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Abstract. It is easy to verify that if A is a doubly stochastic matrix then both its normal6
equations AAT and ATA are also doubly stochastic; but the reciprocal is not true. In this paper,7
we introduce and analyse the complete class of nonnegative matrices whose normal equations are8
doubly stochastic. This class contains and extends the class of doubly stochastic matrices to the9
rectangular case. In particular, we characterise these matrices in terms of their row and column sums,10
and provide results regarding their nonzero structure. We then consider the diagonal equivalence of11
any rectangular nonnegative matrix to a matrix of this new class, and we identify the properties for12
such a diagonal equivalence to exist. To this end, we present a scaling algorithm, and establish the13
conditions for its convergence. We also provide numerical experiments to highlight the behaviour of14
the algorithm in the general case.15
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1. Introduction. If A ≥ 0 is a square non-negative matrix with total support,18

then we can find a diagonal scaling so that DAE is doubly stochastic (DAE1 =19

EATD1 = 1), where A ≥ 0 means that A is nonnegative and D and E are diagonal20

matrices with positive diagonal. If A ≥ 0 is rectangular and has sufficient nonzeros,21

then it too can be scaled so that it has constant row and column sums (but no longer22

equal). Alternatively, one can prescribe arbitrary row and column sums, r ∈ Rm and23

c ∈ Rn (so long as
∑m

i=1 |ri| =
∑n

j=1 |cj |), and scale A so that DAE1n = r and24

EATD1m = c.25

Note that a square matrix has support if it can be permuted so that it has a fully26

nonzero diagonal, and has total support if every nonzero entry can be permuted onto27

a fully nonzero diagonal. A generalisation of total support for rectangular matrices is28

the strong Hall property (see [2] for details). We use (and restate) a version of this29

property in Theorem 2.10.30

The diagonal scaling problem has a long history in the mathematical literature,31

dating back to the 1930s [4], with applications in diverse areas outside linear algebra.32

Most recently it has emerged as being central to the solution of optimal transport33

problems associated with machine learning [10], as well as a key step in genome34

analysis [12].35

In the general case, the precise conditions for existence of a scaling depend on r, c36

and A, and were set out by Brualdi [1] and Menon and Schneider [8], but they cannot37

be as neatly described as in the square case. A generic condition [7] for a given scaling38

to exist for A is that there exists a nonnegative matrix B with the same pattern as39

A for which B1n = r and BT
1m = c. If a scaling exists, in both the square and40
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rectangular cases, then it can be found using the Sinkhorn–Knopp algorithm [11, 13].41

In fact, the existence of a scaling (particularly in the rectangular case) is confirmed42

by the convergence of this algorithm, although it may be more insightful to verify43

that Brualdi’s conditions hold.44

In this work we extend the class of doubly stochastic matrices to include a set45

of rectangular matrices. While it is impossible for a non-square nonnegative matrix46

to have row and column sums both equal to one since the sum of row sums must be47

equal to the sum of column sums, we may however extend a weaker condition satisfied48

by doubly stochastic matrices. We consider nonnegative matrices for which49

(1.1) AAT
1m = 1m and ATA1n = 1n .50

This trivially holds for doubly stochastic matrices since

AAT
1 = A1 = 1 and ATA1 = AT

1 = 1 .

But it is a bigger class, even in the square case, as can be seen with51

(1.2) A =

 0 0 1/
√
2

0 0 1/
√
2

1/
√
2 1/

√
2 0

 ,52

for which we have

AAT = ATA =

 1/2 1/2 0
1/2 1/2 0
0 0 1

 ,

which is doubly stochastic even thoughA is not. Notice thatA does not have support,53

so it cannot even be scaled to doubly stochastic form.54

We label as semi-doubly stochastic any nonnegative matrix, square or rectangular
(A ∈ Rm×n), for which (1.1) holds. We first show that such a matrix is essentially
the direct sum of p connected rectangular sub-components Ai, i = 1, . . . , p, where
Ai ∈ Rmi×ni , each having constant row sums and constant column sums. A question
that naturally arises is whether a given nonnegative matrix can be scaled to semi-
doubly stochastic form. For the square case this is a very well studied problem and
existence is conditional on the non-zero pattern of the matrix. It is also true in our

generalisation. For example, consider A =

[
1 1
0 1

]
which is scalable to semi-doubly

stochastic form if and only if B =

[
αβ αγ
0 δγ

]
is semi-doubly stochastic, for some

scalars α, β, γ, δ > 0. This can be recast as the system

x︷ ︸︸ ︷
(αβ)2 +

y︷ ︸︸ ︷
(αγ)2 +

z︷ ︸︸ ︷
γ2αδ = 1,

(row sums of BBT )u︷ ︸︸ ︷
(γδ)2 + γ2αδ = 1,

(αβ)2 +

v︷ ︸︸ ︷
α2βγ = 1,

(row sums of BTB)
α2βγ + (αγ)2 + (γδ)2 = 1.

We immediately see that we require y = (αγ)2 = 0, and so B does not exist. We55

denote as semi-scalable any nonnegative matrix A for which we can find diagonal56
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matrices D and E such that B = DAE is semi-doubly stochastic (that is that BTB57

and BBT are doubly stochastic matrices) Note that throughout this article we assume58

that our matrices do not contain any zero row or column, as these are clearly not semi-59

scalable.60

Our main motivation for investigating this type of matrices is its potential in co-61

clustering applications. Co-clustering is a data mining technique that extends clus-62

tering to uncover relationships between different features in a dataset. Connections63

between elements of the two features are represented in a rectangular data matrix64

and co-clustering aims to find row and column permutations to reveal consistent row65

and column blocks, the so-called co-clusters. Adapting doubly stochastic scaling to66

rectangular matrices can help in at least two different co-clustering approaches.67

