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S U M M A R Y 

Microseismic monitoring has been used in geo-energy related activities, such as shale-gas 
exploitation, mining, deep geothermal exploitation, geotechnical and structural engineering, 
for detecting and locating fractures, rock failures and micro-earthquakes. The success of 
microseismic monitoring depends on reliable detection and location of the recorded micro- 
seismicity. Multichannel coherence migration (MCM) is a detection and location waveform 

migration-based approach which does not require phase picking, identification and association 

and performs well on noisy data. Its caveat is a high computational cost, which impedes its 
application of MCM on large data sets or for real-time monitoring. To address this issue, we 
propose an improved approach, the multichannel coherence mig ration g rid search (MCMgs), 
by introducing an adaptive grid optimization technique. Based on results from synthetic and 

real data, we show that MCMgs reduces the computation time up to 64 times. In addition, 
MCMgs generates multiple maximum coherence values with various grid sizes instead of a 
single (maximum) coherence value that links to a single gridpoint and size, thus resulting in 

more accurate locations. Our simulation results on different deployment geometries demon- 
strate that MCMgs is ef fecti ve e ven with a small number of recordings available—a minimum 

of seven. We conduct a sensitivity analysis to assess how the detectability of events is affected 

by the spatial arrangement of the deployed monitoring array. If a limited number of seismome- 
ters are available for deployment, our analysis favours a patch array deployment geometry. 
We show that 12 seismometers deployed at a patch array geometry can have similar detection 

and localization capability as a large rectangular array of more than 100 seismometers but at 
a much lower computational and deployment cost. 

Key words: Persistence, memory, correlations, clustering; Time-series analysis; Computa- 
tional seismology; Earthquake source observations.. 
1  I N T RO D U C T I O N  

Microseismic monitoring technology used for passive seismic mon- 
itoring of subsurface processes has evolved rapidly in recent years 
(Li et al. 2020a , b ; Shi et al. 2022 ; Zhu et al. 2022 ). Limita- 
tions and challenges still exist ho wever , especially concerning near 
real-time results from analysis of microseismicity recordings with 
low signal-to-noise ratio (SNR). Microseismic monitoring is com- 
monly performed in noisy environments, for example, near pumps 
or drilling equipment, during hydraulic stimulation, near heavy traf- 
fic and in other environments with high levels of anthropogenic 
noise. 

Man y dif ferent approaches have been proposed for seismic event 
localization, such as the linearized traveltime inversion (Geiger 
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1912 ), traveltime-based nonlinear global grid search and double- 
dif ference relati ve location method (Li et al. 2020 a). For the non- 
linear global grid search approach, different global search methods 
hav e been dev eloped, including genetic algorithms (Kennett et al. 
1992 ) and Monte Carlo (Sambridge et al. 1992 ), to search over the 
target space. These methods, known as picking or ray-based meth- 
ods, use phase arri v al times and locate seismic events by searching 
for the minimum misfit between the theoretical and observed trav- 
eltimes through either a linearized trav eltime inv ersion or a grid 
search (Li et al. 2020 a). In the case of weak microseismic events 
or short source-to-receiver distances (a few hundred metres to 1–
2 km), picking phase arri v al times is challenging as the SNR is low 

and/or P and S phases are not well separated. In such instances, 
only one phase can be reliably picked but with uncertainties both 
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n terms of timing (the onset is often emergent rather than impulse)
nd phase identification (Diehl et al. 2012 ). Hypocentral location
esults based on a single phase have large location uncertainties, es-
ecially concerning the hypocentral depth. A methodology that does
ot depend on phase picking for the location process overcomes this
roblem. 

Waveform-based methods such as time reverse imaging and full
av eform inv ersion (FWI), satisfy this constraint as they calculate

he source location through migration and stacking processes similar
o the methods used in active seismic monitoring (Li et al. 2020 a).
o be ef fecti v e, the y all require one or more of the following:

ong computation times, availability of large number of seismic
ecordings per seismic event, accurate velocity models (Larmat
t al. 1992 ; Steiner et al. ; Zhu 2014 ; Shi et al. 2019a ; Li et al.
020 a). All the above render their application less user friendly, and
rohibiting for real-time projects. 

