is the regular ReLU function, i.e., ReLU(x) =
x if x > 0 and ReLU(x) = 0 otherwise. N is the 2-
dimensional normalization operation, that will transform
the values of the elements in a 2-dimensional matrix (or
map) to be between 0 and 1. η ∈ [0, 1] is a positive con-
stant. The subtraction operation will reduce the activation
not only from the non-target regions, but also from the un-
labelled novel regions, as they probably will have similar
activation in both Sp and Sq due to high uncertainty.

4.3.2 Contrast-based variational model

Let P and Q denote the sets of in-target and out-of-target
annotated points, respectively, and the corresponding set of
contrast maps Cp,q, p ∈ P, q ∈ Q. For each in-target
point p, an edge-aware variational CV energy function is

optimized w.r.t. to the mean map of the contrast maps re-
garding p,

F (up, c1,p, c2,p) =

∫
Ω

g(|∇zp(x)|)|∇up(x)| dx (6)

+ λ

∫
Ω

(
(zp(x)− c1,p)

2 − (zp(x)− c2,p)
2
)
up(x) dx,

where zp(x) =
∑

q Cp,q(x)

|Q| .
Optimisation is done alternatively between the three

variables. Minimisation with respect to c1,p and c2,p give
closed-form solutions given as:

c1,p =

∫
Ω
zp(x)up(x) dx∫
Ω
up(x) dx

, c2,p =

∫
Ω
zp(x)(1− up(x)) dx∫

Ω
1− up(x) dx

.

Minimising with respect to up involves finding the Euler-
Lagrange equation and using a gradient descent scheme to
solve the resulting non-linear PDE:

∂up

∂t
= ∇ ·

(
g
∇up

|∇up|

)
− λ

(
(zp − c1,p)

2 − (zp − c2,p)
2
)
,

Efficient numerical schemes can be implemented to solve
this PDE. We use an additive operator splitting scheme [47],
of which more details can be found in the supplementary in-
formation. The final variational segmentation result comes
from the averaging of all variational segmentations,

u = N
(∑

p up

|P |

)
(7)

Note that in the actual training process, u is updated and
saved for each image only when a new lowest value of par-
tial cross-entropy on the validation set is achieved.

5. Experiments
This section provides the main evaluation results and the

corresponding analysis whilst more results are shown in the
Supplementary Material.

5.1. Datasets

In this study, two image sets were used for the evalua-
tion of the proposed method, namely, the public Camelyon-
16 breast cancer dataset [2] and a collection of colorectal
cancer tissue microarray images collected from a tertiary
centre.

Camelyon-16: was released initially for the task of
breast cancer metastasis detection, containing in total 400
whole slide images. In our experiments, 193 images with
tumor regions in them were cropped from the 158 positive
WSIs of Camelyon16. Each image is with a resolution of
4,096x4,096 at 20X magnification. The tumor regions in
each image are the target to segment.



Table 1. The performance comparison of different methods. The best metric values except the fully-supervised are written in bold.

Camelyon-16
Methods Dice Coefficient Accuracy Cohen’s Kappa AUC
Partial CE [26] (Baseline) 0.563±0.032 0.784±0.028 0.398±0.017 0.877±0.019
MixMatch [15] 0.611±0.045 0.816±0.070 0.449±0.105 0.892±0.049
Uncertain-aware Mean Teacher [30] 0.590±0.072 0.802±0.071 0.424±0.091 0.900±0.025
CRF Regularization [45] 0.631±0.096 0.838±0.069 0.500±0.109 0.913±0.043
Dual Branch [32] 0.631±0.087 0.886±0.026 0.545±0.087 0.926±0.013
Peng et al. [34] 0.615±0.091 0.813±0.079 0.472±0.126 0.901±0.058
Full Supervision 0.802±0.029 0.934±0.008 0.742±0.034 0.978±0.005
Direct Variational Regularization 0.603±0.105 0.815±0.085 0.466±0.135 0.891±0.041
By Contrast Map 0.709±0.047 0.901±0.011 0.626±0.049 0.948±0.017
The Proposed method 0.735±0.027 0.918±0.006 0.657±0.087 0.944±0.006