The first one is related to optimal transport [5]. It draws a parallel between scal-68

ing a rectangular matrix to one with (piecewise)1 constant row and column sums, and69

finding the probability distributions of data and features random variables responsi-70

ble for the observations stored in a data matrix. In the co-clustering context, these71

distributions are assumed to be mixtures of uniform distributions, with each compo-72

nent in the mixture corresponding to a co-cluster. Thus, permuting rows and columns73

of the data matrix according to the increasing order of the elements in the scaling74

factors can highlight the co-clustering structure. In the algorithm CCOT derived from75

these observations, the authors subsample the data matrix to get square matrices76

since there is no current algorithm to scale a general rectangular matrix to one with77

(piecewise) constant row and column sums. This, in turn, requires that they apply78

a majority vote over the co-clusterings uncovered using the sampled square matrices,79

which increases both the algorithm complexity, and the risk of co-clustering mistakes.80

We believe that the results we highlight in the current work may help improving the81

CCOT algorithm proposed in [5].82

The second approach in which semi-doubly stochastic matrices clearly have a role83

is the spectral algorithm used to uncover block structures in matrices scaled into84

doubly stochastic form, proposed in [6]. In this work, permuted singular vectors of85

a doubly stochastic matrix are shown to have a piecewise constant shape when the86

matrix has a block structure, and permuting the matrix according to the size of the87

vectors entries highlights the underlying block structure. The results from [6] can be88

easily extended to semi-doubly stochastic matrices, thus enabling one to extend the89

spectral approach to rectangular matrices. As an example, in Figure 1 we show two90

permutations of the same matrix. To produce the picture on the right-hand side, we91

have used three singular vectors from the semi-scaled version of the left-hand matrix92

to reorder the rows and columns to reveal the block structure. Since it is not square,93

this matrix is not scalable to doubly stochastic form, but it can be semi-scaled with94

the use of the algorithm described in Section 3.95

While the block structure of semi-scalable matrices is attractive there is no easy96

way to tell a priori whether a matrix is close to having this property or not. In97

practice, if we attempt to use current scaling algorithms on such matrices without pre-98

existing knowledge of the underlying block structure, then they will fail to converge99

to anything meaningful. To remedy this, we present a new iterative scaling algorithm,100

which simultaneously targets the row sums of both AAT and ATA. We also prove101

that a matrix is semi-scalable if and only if our algorithm converges, providing in102

the limit a diagonal scaling so that DAE is semi-doubly stochastic. Additionally, we103

1Only constant row and column sums scaling are addressed in [5] as stated in Section 2.1, but
this generalises naturally to piecewise constant row and column sums scalings.

This manuscript is for review purposes only.
3

Introducing the class of semidoubly stochastic matrices: a novel scaling approach for rectangular matrices



Fig. 1. Approximate block structure revealed by scaling: raw matrix (left), and reordered matrix
(right) after semi-scaling and block identification from the distribution of the entries in the singular
vectors.

illustrate the behaviour of the algorithm on matrices which are not semi-scalable. The104

algorithm still converges to a semi-doubly stochastic matrix but in this case it is one105

whose nonzero pattern is included in that of the original matrix, as certain entries are106

forced towards zero.107

1.1. Notation. For a given matrix A ∈ Rm×n, we will want to generate a108

number of associated quantities. The notation we use is detailed in Table 1. Note109

that if a bipartite graph has adjacency matrix

[
0 A
AT 0

]
, we say the matrix A is the110

graph bipartite matrix.111

Typeface Definition
M , N The sets {1, . . . ,m} and {1, . . . , n}, respectively.

A(R,C)
The submatrix of A containing the intersection between rows
in R ⊂M and columns in C ⊂ N .

P(A) The pattern of A: P(A) = {(i, j) ∈M ×N : A(i, j) ̸= 0}.

B(A) The bipartite graph for which A is the bipartite matrix.

A(A) The graph for which A is the adjacency matrix (A square).

1p A column vector of 1s of dimension p.

D(r) The diagonal matrix given by some vector r.

T Given T ⊂ S, then T = S \ T .
Table 1
Notation.

2. The Class of Semi-Doubly Stochastic Matrices. In this section, we112

formally introduce the class of semi-doubly stochastic (SDS) matrices and detail some113

properties of this class. Our main result is a characterisation of SDS matrices, stated114

in Theorem 2.6.115

Definition 2.1. A nonnegative matrix A ∈ Rm×n is said to be semi-doubly116

This manuscript is for review purposes only.
4

Introducing the class of semidoubly stochastic matrices: a novel scaling approach for rectangular matrices

�� �� �� �� �� ��
���� ����



stochastic (SDS) if and only if its normal equations are both stochastic, that is117 {
AAT

1m = 1m

ATA1n = 1n

.118

Definition 2.1 is just a rewording of (1.1). It is clear that since AAT and ATA are119

both symmetric, the fact that they are stochastic implies that they are doubly sto-120

chastic. However, the denomination semi-doubly stochastic means that both normal121

equation matrices are stochastic together, whereas A may not be.122

We now analyse the structural properties of SDS matrices. We first state two123

general results for nonnegative sparse matrices that will be useful in defining the core124

blocks of SDS matrices.125

Lemma 2.2. Given a matrix A ∈ Rm×n with no zero row or column, then the126

following statements are equivalent:127

1. AAT is bi-irreducible 2.128

2. ATA is bi-irreducible.129

3. The bipartite graph B(A) is connected.130

Proof. (1) =⇒ (3) : If B(A) is not connected, it means that ∃U ⊂ M,V ⊂ N131

both nonempty, such that there is no edge between U and V and between V and U .132

Thus A can be simultaneously permuted to

[
A1 0
0 A2

]
with A1 = A(U, V ), respec-133

tively A2 = A(U, V ). This implies that AAT can be permuted as

[
A1A

T
1 0

0 A2A
T
2

]
.134

Hence, AAT is not even irreducible, let alone bi-irreducible.135

(3) =⇒ (1) Given that AAT is symmetric and has a full diagonal, AAT is136

bi-irreducible iff it is irreducible, that is iff the graph A(AAT ) is connected.137

