
 Abstract— This letter reports a demonstration of a 2×2 multi-
ple-input multiple-output (MIMO) indoor visible-light commu-
nication (VLC) system using a novel fluorescent optical concen-
trator based receiver. This potentially allows a high degree of 
spatial multiplexing to be achieved using a simple receiver struc-
ture that can have a wide field-of-view (FOV). Details of a 
two-channel MIMO VLC system that operates at 32 Mbps with a 
receiver acceptance angle of ±22.5 degrees are given, and future 
directions discussed.  
 

Index Terms— FOV, MIMO, VLC, LED, Fluorescent Con-
centrator, Visible Light Communications 
 

I. INTRODUCTION 

Visible Light Communication (VLC) is an emerging tech-
nology that combines efficient illumination with wireless 
communications. VLC enables access to hundreds of THz of 
unlicensed spectrum using low cost components [1], offering 
potential solution to the radio frequency (RF) spectrum crunch 
problem. However, the data rate performance of single channel 
VLC is limited [2]. 

In order to mitigate this problem, Multiple-input multi-
ple-output (MIMO) techniques have been studied and imple-
mented in VLC [2]–[7]. MIMO VLC is also attractive because 
in typical lighting applications a number of LEDs are used to 
achieve the required illumination level [8].   

An ideal MIMO VLC receiver has a wide field-of-view 
(FOV) and a high optical gain. Non-imaging MIMO receivers 
can have wide FOV [9], but they have a relative small input 
apertures, which limits their optical gain. In contrast imaging 
MIMO receivers employ a lens which increases the optical gain 
of the receiver but limits its FOV [7].  
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The FOV of an imaging MIMO VLC receiver can be in-
creased using an architecture, such as the one shown in Fig. 1.a, 
which includes an array of photo-detectors (PDs). However, 
this array  increases the system complexity and cost [4], [7]. 
These problems can be avoided by using a large PD in the 
receiver. However, larger PDs have smaller bandwidths, which 
is not desirable.  

The Fluorescent Concentrator (FC) allows the normal 
étendue constraints of conventional concentrating optics to be 
broken and offers a combination of a wide FOV and a high gain 
[10]–[13]. This FC can be made from inexpensive fluorescent 
PMMA that is widely available. The combination of an imag-
ing lens with a FC potentially enables a MIMO VLC receiver to 
combine the high optical gain advantage of imaging MIMO 
with the wide FOV advantage of non-imaging MIMO without 
using a large number of PDs in the receiver, as shown in Fig. 
1.b.  

 

 
     (a)             (b) 

 
Fig. 1. 2-channel imaging MIMO receivers: (a) Conventional design using an 

array of PDs to increase FOV (b) Proposed FC-based design. Note that the 
figure shows a one dimensional design where beams arrive at different angles 
in one dimension only. For the two dimensional case a 2D detector array is used 
in (a) and multiple PDs are placed around the edge of a 2D concentrator in (b) 

 
In this letter, the feasibility of a MIMO VLC system using a 

fluorescent concentrator (FC-MIMO) is investigated. Section II 
describes the working principles of the concentrator, together 
with the system model and parameters of the FC-MIMO. In 
section III, a proof-of-concept two channel FC-MIMO system, 
with a wide acceptance angle, is described and characterised. 
Lastly, section IV draws conclusions and details future work. 

II. SYSTEM DESIGN 

A. Fluorescent Concentrator (FC) 

Fig. 2 shows a cross section of a FC. Light enters the FC and 
is absorbed by a fluorophore (a). This converts the incoming 
radiation to a longer wavelength emission. This light can either 
be re-absorbed (b), escape the FC (c), or retained by total in-
ternal reflection until it reaches the edge where a PD is located 
(d). 
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Fig. 2. A schematic of the physical processes in a fluorescent concentrator 
 
A high concentration of fluorophore is desirable to absorb 

the incident light, but it can also lead to re-absorption (b), thus 
limiting the amount of emitted light that can reach the edge of 
the structure. However, a controlled level of re-absorption can 
be utilised to control the proportion of light reaching each edge 
of the FC. If the transmitters are imaged onto the FC the dif-
ference between signals received by the two PDs allows MIMO 
operation. 

B. MIMO Fluorescent Concentrator demonstration 

 

 
 

Fig. 3. Schematic of the FC-MIMO system 

 
Fig. 3 shows a schematic diagram of a two channel MIMO 

system using the FC. Three modes of operation can be inves-
tigated. 
i) A single input single output (SISO) mode, where each 

channel is individually operated. 
ii) Ganging mode, where both LEDs transmit the same data, 

thus increasing transmitted power compared with a single 
device 

iii) MIMO (or Spatial Multiplexing (SM) [7]) mode, where 
each LED transmits an independent data stream simulta-
neously. 