Colorectal tissue cores
Dice Coefficient Accuracy Cohen’s Kappa AUC

Partial CE [26] (Baseline) 0.631±0.129 0.838±0.141 0.501±0.199 0.913±0.031
MixMatch [15] 0.616±0.041 0.757±0.055 0.446±0.081 0.883±0.012
Uncertain-aware Mean Teacher [30] 0.580±0.028 0.726±0.058 0.396±0.075 0.866±0.039
CRF Regularization [45] 0.636±0.013 0.815±0.018 0.512±0.037 0.889±0.011
Dual Branch [32] 0.644±0.081 0.863±0.026 0.563±0.079 0.915±0.007
Peng et al. [34] 0.528±0.097 0.624±0.137 0.285±0.174 0.740±0.181
Full Supervision 0.772±0.044 0.893±0.013 0.699±0.049 0.951±0.009
Direct Variational Regularization 0.632±0.115 0.754±0.181 0.468±0.236 0.888±0.076
By Contrast Map 0.678±0.050 0.871±0.029 0.598±0.057 0.920±0.013
The Proposed method 0.710±0.025 0.872±0.026 0.626±0.035 0.924±0.008

Colorectal tissue cores The colorectal tissue cores as
part of a microarray (TMA), in which the cores (tumour and
adjacent normal) were stained with smooth muscle actin
(SMA) and counterstained by haematoxylin were used as
part of the evaluation. In total 100 tissue cores of 50 cases
from TMAs with detailed annotations were used. Each im-
age is with a resolution of 768x768 at 10X magnification,
and contains one tissue core. The stroma regions in these
tissue cores are the target to segment.

5.2. Evaluation and Implementation

For each dataset, four-folders cross-validation strategy
was adopted for the evaluation. The images in a dataset
were randomly split into four folders. In each experiment,
one folder of images was used as the test set, and the
remaining folders together were used for training, within
which the images were further split into training set and val-
idation set with a ratio of 4:1. The model achieved the low-
est partial cross entropy on the validation set was saved for
evaluation on the test set. Note, for colorectal tissue cores
the splitting was based on patient-level.

The mean and standard deviation values of performance
metrics including Dice Coefficient, accuracy, precision, Co-
hen’s Kappa, and area under the curve (AUC) are reported.

As an image from Camelyon-16 is with high resolution,
the convolutional component of a ResNet-34 [18] was used

as the feature extractor (the yellow area in Figure.2a) to ex-
tract a feature map with a dimension of 256x256x256 to
forward to the segmentation network which is a U-Net [38]
(the orange area in Figure.2a). The images from colorectal
tissue core set were directly fed into the segmentation net-
work for segmentation, skipping the feature extraction step.
For colorectal tissue core images, each pixel annotation is
expanded into a 3x3 region in the corresponding partial an-
notated mask.

The annotated points were randomly generated accord-
ing to the ground-truth labels and were fixed for all the
experiments. Without particular specification, three pairs
of in-target and out-of-target points were used for the
Camelyon-16 dataset, while for the colorectal tissue core
set, this number was five.

For training, an Adam optimizer [21] was used for each
model with a weight decay of 0.0001 and the learning rate
was 0.0001. 30 epochs were used for training the model on
the Camelyon-16 dataset, and 50 for that of the colorectal
tissue core set.

5.3. Comparisons with related methods

The performance of the proposed method is com-
pared with the fully-supervised method, the baseline
method (partial cross-entropy), and existing representative
methods, including MixMatch-based semi-supervised [15],



uncertainty-aware (UA) mean teacher [30], conditional ran-
dom field (CRF) loss [45], dual branch ensemble [32], and
the method of Peng et al. [34] which utilizes cosine sim-
ilarity maps. In addition to the pre-existing deep learning
methods, we also included the performances of the two fol-
lowing methods: (1) ‘Direct Variational Regularization’ di-
rectly applies the edge-aware variational model (Eq.1) on
the segmentation output of the deep segmentation model
and the corresponding result is used to supervise the training
of the deep segmentation model; (2) ‘Supervised By Con-
trast Map’ directly uses the mean contrast map to provide
extra supervision for the deep segmentation model.