An edge (u, v) in A(AAT ) coincides with a 2-path in B(A) whose external nodes138

are in M , that is a triplet (u, y, v) ∈M ×N ×M : A(u, y) ̸= 0 and A(v, y) ̸= 0.139

Since B(A) is connected, ∀u, v ∈ M,

{
∃ y1, . . . , yk ∈ N,

∃x1, . . . , xk+1 ∈M,
such that x1 = u,140

xk+1 = v, and ∀i,

{
A(xi, yi) ̸= 0,

A(xi+1, yi) ̸= 0.
Since a triplet (xi, yi, xi+1) is a 2-path in B(A),141

that is an edge in A(AAT ), this implies that, ∀u, v ∈ M there is a path between u142

and v in A(AAT ). Thus, A(AAT ) is connected, which implies AAT is bi-irreducible.143

(2) ⇐⇒ (3) is straightforward by considering AT instead of A in the previous144

points.145

As matrices arising in Lemma 2.2 will be at the core of our study, we introduce146

the following useful definition.147

Definition 2.3. A rectangular matrix with no zero row or column that satisfies148

the conditions in Lemma 2.2 is called a connected matrix.149

The following corollary is a direct consequence of Lemma 2.2.150

Corollary 2.4. Any matrix A ∈ Rm×n with no zero row or column can be151

permuted into the direct sum of independent connected matrices. In other words, A152

2That is there exist no row and column permutations that can rearrange A into a block triangular
form.
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A1

A2

. . .

Ak

 ,

153 can be permuted to 
154

where each Ai ∈ Rmi×ni is a connected matrix.155

Proof. The blocks Ai are the bipartite matrices of the disjoint connected compo-156

nents of B(A). The rest follows from Lemma 2.2.157

The following theorem provides a characterisation of connected SDS matrices.158

Theorem 2.5. A connected nonnegative matrix A ∈ Rm×n is SDS iff A has159

constant row sums equal to

√
n

m
, respectively constant column sums equal to

√
m

n
.160

In other words, A is SDS iff161 
A1n =

√
n

m
1m

AT
1m =

√
m

n
1n

162

163

Proof. ( =⇒ ) Assume that A is SDS. Then164 {
f = A1n,

g = AT
1m,

thus

{
AT f = 1n,

Ag = 1m,
and finally

{
AAT f = f ,

ATAg = g.
165

Therefore, f is an eigenvector of AAT associated with an eigenvalue 1, and such that166

f > 0. Since AAT is bi-irreducible and row-stochastic, we know from the Perron–167

Frobenius theorem that f = α1m, with α > 0. With a similar argument, g = β1n,168

with β > 0. This shows that A has constant row and column sums.169

It is then necessary to have, α =
√

n/m and β =
√
m/n, as

{ m = 1
T
m

Ag︷︸︸︷
1m = gT

g︷ ︸︸ ︷
ATAg = gTg = nβ2,

n = 1
T
n 1n︸︷︷︸
AT f

= fTAAT f︸ ︷︷ ︸
f

= fT f = mα2,

together with α, β > 0.170

(⇐= ) The reciprocal is immediate. Since

{
A1n =

√
n/m1m,

AT
1m =

√
m/n1n,

we then get

{
ATA1n =

√
n/mAT

1m =
√

n/m
√
m/n1n = 1n,

AAT
1m =

√
m/nA1n =

√
m/n

√
n/m1m = 1m,

which shows that A is SDS.171

Combining Theorem 2.5 together with Corollary 2.4, we can then state the main172

result of the section, which characterises the class of SDS matrices.173
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Theorem 2.6. Any SDS matrix A ∈ Rm×n is the direct sum of connected ma-174

trices, each of size mi × ni and having constant row sums and constant column sums175

equal to
√

ni/mi and
√
mi/ni respectively.176

As seen in (1.2), for square matrices, being SDS is not equivalent to being dou-177

bly stochastic. The following corollary states the condition under which these two178

properties are equivalent.179

Corollary 2.7. A square nonnegative matrix is doubly stochastic if and only if180

it is semi-doubly stochastic with support.181

Proof. Any doubly stochastic matrix is SDS, and has support too, as it must182

have total support. At the same time, from Theorem 2.6 any SDS matrix whose con-183

nected subblocks are square is doubly stochastic. We need to show that the connected184

subblocks of any square matrix with support are square.185

Assume that the nonnegative matrix A ∈ Rn×n has support. From Corollary 2.4,186

we assume without loss of generality that A =

A1

. . .

Ak

 . A support of A is187

a set of n pairs {(it, jt)}t∈N , such that ∀t ∈ N,A(it, jt) ̸= 0, and that covers all the188

rows and columns of A. Thus, a support of A must contain a diagonal of maximum189

size for each block Ai. If one block Ai is rectangular, say mi > ni, then the maximum190

diagonal for this block will cover at most ni rows. Because of the independence of the191

Ais, it is not possible to cover the remaining mi−ni rows from this block. Similarly,192

when ni > mi it is impossible to cover ni −mi columns from Ai. Thus, if one block193

Ai is rectangular, then A has no support.194

While the purpose of our study is not to scale matrices to matrices with prescribed195

row and column sums, some results from this field provide interesting insights in our196

context when investigating connected matrices. In particular, combining the values197

of row and column sums from Theorem 2.5 together with the properties raised in198

Theorem 3.5 from [8], we obtain the following result.199

Lemma 2.8. Given a connected nonnegative matrix A ∈ Rm×n with m ≥ n:200

• A necessary condition for A to be SDS is that201

(2.1) ∀I ⊂M,J ⊂ N,

(
A(I, J) = 0 =⇒ |J |

|I|
<

n

m

)
.202

• If A satisfies (2.1), there exists an SDS matrix with the same pattern as A.203