The ganging mode offers higher transmit power compared to 
SISO and relatively low complexity in the receiver, but does 
not offer a linear increase in data rate with the number of 
transmitters. On the other hand, by transmitting independent 
and separately encoded data signals from each of the multiple 
LED sources the MIMO mode potentially offers a linear in-
crement in data rate with the number of transmitters.  

In a typical MIMO system, there are q receivers which re-
ceive different combinations of the signals from p transmitters. 
Mathematically, MIMO transmission can be modelled as 
 
ࢅ  ൌ H	ࢄ ൅  (1)   ࡺ
 
where ࢅ is a q-by-1 received signal vector; ࡴ is the q-by-p 
channel matrix; ࢄ is a p-by-1 transmitted signal vector; and ࡺ 
is the q-by-1 noise vector.  

The MIMO channel matrix	ࡴ can be determined from the 
results obtained from transmitting MIMO training data and 
measuring the received signal ݕ௜௝ from the ith receiver and the 
jth transmitter where	݅ ∈ ሼ1, … , ݆	ሽ and݌ ∈ ሼ1, … , -ሽ. Each eleݍ
ment ݄௜௝ of the channel matrix	ࡴ is then obtained by 
 

 ݄௜௝ ൌ ටݕ௜௝
ଶ െ ௜ߪ

ଶ 
 

(2) 

 
where	ߪ௜

ଶ is the noise variance corresponding to the ith receiver , 
estimated from the received noise	ݕ௜ when no signal is  trans-
mitted [4]. Using this measured channel information, the 
crosstalk penalty can also be calculated [14].  

The estimated signal, ࢄഥ can then be retrieved by multiplying 
the received signal vector with a pseudo-inverse channel ma-
trix	ࡳ, 

 
ഥࢄ  ൌ G	(3)  ࢅ 
 
where ࡳ can be derived from the	ࡴ matrix using zero-forcing 
(ZF) or Minimum Mean Square Error (MMSE) algorithms 
[14]. Once the estimates of the transmitted signal are obtained 
these are low pass filtered and equalized if appropriate. The 
received data streams are then compared with the transmitted 
data streams to calculate the Bit Error Rate (BER). 

III. EXPERIMENTAL PROOF-OF-CONCEPT 

A. Characterisation of FC-MIMO system 

The FC was fabricated using a 100 μm thin fluorescent layer 
made from Coumarin-6 (Cm6) dye embedded in UV curable 
epoxy NOA68 (n = 1.54). Cm6 is selected as the fluorophore 
dye because of its high quantum yield, absorption peaking in 
the blue region of the spectrum, and short fluorescence lifetime 
[11]. The Cm6 layer was sandwiched between two microscope 
slides (25 mm × 75 mm × 1 mm, n = 1.52). 

The characterisation of the MIMO FC receiver is carried out 
by modulating each LED in the transmitter with a low fre-
quency sinusoid and focusing the beams from the two LEDs 
into different spots on the FC. The resulting signals from the 
two PDs are amplified and the relative voltages recorded on an 
oscilloscope. This process is repeated for different illuminating 
spot diameters and different positions along the dotted line 
shown in Fig. 4 (a).  

Fig 4 (b) shows the resulting voltages. Examining the blue 
line, it can be seen that there is an exponential decay in the 
receiver output voltage as the illuminating spot moves away 
from the corresponding detector as would be expected. The 
drop in voltage for spots close to the detector is due to the 
illumination missing the concentrator edge. 

Using the data from Fig. 4.b, a 2-by-2 ࡴ matrix for a par-
ticular spot size and distance from the PD can be constructed. 
This allows the crosstalk penalty, which is the increase in SNR 
required by the MIMO to achieve the same target BER as per-
fectly separated channels, to be calculated [12]. 

PD PD
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Fig. 4.  FC-MIMO channel characterisation; a) incoming light is focused on the 
position along the black dashed line; b) recorded and normalised peak-to-peak 

voltage (Vpp) from the PDs to construct H matrix. 

 
Typical cases of the FC-MIMO are considered in this ex-

periment, where two spots of the same size, positioned sym-
metrically, either side of the centre position (marked in Fig 4.a) 
and lying along the dotted line. The contours of calculated 
crosstalk penalty for these cases with various spot separation 
and spot diameters are shown Fig. 5. 