Migration-based approaches on the other hand, are typical
aveform-based methods that focus on reconstructing the seis-
ic source as a discrete gridpoint based on waveform traveltimes

Grigoli et al. 2014 ). The approach of Multichannel coherence mi-
ration (MCM, Shi et al. 2019a , b ), instead of directly migrating
he waveforms, stacks the coherence of waveforms and associates
he source location to the point with the maximum coherence value
Shi et al. 2019a , b ; Li et al. 2020 a). It calculates the coherences
etw een wa veforms from different pairs of stations. MCM can be
ccurate even for data with low SNR and does not require a detailed
1-D) velocity model, a fav ourab le attribute for the case of shallow
icroseismic events. Because MCM stacks waveform coherence

rom station pairs whose number is proportional to the square of
vailable stations, the more recordings available, the better the esti-
ated hypocentral location. Ho wever , to achieve a location accuracy

f the order of tens of metres or less, a dense monitoring network
s necessary, which results in additional computation time. Despite
his, the algorithm is still more computationally efficient than the
raditional FWI location methods but less computationally efficient
rom location algorithms that are based on phase picking (Shi et al.
019a , b ; Li et al. 2020 a). 

In this paper, we address the issue of computational complex-
ty. We name the proposed improv ed v ersion of the MCM algo-
ithm multichannel coherence mig ration g rid search (MCMgs). We
se synthetic data generated using the numerical modelling code
AVE3D (Hildyard 2007 ) which can simulate a more realistic
aveform in cracked media to test and validate the ef fecti veness
f MCMgs. We then demonstrate the application of MCMgs on real
icroseismic events recorded during the 2021 M L 6.3 Elassona–
arisa earthquake sequence. 

 M E T H O D O L O G Y  

hi et al. ( 2019b ) showed that the computation time required by
he MCM algorithm increases linearly with the number of grid-
oints. As a result, the larger the considered volume and/or the
maller the spatial interval between the gridpoints, the more time is
eeded to locate a seismic event. Near-real-time monitoring cannot
e combined with fine grid spacing due to increased computation
imes, and better resolution for the seismic event locations requires
ost-processing. Other factors affecting the computation time are:
he number of processor cores ( N c ), the number of origin times re-
ated to the number of sampling points in the chosen window frame
nd the full length of the waveform ( N t ), the number of recording
tations ( N ), the number of imaging/gridpoints ( N s ) based on the
rid and a coefficient related to computer architecture k through the
inear relationship (Shi et al. 2019b ) : 

 = k × N s × N t × N × ( N − 1) /N c . (1) 

Assuming that the same processor is used then N c and k are
onstant. For a fixed waveform length N t is constant, and for the
ame network deployment topology the number of stations does not
hange. The computation time is then proportional to the number
f imaging points N S in the grid. We propose to use the collapsing
rid approach to dynamically reduce the number of gridpoints dur-
ng the migration location process the number of gridpoints, and
hus reducing the computation time of the MCM algorithm with-
ut affecting its performance as it concerns the resolution of the
ypocentral location. 

.1 The collapsing grid as part of the MCM localization 

rocess 

ocation methodologies have successfully incorporated grid search
pproaches with collapsing grid iterations (Nelson et al. 1990 ; Lo-
ax et al. 2001 ; Wang et al. 2016 ). Such approaches identify the

ridpoint at which the difference between the observed and calcu-
ated traveltimes is minimized and the origin time that better fits
o that location in the grid is calculated. At the next step, the grid
earch space is changed to a finer grid (a smaller spatial interval be-
ween gridpoints) around that point and a new best-fitting location
s calculated. 

In order to reduce the computation time required by MCM to
alculate a hypocentral location at a specific spatial resolution, we
plit the process into several iterations starting with a large search
pace and a large spatial interval (distance between consecutive
ridpoints). Based on the result of the initial iteration, the search
pace becomes gradually smaller and the resolution is increased by
ecreasing the spatial interval between the gridpoints. 