Remark 2.9. This lemma implies that every column of a tall SDS matrix must204

have strictly more than m/n nonzero entries. Or equivalently, that every column node205

in B(A) must be linked to strictly more than m/n row nodes. Moreover, any subset206

of k ≤ n columns in A must contain at least k × (m/n) non empty rows.207

We can derive a corollary from the previous lemma that gives an interesting208

necessary condition about the pattern of an SDS matrix.209

Theorem 2.10. Given a connected nonnegative matrix A ∈ Rm×n, with m ≥ n,210

the fact that A is SDS implies the two following statements.211

1. A has the strong Hall property (Brualdi [2]).212

2. Every nonzero entry of A lies on a column diagonal.213

Proof. (SDS) =⇒ (1): For a connected matrix A, the strong Hall property can214
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be stated as215

∀R ⊂M, ∀C ⊂ N, (A(R,C) = 0 =⇒ |R|+ |C| < m) ,216

(a slight adaptation from a statement in the Introduction in [2]).217

Assume that we have R ⊂ M, C ⊂ N such that A(R,C) = 0. By replacing218

I = R and J = C in Lemma 2.8, we have that |C|/|R| < n/m. Since m ≥ n and219

|R| = m − |R|, this leads to |C| < m − |R| ⇐⇒ |C| + |R| < m, and thus A verifies220

the strong Hall property.221

(1) ⇐⇒ (2) comes from Theorem 3.3 of [2].222

Remark 2.11. Conversely, the fact that a matrix has the strong Hall property is223

not sufficient for ensuring that there exists an SDS matrix with the same pattern, as224

can be observed by considering a matrix with pattern225 
× ×
× ×
0 ×
0 ×

 .226

This is clearly a connected matrix, and it has the strong Hall property, since ev-227

ery nonzero entry lies on a column diagonal: for example consider the diagonals228

{(1, 1), (2, 2)}, {(2, 1), (1, 2)}, {(1, 1), (3, 2)}, {(1, 1), (4, 2)}.229

But with I = {1, 2}, J = {1}, we have A(I, J) = 0, and yet |J |/|I| = 1/2, which230

is equal to n/m and the conditions of Lemma 2.8 do not hold.231

3. Scaling Matrices to Semi-Doubly Stochastic Form. If a nonnegative232

matrix A ∈ Rm×n has no zero row and no zero column then both AAT and ATA233

have a total support, since they are both symmetric with a full diagonal, and so234

both normal equations can be independently scaled to doubly stochastic form. But,235

whether a given nonnegative matrix A ∈ Rm×n is diagonally equivalent to a semi-236

doubly stochastic matrix, or not, is not so obvious. The 2×2 counterexample given in237

the introduction clearly shows that is is not the case in general. We thus consider the238

class of nonnegative matrices that can actually be scaled to semi-doubly stochastic239

form.240

Definition 3.1. A nonnegative matrix A ∈ Rm×n is said to be semi-scalable if
and only if it is diagonally equivalent to a semi-doubly stochastic matrix B, i.e. there
exist two positive diagonal matrices D ∈ Rm×m,E ∈ Rn×n such that B = DAE and{

BBT
1m = 1m,

BTB1n = 1n.

241

From Theorem 2.6, we know that scaling a nonnegative matrix to semi-doubly242

stochastic form is equivalent to a scaling to piecewise constant row and column sums,243

after some appropriate row and column permutations. Scaling a matrix to prescribed244

row and column sums is a well known problem, and many algorithms have been245

proposed to achieve such a target. The issue when trying to scale a matrix A to246

piecewise constant sums is to be able to determine in advance individual blocks within247

the pattern of A, whose direct sum reproduces the matrix that we want to scale, and248

to verify also that each of these blocks corresponds to a matrix that can be scaled249

to constant row and column sums. Here, we describe an algorithm that will find250
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Algorithm 3.1 SDS-scaling algorithm

Input: A nonnegative matrix A ∈ Rm×n, with no zero row or column.

Output: Two diagonal matrices D ∈ Rm×m and E ∈ Rn×n, and S ∈ Rm×n such

that S = DAE.

1: A(0) ← A

2: d(0) ← 1m

3: e(0) ← 1n

4: for k = 0, 1, 2, . . . until convergence do

5: r← A(k)A(k)T
1m

6: c← A(k)T D (r)
−1

A(k)
1n

7: A(k+1) ← D
(√

r
)−1

A(k)D
(√

c
)−1

8: d(k+1) ← D
(√

r
)−1

d(k)

9: e(k+1) ← D
(√

c
)−1

e(k)

Set D = D
(
d(k+1)

)
, E = D

(
e(k+1)

)
, and S = A(k+1)

iteratively its way to scale a matrix to semi-doubly stochastic form, whenever this is251

possible, and we also analyse its convergence.252

The SDS-scaling Algorithm 3.1 is rather simple, and does not require any pre-
scribed row or column sums as input. The vectors d(k) and e(k) correspond to the
scaling factors so that, at each iteration, A(k) is diagonally equivalent to A, with

A(k) = D
(
d(k)

)
AD

(
e(k)

)
.

We will now analyse its convergence. We will use the fact that the algorithm is a253

diagonal product increasing algorithm (DPI) and exploit techniques introduced in [9].254

Lemma 3.2. The SDS-scaling algorithm produces a sequence of scaled matrices255

A(k), diagonally equivalent to A for k = 1, 2, . . ., which is bounded in Rm×n, and256

which contains convergent subsequences.257

Proof. In fact, for k ≥ 1, we can verify that the spectral norm of A(k) is equal to258

1. Indeed, denoting the current iterate A(k) as A, and the next scaled iterate A(k+1)259

as S, the iteration in the SDS-scaling algorithm is essentially reduced to:260

form r = AAT
1m,

and set Â = D
(√

r
)−1

A,

c = ÂT Â1n,

and finally S = D
(√

r
)−1

AD
(√

c
)−1

.