The comparison results are shown in Table.1. Without
surprise, the fully-supervised method achieves the best per-
formance on both datasets with the highest values of all the
performance metrics, which are followed by the proposed
method. The other existing methods for comparison are sig-
nificantly inferior to the fully-supervised method and ours.
Particularly for the Dice Coefficient, the proposed method is
at least 10% higher than other existing methods, and is only
6.5% lower than the fully-supervised on the Camelyon16
dataset. On the colorectal tissue core dataset, the proposed
method is at least 6% higher than other pre-existing meth-
ods in Dice coefficient, and is about 6% lower than the
fully-supervised method. Notably, the ‘Supervised by Con-
trast Map’ achieves promising performances that are close
to the proposed method, indicating that the proposed con-
trast maps can already provide good quality of segmenta-
tion, yet the proposed method which applies the variational
model on the contrast maps can further improve the perfor-
mances. Besides, although the ‘direct variational regular-
ization’ method outperforms most pre-existing methods, it
is still not comparable with the proposed method.

The heatmaps presented in Figure.4 show some qualita-
tive results. Clearly, the segmentation results from the pro-
posed method are more regionally consistent, usually have
smoother boundaries, and are closest to the results of the
fully-supervision than those of other methods. It is notice-
able that some methods have the issue of wrongly giving
some neutral regions comparably strong activations. These
regions, such as the sparse tissue regions, do not have a large
proportion in most images, therefore the number of random
annotated points on them is very few. As a result, there is
no sufficient supervision information for a model to learn
to recognize them as non-target regions. This problem is
particularly severe with the UA mean teacher method [30].
It is probably because the update of the teacher model is
lagging behind the student model, yet the wrong recogni-
tion of the neutral region from the slowly updated teacher
serves to supervise the student model, which will enhance
the errors. Apart from the fully-supervised method, the
CRF-Loss method [45] and the proposed method are the
two that are robust to the issue of insufficient labelling of

un-target regions, and both methods consider the regional
correlations, yet the CRF-Loss method tends to overly ex-
pand the segmentation.

5.4. Ablation Study

The ablation study was conducted on the publicly avail-
able dataset Camelyon-16 for repeatability.

Figure.3a shows the Dice coefficient values with and
without the weighted KL divergence supervision when us-
ing different numbers of pairs of in-target and out-of-target
annotated points. The case without weighted KL means the
obtained contrast-based variational segmentations were cut-
off to binary masks and then used as the pseudo labels for
the cross-entropy minimization. As expected, more num-
bers of pairs involved in training tend to result in better per-
formances. We can also see that when the adopted numbers
are equal to or larger than three, the weighted KL loss func-
tion shows no obvious superiority over the cross-entropy
loss function. However, when the pair numbers are only
two, the weighted KL loss function performs significantly
better than the counter-part, and is not very inferior to those
with more annotated pairs. This phenomenon suggests the
robustness of the weighted KL to weaker supervision infor-
mation.

Figure.3b shows the effect of η, which is the weight used
in the contrast map calculation (Eq.(5)). The curve shows
when η = 0.6, the model achieves the highest Dice co-
efficient value of 0.735. Particularly, when η = 0 which
means no out-of-target points are involved in calculating the
contrast maps, the corresponding Dice coefficient is merely
0.668, the lowest value among the four conditions.

(a) Dice coefficient values for different numbers of in-target
and out-of-target annotated points.

(b) Dice coefficient values for different values of η

Figure 3. Performances for different configurations on Camelyon-
16.



Figure 4. Heatmaps for different methods. Top: examples from the Camelyon-16; Bottom: examples of the colorectal tissue cores. More
are provided in the Supplementary.

6. Limitation
The proposed contrast-based variational model some-

times is not able to deal with some complicated cases. Be-
sides, at present there is only CPU version for the solver to
optimize the energy functional, thus the time consumption
for calculation is comparably considerable. Please refer to
the Supplementary for more details.

7. Conclusion
We propose an end-to-end method for histopathology

image segmentation, with weak supervision information
from a few points annotations. The proposed method ben-
efits from the proposed contrast-based variational model
(CVM), which provides reliable segmentations as the com-
plementary supervision information, in addition to the weak
point supervision, to train the deep segmentation model.
The experimental results show a clear superiority of the pro-

posed method to existing methods. It is demonstrated that
the trained model is able to generate segmentation results
with more consistent regions and smoother boundaries, and
is more robust to unlabeled novel regions in comparison to
existing methods. We expect the proposed method can be
served as a useful tool and can substantially alleviate the
burden of the labour-intense annotation for histopathology
images. We also expect the proposed method to be applica-
ble to other image modalities if the learnt features are dis-
tinct w.r.t. categories.
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