To define the search area for the first iteration, we transform the
 aveforms recorded b y each seismometer (station) to the time–

requency domain. Based on the maxima of the dominant frequen-
ies on the power spectrogram we define an approximate time for
he P- and S -wave arrivals at each station. The algorithm then cal-
ulates the time differences between the stations with the earliest
nd latest arri v al times and compares these times with the theoret-
cal traveltimes from each gridpoint. The minimum and maximum
oordinates of these gridpoints define the search volume for the first
teration. 

At a next step, we set a maximum time for each iteration. Since
he number of stations, the processor cores and the number of origin
imes are known, we can estimate the number of gridpoints N s from
q. (1). The initial spatial interval between gridpoints � x along each
f the three directions can then be defined as: 

x 
1 
3 = V 

N s − 3 
, (2) 

here V is the initial search volume. Then, we execute the first
teration. For a cubic search volume, there is a maximum location
rror linked to the grid element size and is equal to: 

D = 

�x 

2 

√ 

3 , (3) 

here D is the distance between the centre of gravity of the cubic
rid element and each of the nodes, and � x is the spatial interval
etween gridpoints (nodes) in any of the three directions. 
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The grid should collapse around the location calculated in the 
first iteration. Ho wever , this is not without implications. By incor- 
porating the collapsing grid approach within the MCM w orkflo w 

we violate one of the basic criteria of MCM; the distance between 
consecutive gridpoints cannot be larger than half the wavelength 
of the seismic wave (Shi et al. 2019a ). It should be noted that this 
limitation is not referring to solving the wave equation numerically 
and avoiding numerical dispersion of the synthetic waveforms. This 
is a limitation to ensure correct execution of cross-correlation of the 
waveforms in space and time. It also ensures that if the hypocentral 
location changes as much as the associated spatial error (see eq. 3), 
this new hypocentral location is still included within the search vol- 
ume of the new iteration. From preliminary analysis, we find that 
violating the distance criterion results in multiple local maxima, 
that is, neighbouring gridpoints with similar high coherence val- 
ues, instead of a distinct single point with a maximum coherence 
value. These points lie within an average distance three times the 
D v alue gi ven b y eq. ( 3 ). Hence, an y of these gridpoints could be
a potential hypocentral location. MCM is programmed to choose 
the point with the maximum coherence value, which does not nec- 
essarily consist the most correct or accurate solution (hypocentral 
location). To overcome this, we propose an alternative to the tradi- 
tional collapsing grid approach. Our alternative approach is based 
on the probability density function (PDF, Lomax et al. 2001 ). Once 
we obtain an initial hypocentral location from the first iteration, 
that location is set as Point Zero. Next, we ‘filter’ the calculated 
locations (gridpoints) and the corresponding origin times based on 
their coherence v alues: An y location and origin time with coherence 
above the 0.99 quantile of the total combined number of locations 
and origin times, are stored to be used in the PDF calculation. For 
these locations, we calculate the distance from Point Zero along 
the north, east and vertical (depth) (N, E, D) directions. Next, we 
calculate the PDF for each of the above north, east and depth values 

f ( x | μ, σ ) = 

1 

σ
√ 

2 π
e 

−( x−μ) 2

2 σ2 , x ∈ R, (4) 

where x is the distance of the point of local maximum coherence 
from Point Zero along each direction separately (either N, E or D), 
μ is the mean value of the distances of local maxima points from 

Point Zero and σ is the standard deviation. The maximum values 
in each direction define the dimensions of the new search space 
to which the grid will collapse. The next iteration starts with a 
reduced spatial interval between the gridpoints related to the new 

space and the maximum iteration time we have defined originally. 
This process is repeated several times until we reach the desired 
resolution. Using the PDF to calculate the grid search volume for 
each next iteration improves the final location error of MCMgs, 
compared to the first iteration location error, as the grid collapses. 
The entire w orkflo w of the proposed MCMgs is summarized in 
F ig. 1 (a). F ig. 1 (b) shows an example of the grid collapsing around 
the area with higher coherences. 