261

Consequently, the non-zero eigenvalues of

SST = ÂD (c)
−1

ÂT

are also the non-zero eigenvalues of

W = D (c)
−1

ÂT Â ,

which is nonnegative and row-stochastic. The Perron–Frobenius theory enables us262

to conclude that the maximum eigenvalue of W is 1, and therefore that the largest263

singular value of S is equal to 1. Notice also that the same reasoning can be used to264

show that the largest eigenvalue of ÂT Â = AT D (r)
−1

A is also equal to 1.265
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Therefore, ∀k ≥ 1, ∥A(k)∥2 = 1, and the sequence of scaled matrices is bounded266

in the finite dimensional space Rm×n, and there exist convergent subsequences.267

It follows that ∀(i, j) ∈ P(A), the pattern of A, the sequences
(
d
(k)
i e

(k)
j

)
k≥1

are268

bounded above, as269

(3.1) ∀k ≥ 1, ∀(i, j) ∈ P(A), a
(k)
ij = aij d

(k)
i e

(k)
j ≤ 1 ,270

which implies that271

(3.2) d
(k)
i e

(k)
j ≤ 1

min
(i,j)∈P(A)

aij
= L .272

Lemma 3.3. The SDS-scaling algorithm is diagonal product increasing (DPI) in273

the sense that274

(3.3) ∀k ≥ 1,

m∏
i=1

d
(k+1)
i

d
(k)
i

≥ 1 and

n∏
j=1

e
(k+1)
j

e
(k)
j

≥ 1 .275

276

Proof. This is just a direct consequence of the fact that ∀k ≥ 1, ∥A(k)∥2 = 1.
From the arithmetic-geometric mean inequality, we get

m∏
i=1

d
(k)
i

d
(k+1)
i

=
m∏
i=1

√
ri ≤

(
1

m

m∑
i=1

√
ri

)m

.

Now, by the Cauchy–Schwartz inequality, we also have
∑m

i=1

√
ri ≤

√
m
√∑m

i=1 ri,
and since

m∑
i=1

ri = 1
T
mr = 1

T
mA(k)A(k)T

1m = ∥A(k)T
1m∥22 ≤ m

(because ∥A(k)∥2 = 1), we can easily conclude that

m∏
i=1

d
(k)
i

d
(k+1)
i

≤ 1 .

Similar considerations also imply that

n∏
j=1

e
(k)
j

e
(k+1)
j

=

n∏
j=1

√
cj ≤

 1

n

n∑
j=1

√
ci

n

≤ 1 ,

as
n∑

j=1

ci = 1
T
nc = 1

T
nA

(k)TD(r)−1A(k)
1n,

and ∥A(k)TD(r)−1A(k)∥2 = 1 as well. This establishes the DPI property (3.3) for the277

SDS-scaling algorithm.278

We now state our main convergence result, which shows that a rectangular matrix279

is semi-scalable if and only if the SDS-scaling algorithm converges. This is ensured280

whenever there exists a semi-doubly stochastic matrix B, with the same pattern as281

that of the matrix A we wish to scale.282
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Theorem 3.4. Let A ∈ Rm×n be a nonnegative matrix, and suppose that there
exists a semi-doubly stochastic matrix B with P(A) = P(B). Then, the SDS-scaling
algorithm produces a sequence of iterates (A(k))k≥0 (starting from A) that converges
to a semi-doubly stochastic limit Q. The scaling factors (d(k), e(k))k≥0 also have a
limit, (d, e) say, and

Q = D(d)AD(e) .
In the proof of this theorem we will make use of the following lemma which283

establishes two properties that are direct consequences of results in the literature.284

Lemma 3.5. Suppose that A ∈ Rm×n is a connected nonnegative matrix.285

(a) [Pretzel [11] – Proposition 1]

If Q and Q̂ are two semi-doubly stochastic matrices diagonally equivalent to
A, e.g.

Q = D(x)AD(y) and Q̂ = D(x̂)AD(ŷ) ,

for some positive scaling vectors x, y, x̂ and ŷ, then Q = Q̂ and the scaling286

vectors x and x̂ for the rows, and y and ŷ for the columns, are unique up to287

some scaling factor.288

(b) [Pretzel [11] – Lemma 2]
Consider a converging sequence of matrices diagonally equivalent to A

Q = lim
k→+∞

D(x(k))AD(y(k)) ,

where
(
x(k)

)
k
and

(
y(k)

)
k
are two sequences of positive scaling vectors in

Rm and Rn respectively. If Q has the same pattern as A (e.g. there are no
vanishing elements in the limit), then for any given row index i ∈ {1, . . . ,m}
(or column index j ∈ {1, . . . , n}), both sequences (x(k)/x

(k)
i )k and (y(k) ×

x
(k)
i )k (or (x(k)×y

(k)
j )k and (y(k)/y

(k)
j )k, respectively) have a limit, which we

denote as d ∈ Rm and e ∈ Rn, and we have

Q = D(d)AD(e) .

We now briefly contextualise the two points in Lemma 3.5. Point (a) is a direct
combination of Proposition 1 from [11], together with the characterisation for semi-
doubly stochastic matrices given in Theorem 2.6. Indeed, from Theorem 2.6, we
know that two semi-doubly stochastic matrices with the same pattern must share
the same row sums and column sums, as their common pattern exhibits connected
sub-components in the same place and with the same sizes. Since Q and Q̂ are also
diagonally equivalent, as

Q̂ = D(x̂/x)QD(ŷ/y) ,

Proposition 1 in [11] establishes the fact that Q = Q̂. Additionally, the demonstration
of Proposition 1 in [11] shows that for a connected component we must have

x̂i

xi
= α, ∀i, and

ŷj
yj

=
1

α
, ∀j.