 
 

Fig. 5. Calculated crosstalk penalty (dB) from constructed H matrix 

 
 The re-absorption process limits the amount of emitted light 
that can reach the edge of the FC. Consequently, the crosstalk 
penalty decreases when spots of particular size are further apart. 
However, with further separation, the light from the spot can 
fall outside of the FC surface which in turn reduces the signal, 
thus increasing the penalty. Consequently, as shown in Fig. 5, 

for a particular spot size, there is an optimum separation dis-
tance between two spots which minimizes the crosstalk penalty. 

B. Communications Experiment 

The experimental setup for 2-channel communications ex-
periments is shown in Fig. 6. Currently, the proposed config-
uration can only support two PDs at the receiver. At the 
transmitter two Lumileds LXHL-MW1B White LEDs with 2.5 
MHz of bandwidth were used. Each of the two resulting 
channels was driven by a pseudo random binary sequence with 
luminous flux of 20 lm using a Keysight 81150A arbitrary 
waveform generator. The two LED transmitters are separated 
by 30 cm and the distance from the centre point between two 
LED transmitters to the receiver is also 30 cm, resulting in 
incident angles of approximately ±22.5 degrees. 

At the receiver, a Comar Optics 61FQ63 Fresnel lens was 
used to focus the incoming light from each transmitter to sep-
arate spots on the FC which had a Hamamatsu S2551 Si Pho-
todiode are coupled each to its left and right edges. The two 
spots are 20 mm in diameter and separated by 60 mm distance, 
which corresponds to crosstalk penalty of approximately 2.5 dB 
as shown in Fig. 5.  
 

 
 

Fig. 6. Experimental setup of FC-MIMO 

 
The received signals from both PDs were then captured 

simultaneously using a Keysight MSO6104A Oscilloscope, 
and further signal processing was performed offline. The re-
ceived data sequences were then compared with the transmitted 
sequences to determine the bit error rate (BER). 

The measured BERs of ganging and MIMO modes against 
data rate using on-off keying (OOK) modulation scheme are 
shown in Fig. 7. When the forward error correction (FEC) 
threshold bit error rate (BER) of 3.8 ൈ 10ିଷ is considered [15], 
the ganging and MIMO modes achieve data rates of 26 Mbps 
and 32 Mbps, respectively. Configurations using the same 
individual channel power level with only 1 channel is active 
using either PD-1 or PD-2 (SISO mode) show almost identical 
data rates of 19 Mbps at the same reference BER. Summing the 
results of the two SISO mode channels suggest that the maxi-
mum data rate of the MIMO mode is 38 Mbps when no cross-
talk is present. The ganging experiment uses the same data on 
both channels, showing that MIMO offers a significant increase 
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in data rate for over a single channel data transmission operated 
at the same power levels. Although crosstalk between channels 
means that the gain in data rate of the MIMO mode is less than 
the factor of 2 that would be achieved in an ideal 2×2 MIMO 
system, these results show that MIMO mode still has signifi-
cant benefits. 

 
 

Fig. 7. Data rate against the BER for ganging and MIMO modes; the results 
with only 1 channel active (SISO) is shown for reference       

 

IV. CONCLUSION AND FUTURE WORK 

A novel receiver design for MIMO VLC using an imaging 
lens and fluorescent concentrator (FC-MIMO) has been pro-
posed. This receiver design allows a wide acceptance angle 
using substantially fewer photo-detectors than a conventional 
imaging MIMO VLC receiver. A proof of concept system with 
an acceptance angle of ±22.5 degrees was implemented using 
only two PDs at the receiver and an aggregate data rate of 
32 Mbps was achieved.  

The advantage of the FC-MIMO approach is that the number 
of detectors required at the receiver scales with the number of 
MIMO channels that are being transmitted, and that a wide 
FOV (which requires a physically large detector for practical 
cases) can be achieved. The alternative, using a detector array, 
offers potentially higher performance (as there is no crosstalk 
between each detector in the array). However, if two signals fall 
entirely on one detector it is not possible to distinguish between 
them in the MIMO decoding process. This, together with the 
requirement for small detectors (to enable high bandwidth) and 
wide FOV leads to arrays with large numbers of detectors, most 
of which are unused for any particular configuration. The 
trade-off is therefore between increased crosstalk for the 
FC-MIMO approach, but a much simpler scalable structure 
compared with the array approach. Understanding this trade-off 
is an area of future work.  

Future work will focus on understanding this trade-off, ma-
terial optimisation, and the implementation of receivers able to 
support greater numbers of spatial channels. 
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