3  DATA  

For this study, we use synthetic data which we create using nu- 
merical modelling and a synthetic source of two Ricker wavelets 
with opposite polarity and the same amplitude, rise time and dom- 
inant frequency of 15 Hz (see also Fig. A1 in Supporting Informa- 
tion for a full description). All models are homogeneous isotropic 
cuboids, with density 2740 kg m 

−3 and wave velocities of 6020 and 
3254 m s −1 for P and S w aves, respecti vel y. The boundary condi- 
tions are viscous at all sides of the model (apart from the top surface 
that is set as a free surface) and absorb most energy of the wave. 
Some of the energy of the wave is still reflected back. We set the 
model runtime to less than the time needed for the reflections to 
reach the stations and as a result, boundary reflections are not in- 
cluded in the generated waveforms. We use three groups of models. 
Group 1 consists of 20 models with epicentral locations inside the 
station array grid. The dimensions of Group 1 models are 5 km ×
5 km × 2 km (N, E, D; Fig. 2 a). We position the seismic source 
at four different depths; 1200, 900, 600 and 300 m from the free 
surface. For each depth, we try five different epicentral locations 
inside the station array grid (see Fig. 2 a, red circles). Group 2 is 
the same as Group 1, but with the epicentral locations outside the 
array grid, considering again four different depths (1200, 900, 600 
and 300 m) and five epicentral locations for each depth. The dimen- 
sions of this set of models are 5 km × 7.5 km × 2 km (N, E, D) 
(Fig. 2 b). Group 3 makes use of a more realistic seismic source. For 
this group, we created a slipping fracture model. The dimensions 
of the model are 4.5 km × 4.5 km × 4 km and its material proper- 
ties are the same as for the previous models. We simulate a mining 
excavation near a pre-existing fracture, a case frequently faced by 
mining/tunnel engineers and geologists (Fig. 2 c). We initially solve 
a static model with defined principal stresses close to failure based 
on Mohr–Coulomb criteria. As the excavation advances and meets 
the condition for failure, the model is solved in dynamic mode and 
the fracture slips creating a seismic event. A detailed description of 
this model is provided in Hildyard et al. ( 1995 ) and Napier et al. 
( 1997 ). It should be noted that the seismic source is in this case not a 
single point, as in the models in Groups 1 and 2, but a surface where 
the rupture initiates. The initial rupture has an ellipsoidal shape with 
major and minor axes equal to 75 and 6 m, respecti vel y. We test four 
models in Group 3, the only change between them being the depth 
of the initial rupture (3500, 2500, 2000 and 1000 m). The models 
of all three groups use nine monitoring stations (seismometers) set 
at a grid array geometry on the top surface of each model (as shown 
in Fig. 2 ), recording the velocity history in three dimensions. The 
distance between consecutive stations is 1.8 km (Fig. 2 ). To the syn- 
thetic velocity histories of all 44 models (20 models from Group 1, 
20 from Group 2 and 4 from Group 3), we add normally distributed 
random noise. Two dif ferent SNR v alues were tested for each of 
the 44 models for the three groups: SNR = 20 (practically almost 
noise-free) and SNR = 1. The SNR was calculated as: 

SNR = 

(
RMS ( A signal ) 

RMS ( A noise ) 

)2

, (5) 

where RMS stands for root mean square and A is the amplitude of 
the seismic waveform. Fig. 3 (a) shows examples of the waveforms 
generated by models from Groups 1 and 3 to which w e ha ve added 
noise such that SNR = 1 and 20. For our analyses, we used an office 
workstation with 4 cores (8 threads) and 32 GB of RAM which 
gi ves approximatel y 4 GB on each core. Due to access issues to 
the office workstation, the models of Groups 2 and 3 were run on a 
personal laptop with 2 threads and 8 GB of RAM. 

4  P E R F O R M A N C E  O F  M C M G S  W I T H  

S Y N T H E T I C  DATA  

4.1 Reducing computation time 

For the models in Groups 1 and 2, the search space for the first 
iteration covered the full dimensions of the model used for the 
creation of the synthetic data. To comply with the distance criterion 
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Figure 1. (a) MCMgs w orkflo w. (b) Graphical explanation of migration and collapsing grid method in MCMgs. Left-hand column shows the epicentral plane 
(northeast), the right-hand column is a cross-section along the north direction (depth profile). The event is located at 4 km north 2 km east and 1 km depth. Top 
ro w sho ws the initial focused area (Iteration 1). The middle row is Iteration 2 based on the initial location. Bottom row is Iteration 3 and final computed event 
location. The colour scale shows the coherence, linearly normalized between 0 and 1. A larger version of this figure is provided in Supporting Information 
(Fig. A2). 