Point (b) is actually included in the demonstration of Lemma 2 in [11], where

the re-scaling of x(k) by any of its entries, x
(k)
1 for instance, and the fact that A is

connected, implies that all factors x
(k)
i /x

(k)
1 and y

(k)
j × x

(k)
1 have a limit, di and ej

respectively, and as

D
(
x(k)

)
AD

(
y(k)

)
= D

(
x(k)/x

(k)
1

)
AD

(
y(k) × x

(k)
1

)
, ∀k,

This manuscript is for review purposes only.
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in the limit we get Q = D(d)AD(e).289

We can now prove Theorem 3.4.290

Proof. We can assume, without loss of generality, that A is connected. Indeed, if291

A is the direct sum of independent connected sub-components, then the SDS-scaling292

algorithm is reduced to scaling independently each sub-component. Additionally,293

Theorem 2.6 implies that B is also the direct sum of independent semi-doubly sto-294

chastic sub-components, each one of them associated to each sub-component in A295

since P(B) = P(A).296

Now, for a connected semi-doubly stochastic matrixB, we know from Theorem 2.5
that

B1n =

√
n

m
1m and BT

1m =

√
m

n
1n .

From the DPI property (3.3), we know that

s(k) =

(
m∏
i=1

d
(k)
i

)√ n
m

 n∏
j=1

e
(k)
j


√

m
n

is an increasing sequence in R+, and from (3.2) it is also bounded above as

s(k) =
m∏
i=1

 n∏
j=1

(
d
(k)
i e

(k)
j

)bij ≤ m∏
i=1

 n∏
j=1

Lbij

 ≤ L
√
mn ,

in which the scalars bij are the elements of the SDS matrix B. Therefore, the sequence
(s(k))k≥1 must converge:

lim
k→+∞

s(k) = ξ ≥ s(1) > 0 .

Now, using the arithmetic-geometric mean inequality again, we can write that

s(k)

s(k+1)
=

(
m∏
i=1

√
ri

)√ n
m

 n∏
j=1

√
cj


√

m
n

≤

 1√
mn

1

2

√
n

m

m∑
i=1

ri +
1

2

√
m

n

n∑
j=1

cj


√
mn

≤ 1 .

As all the a
(k)
ij are bounded by 1, we know that the values in vectors r and c stay

bounded through every iterations so that if we consider any convergent subsequence,
with limit given by vectors x and y respectively, we shall get in the limit

1 =

(
m∏
i=1

xi

) 1
2

√
n
m

 n∏
j=1

yj

 1
2

√
m
n

=

 1√
mn

1

2

√
n

m

m∑
i=1

xi +
1

2

√
m

n

n∑
j=1

yj


√
mn

.
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But the arithmetic-geometric mean inequality results in such an equality only when297

xi = 1,∀i, and yj = 1,∀j, showing that any convergent subsequence converges to 1298

and therefore that the sequence of scalars in vectors r and c also all converge to one.299

Next, for every non-zero element in A, 0 < bij ≤ min(
√

n
m ,
√

m
n ) ≤ 1, and we

can write (using the fact that
∑

i,j bij =
√
mn)(

d
(k)
i e

(k)
j

)bij
L
√
mn−bij ≥ s(k) ≥ s(1) > 0 ,

and thus

d
(k)
i e

(k)
j ≥

(
s(1)

L
√
mn−bij

) 1
bij

≥ s(1)

L
√
mn

= α > 0

(as 0 < bij ≤ min(
√

m
n ,
√

n
m ) ≤ 1). Therefore

∀k ≥ 1, ∀(i, j) ∈ P(A), a
(k)
ij = aij d

(k)
i e

(k)
j ≥ αaij > 0 ,

thus, ∀(i, j) ∈ P(A) the sequence of iterates (a
(k)
ij )k≥1 is isolated from zero, and

bounded above by 1 from (3.1). If we consider any convergent subsequence of (A(k))k

Â = lim
q

A(q) = lim
q
D(d(q))AD(e(q)) ,

it must have the same pattern as that of A, and be semi-doubly stochastic too, that
is

lim
q

A(q)A(q)T
1m = ÂÂT

1m

and
lim
q

A(q)TD(r(q))−1A(q)
1n = ÂT Â1n

respectively.300

From point (b) in Lemma 3.5, we know that Â is diagonally equivalent to A.
Consequently, any limit of the bounded sequence (A(k))k is a semi-doubly stochastic
matrix with the same pattern, and diagonally equivalent to A, all with the same row
sums equal to

√
n
m , and the same column sums equal to

√
m
n . These limits must then

all be equal, from point (a) in Lemma 3.5, showing that

Q = lim
k→+∞

A(k)

exists, is diagonally equivalent to A, and semi-doubly stochastic.301

To finish, we must now verify that the sequences of scaling factors (d(k))k and
(e(k))k also converge. Both sequences are bounded, otherwise there would exist a
subsequence of some scaling factor that diverges, say

d
(q)
i −→

q→+∞
+∞

(the same reasoning can be made with the column scaling factors). Then, from point302

(b) in Lemma 3.5, we know that both (d(q)/d
(q)
i )q and (e(q) × d

(q)
i )q have a limit, so303

that all e
(q)
j , j = 1, . . . , n, must tend to zero when q → +∞. This is in contradiction304

with the DPI property (3.3) of the SDS-scaling algorithm.305

Now, consider any two convergent subsequences of the bounded sequence306

(d(k), e(k))k. From point (a) in Lemma 3.5, their limits are essentially unique, in307

This manuscript is for review purposes only.
13

Introducing the class of semidoubly stochastic matrices: a novel scaling approach for rectangular matrices



the sense that they can differ only by scaling factors α and 1/α. Finally, the DPI308

property (3.3) requires that α = 1, so that all these limits are equal, which yields the309

required conclusion.310

Theorem 3.4 states that if A is semi-scalable, then the SDS-scaling algorithm311

converges to an SDS matrix with the same pattern as A. We can also show that312

when the SDS-scaling algorithm converges, its limit is an SDS matrix with the same313

pattern as the input matrix A (which implies that A is semi-scalable).314

Theorem 3.6. If a nonnegative matrix A ∈ Rm×n is connected and the SDS-315

scaling algorithm converges, in the sense that both row and column scaling factors316

have a limit (necessarily strictly positive), then the limit of the sequence of iterates317

(A(k))k≥0 is SDS and A is thus semi-scalable.318

Proof. Since the algorithm is DPI, existence of a limit precludes any scaling factor
converging to zero Again, without loss of generality, we assume that A is connected.
The fact that the SDS-scaling algorithm converges, in the sense that both row and
column scaling factors have a limit, means that

d(k) −→
k→+∞

d > 0

e(k) −→
k→+∞

e > 0

A(k) −→
k→+∞

Q = D(d)AD(e)
.

Thus
m∏
i=1

d
(k)
i −→

k→+∞

m∏
i=1

di > 0

and
n∏

j=1

e
(k)
j −→

k→+∞

n∏
j=1

ej > 0

both have a limit that is strictly positive, which implies

1 = lim
k→+∞

(
m∏
i=1

d
(k)
i

d
(k+1)
i

)
= lim

k→+∞

(
m∏
i=1

√
r
(k+1)
i

)
and

1 = lim
k→+∞

 n∏
j=1

e
(k)
j

e
(k+1)
j

 = lim
k→+∞

 n∏
j=1

√
c
(k+1)
j

 .

But ∀k ≥ 1, we have

m∏
i=1

√
r
(k+1)
i ≤

(
1

m

m∑
i=1

√
r
(k+1)
i

)m

≤ 1

and
n∏

j=1

√
c
(k+1)
j ≤

 1

n

n∑
j=1

√
c
(k+1)
j

n

≤ 1,

as already observed in the proof of Lemma 3.3. Therefore

1 = lim
k→+∞

(
m∏
i=1

√
r
(k+1)
i

)
= lim

k→+∞

(
1

m

m∑
i=1

√
r
(k+1)
i

)m
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and

1 = lim
k→+∞

 n∏
j=1

√
c
(k+1)
j

 = lim
k→+∞

 1

n

n∑
j=1

√
c
(k+1)
i

n

.

Finally, since the two sequences (r(k))k and (c(k))k are bounded, by considering
the limit (x,y) = lim

q→+∞
(r(q), c(q)) of any converging subsequence, we get

1 =
m∏
i=1

√
xi =

(
1

m

m∑
i=1

√
xi

)m

and

1 =
n∏

j=1

√
yj =

 1

n

n∑
j=1

√
yj

n

,

which is feasible if and only if xi = 1,∀i and yj = 1,∀j. This means that r(k) −→
k→+∞

1m

and c(k) −→
k→+∞

1n. We thus have that

1m = lim
k→+∞

r(k) = lim
k→+∞

A(k)A(k)T
1m = QQT

1m,

and

1n = lim
k→+∞

c(k) = lim
k→+∞

A(k)TD(r(k))−1A(k)
1n = QTD(1m)−1Q1n = QTQ1n.

Therefore, the matrix Q is SDS, and diagonally equivalent to A.319

Theorem 3.4 along with Theorem 3.6 establish a characterisation for the class of320

semi-scalable matrices, in the sense that, a matrix is semi-scalable if and only if the321

SDS-scaling algorithm converges. This is analogous to the results that can be found322

in [11, 13], in the case of scaling to prescribed row and column sums through the323

Iterative Scaling Procedure.324

4. Non Semi Scalable Matrices. In the previous section, we showed that,325

given a nonnegative matrix A ∈ Rm×n, the algorithm converges towards an SDS326

matrix diagonally equivalent to A if and only if ∃B ∈ Rm×n an SDS matrix such that327

P(B) = P(A), that is, if and only if A is semi-scalable (SS). The natural question328

that arises is what happens when A is not SS?329

Even in this case, extensive numerical experiments suggest that the algorithm
seems to always produce a sequence of matrices (A(k))k that converges to an SDS
matrix. However, the sequence of scaling factors (d(k), e(k))k diverges so that some
nonzero elements from A vanish in lim

k→+∞
A(k), as illustrated in Figure 2. On the left

panel we display the output of the sequence provided by the algorithm applied on

A =

1 1 1
0 0 1
0 0 1

, where we consider that convergence is reached when

max(∥A(k)A(k)T
1m − 1m∥∞, ∥A(k)TA(k)

1n − 1n∥∞) ≤ 10−6,

with row and column sums highlighted on the y-and x-axes, respectively. Matrix330

A is not SS (it violates the conditions from Lemma 2.8), hence the nonzero in blue331
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Fig. 2. Limits of the converging sequence produced by the SDS-scaling algorithm on non-SS
matrices, with row and column sums displayed on the y-and x-axes.

vanishes, thus producing two disjoint connected blocks, as can be seen from the values332

of row and column sums. We remark that the vanishing element does not lie on a333

diagonal, thus by Theorem 2.10, it must not appear in an SS matrix whose pattern is334

included in P(A). On the other hand, all the nonzeros in the matrix from the middle335

panel lie on a diagonal, yet the matrix is not SS and the two top right elements336

vanish in the converging sequence, which again confirms that Theorem 2.10 provides337

a necessary but not sufficient condition for a matrix to be SS. Finally, the matrix338

in the right panel highlights that the algorithm is able to find its way towards an SDS339

limit, even when the SS submatrix within the initially connected matrix has more340

than two connected blocks.341

This is in line with the Iterative Scaling Procedure (ISP) that scales matrices to342

prescribed row and column sums. Indeed, it is known that, when there exists a matrix343

B ∈ Rm×n whose row and column sums are as prescribed, and such that P(B) ⊂344

P(A), then ISP produces a sequence of matrices whose limit has the prescribed row345

and column sums; and that is the largest submatrix from A whose pattern equals346

the one of a matrix having row and column sums as prescribed—see for instance347

Theorem 1 in [11].348

Depending on the prescribed sums and the pattern of the input matrix, there is349

no guarantee that such a matrix exists, and thus that ISP will produce a converging350

sequence of matrices whose limit has row and column sums as prescribed. On the351

other hand, we have the guarantee that in any matrix with no zero row or column,352

there exists an SS submatrix, as proved below.353

Theorem 4.1. From any matrix A ∈ Rm×n with no zero row or zero column,354

one can extract a semi-scalable matrix. That is, there exists a semi-scalable matrix B355

of dimension m× n such that P(B) ⊂ P(A).356

Proof. Algorithm 4.1 applied to the matrixA returns a SS matrix whose pattern357

is included in P(A). Two things must be ensured to guarantee the correctness of358