Figure 2. Plan view of models in (a) Group 1, (b) Group 2 and (c) Group 3. The interval between stations (blue triangles) is 1.8 km. We test 5 different 
epicentral locations (red ellipses) (a) inside the grid array and (b) outside the grid array. Group 3 models also have nine stations (black triangles), a vertical 
plane fracture (yellow line) and an excavation (tunnel whose longitudinal axis is shown as the blue line). The trace of the rupture on the XY horizontal plane 
does not change for the models of Group 3, only its depth. 

m  

o  

t  

t  

w  

l  

M  

(
 

l  

(  

a  

o  

1  

3  

t  

m  

t  

6  

3  

a  

e  

w  

t  

T  

t  

p  

s  

a  

g  

N
 

m  

2  

F  

l
L  

m  

e  

v  

T  

e  

c  

e  

l  

a  

a  

a  

g  

(  
entioned pre viousl y, the interv al between gridpoints should be for
ur models less than 108 m which served as our spatial resolution
arget. To reach this resolution, we split the localization process into
hree Iterations starting with a coarse grid and collapsing to grids
ith smaller spatial intervals each time. Then, we compare both the

ocation results and the computation time with results obtained with
CM from a single iteration that uses the smallest spatial interval

100 m). 
Tables 1 –3 show the computation time and median values of the

ocation errors obtained when applying MCMgs over three iterations
with the grid becoming finer as the number of iterations increases),
gainst a single iteration with a fine grid since start for the models
f all groups. These results are based on synthetic data with SNR =
 and 9 stations. For Group 1, the total computation time (3 × 10s =
0 s) was reduced up to 64 times when using the MCMgs compared
o the initial version of MCM (see Table 1 ). This stands for Group 2
odels too, while for Group 3, the difference in total computation

imes between MCMgs and MCM is slightly smaller (MCMgs is
2 times faster than MCM). Computation times for Groups 2 and
 are very different compared to Group 1 because we had to use
 different computer with lower specifications. Nevertheless, it is
vident that the localization process is accelerated the same amount
hen using MCMgs compared to MCM irrespective of the compu-

ational strength of the computer used. The computation times in
ables 1–3 include the time required for the computations of the
raveltimes table in every iteration; the traveltimes table is recom-
uted every time the grid gets finer. The computation times are the
ame for every iteration in Group 1 and respecti vel y, in Groups 2
nd 3, because as explained pre viousl y, we define the number of
ridpoints on each iteration and as described in above in eq. (1) the
 s controls the computation time. 
Fig. 4 (a) presents the summary statistics (as box plots) for the
odels of Group 1 (seismic source within the array grid) and Group
 (seismic source outside the array grid) for both SNR = 1 and 20. In
ig. 4 (c) are also shown the summary statistics for the results of the

ocalization of the 31 real seismic events from the 2021 Elassona–
arisa seismic sequence. No summary statistics are provided for the
odels of Group 3 because these were only four and as such not

nough for the statistical quantities to be meaningful. The median
alues of the location errors for Group 3 are provided in Table 3 .
hey follow the same pattern as Groups 1 and 2. The location
rror is larger when the seismic source is outside the array grid
ompared to that when the source is within the array grid. This is
xpected due to poorer azimuthal coverage for Group 2 models. The
ocation error has larger values for the models of Group 3 that have
 more complicated source compared to that of models in Groups 1
nd 2, but still acceptable and within the same order of magnitude
s the error in the models of Group 2 (source outside the array
rid). Overall, the median value of the errors both in the horizontal
epicentres) and in the vertical (depth) direction decrease with the

art/ggad465_f1.eps
art/ggad465_f2.eps
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Figure 3. Representative synthetic waveforms derived using a double Ricker wavelet source from models of Group 1 with (a) with SNR = 1 and (b) SNR = 