Algorithm 4.1: that the recursive calls can be done, and that the algorithm terminates.359

For performing the recursive calls, we have to ensure that the subblocks A(I0, J0)360

and A(I0, J0) have no zero row and no zero column. Assume that A(I0, J0) has a zero361

row, say i∗. Thus, (I0 \ {i∗}, J0) ∈ Z. But then, |J0|/|I0 \ {i∗}| > |J0|/|I0|, which362

contradicts the maximality of ρ. Similarly if A(I0, J0) has an empty column j∗, by363

considering (I0, J0 ∪ {j∗}) ∈ Z, the maximality of ρ is contradicted.364

On the other hand, if A(I0, J0) has a zero column j∗, since A(I0, j
∗) is zero, it365
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Algorithm 4.1 SSExtract

Input: A matrix A ∈ Rm×n : m ≥ n, with no zero row or column.

Output: A SS matrix whose pattern is included in A.

1: Z = {(I, J) ⊂M ×N, |I| < m : A(I, J) = 0}
2: if Z = ∅ then
3: return A ▶ A is dense, thus it is SS.

4: (I0, J0)← an element from Z :
|J0|
|I0|

= max
(I,J)∈Z

|J |
|I|

= ρ

5: if ρ < n/m then

6: return A ▶ A satisfies Lemma 2.8, thus it is SS.

7: A(I0, J0)← 0

8: if |I0| ≥ |J0| then
9: A(I0, J0)←SSExtract(A(I0, J0))

10: else

11: A(I0, J0)←SSExtract(A(I0, J0)
T )T

12: if |I0| ≥ |J0| then
13: A(I0, J0)←SSExtract(A(I0, J0))

14: else

15: A(I0, J0)←SSExtract(A(I0, J0)
T )T

means that the column j∗ is a zero column for the whole matrix A, which contradicts366

the initial hypotesis. Similarly, if A(I0, J0), has a zero row, it will be a zero row for367

the whole matrix A.368

Hence we have the guarantee that the subblocks on which the recursive calls are369

performed have no zero row and no zero column. This condition ensures that the370

algorithm terminates. Since each recursive call is run on a subblock which is strictly371

smaller than the previous block, if the end conditions provided by line 2 or 5 are not372

met before, the algorithm will eventually meet a subblock whose minimum dimension373

is min(n,m) = 1. Since such a block cannot have zero row or column, it is necessarily374

dense. Hence condition from line 2 holds and the algorithm terminates.375

Theorem 4.1 fits with our experimental observations that SDS-scaling algorithm376

always produces a converging sequence of matrices whose limit is SDS. However, we377

are not able to predict which element(s) will vanish in the produced sequence. While378

it is known that when the prescribed row and column sums can be achieved, ISP379

produces a sequence that converges to the largest possible submatrix (that is, making380

as few nonzeros as possible vanish), this is not the case for the SDS-scaling algorithm.381

This is illustrated in Figure 3: when applied to the matrix A =

1 1 1
0 1 1
0 0 1

, the382

sequence of matrices produced by the algorithm converges to the identity matrix383

whilst B =
√
1/2 ×

1 1 0
0 0 1
0 0 1

 is an SDS matrix with P(B) ⊂ P(A), showing that384

the identity matrix is not the densest SS submatrix within A.385

Contrary to our convergence results from the previous section, a prediction cannot386

This manuscript is for review purposes only.
17

Introducing the class of semidoubly stochastic matrices: a novel scaling approach for rectangular matrices



1 1 1

1

1

1 ��

��

��

�

�

Fig. 3. Limits of the converging sequence from the SDS-scaling algorithm–See Figure 2.

be made from existing results on ISP, which rely on the knowledge of the target row387

and column sums. One purpose of the SDS-scaling algorithm—and more generally,388

of introducing the class of SDS matrices—is to avoid the need to prescribe row and389

column sums of the scaled matrix, which obviously implies that we do not know them390

a priori. Characterising the pattern of the limit of the converging sequence produced391

by the SDS-scaling algorithm will be the focus of further work.392

5. Conclusion. In this work, we have defined a new class of matrices, called393

semi-doubly stochastic (SDS), which are nonnegative m × n matrices whose normal394

equations are doubly stochastic. For matrices whose underlying bipartite graph is395

connected, we have shown that SDS matrices are exactly those having constant row396

and column sums equal to
√

n/m and
√
m/n. In the general case, SDS matrices397

are exactly those having piecewise constant row and column sums, with pieces corre-398

sponding to the underlying connected components (of size mi × ni) in their bipartite399

graph, such that row and column sums are equal to
√
ni/mi and

√
mi/ni in each400

component.401

From this class of SDS matrices, we have derived a class of matrices that can402

be scaled to SDS, that is, that can be diagonally balanced to an SDS matrix. Such403

matrices are labelled semi scalable (SS). An algorithm to scale SS matrices to SDS404

has been derived, and its convergence demonstrated. Finally, some experimental405

observations have been made about the behaviour of the algorithm when the matrix is406

not SS. Of particular interest is the fact that the algorithm still produces a sequence of407

matrices whose limit is SDS, but contrary to classic ISP, this limit may not correspond408

to the densest SS submatrix with nonzeros in the input matrix’s pattern. The next409

step to this work will then be to characterise the elements that vanish in the algorithm.410

Matrices which are scalable but not semi-scalable have a block structure that411

should be exploitable in a manner used in [6] to uncover hidden structure in rectan-412

gular matrices. For large scale applications, it may be necessary to accelerate the413

algorithm presented in Section 3, and a Newton-based method akin to that in [3] may414

be possible.415
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