20. And representative synthetic waveforms from the models of Group 3 with (c) SNR = 1 and (d) SNR = 20.

Figure 4. Box plots of errors in epicentral location and depth for (a) the models of Group 1, (b) the models of Group 2 and (c) the 31 real seismic events from 

the 2021 Elassona–Larisa sequence. 
number of iterations for Groups 1 and 2 and for the real data from 

Larisa. In some cases, it appears that results, when waveforms of 
SNR = 20 are used, have larger errors compared to those obtained 
from waveforms of SNR = 1. For example, in Iteration 3 for Group 
1 models and Iteration 2 for Group 2 models (see Figs 4 a and b). At 
first glance, this appears to be a paradox and une xpected. Howev er, 

art/ggad465_f3.eps
art/ggad465_f4.eps
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Table 1. Summary statistics of location errors and computation times for MCMgs and MCM for SNR = 1 and nine stations for the models of Group 1 (Fig. 2 a). 

Distance between 
gridpoints (m) 

Search volume 
(km 

3 ) 
Median epicentral location 

error (m) 
Median depth location 

error (m) 
Computation 

time (s) 

First iteration 500 108 223 200 10 
Second iteration 200 1.5 100 100 10 
Third iteration 100 0.13 0 55 10 
MCM (single pass) 100 108 0 55 1920 

Table 2. Summary statistics of location errors and computation times for MCMgs and MCM for SNR = 1 and nine stations for the models of Group 2 (Fig. 2 b). 

Distance between 
gridpoints (m) 

Search volume 
(km 

3 ) 
Median epicentral location 

error (m) 
Median depth location 

error (m) 
Computation 

time (s) 

First iteration 500 108 412 300 210 
Second iteration 200 1.5 71 300 210 
Third iteration 100 0.13 50 187 210 
MCM (single pass) 100 108 71 150 40000 

Table 3. Summary statistics of location errors and computation times for MCMgs and MCM for SNR = 1 and nine stations for the models of Group 3 (Fig. 2 c). 

Distance between 
gridpoints (m) 

Search volume 
(km 

3 ) 
Median epicentral location 

error (m) 
Median depth location 

error (m) 
Computation 

time (s) 

First iteration 500 125 242 1315 240 
Second iteration 200 1.2 201 1015 240 
Third iteration 100 0.12 156 600 240 
MCM (single pass) 100 125 50 50 45300 

Table 4. Example of median location error for different number of receivers 
and SNR = 1 for all the different models tested. 

Number of 
receivers 

Error after first 
iteration (m) 

Error after 
second iteration 

(m) 
Error after third 

iteration (m) 

9 400 200 55 
8 400 200 100 
7 400 200 100 
6 800 600 450 
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his happens due to the numerical model itself (numerical noise and
mall reflections from free surface and viscous boundaries). This
oise is of very low amplitude (2–3 orders of magnitude than the
ctual signal) but large enough to produce high coherence values
hen running the MCMgs. When the noise level is higher, the
umerical noise is suppressed and does not influence the final result.

.2 Minim um n umber of stations r equir ed f or localization 

CM can identify the event location even in a noisy environment
ith SNR = 1 (Shi et al. 2019a , b ). In practice, a microseismic event

s often not recorded by all available receivers due to noise and sig-
al attenuation. We investigate the number of minimum recordings
hat are required to accurately locate a microseismic event using

CMgs. For this, we use the results of a single model from Group
 and post-process the output to ‘mute’ different receivers. We add
andom noise to the waveforms and test two different levels of noise
SNR = 20 and 1) producing in total 240 cases with the number of
eceivers reduced from 9 to 6 and noise levels increasing from
oise-free to SNR = 1 (20 different locations, 3 noise levels and 4
rray geometries). The median location error calculated when using
ight receivers instead of nine did not change from 400 m. When
he number of receivers is reduced to 6 the location error is more
han 4 times larger (see Table 4 , error after third iteration). For our

odels and grid geometry, this gives a threshold of a minimum of
even recordings to locate an event within 400 m accuracy for a
ingle iteration. This error is reduced further to 100 m when using
hree iterations within MCMgs. The different levels of noise had no
mpact on the location error for the models used. 

.3 Effect of array size and geometry on MCMgs results 

e test the location accurac y achiev ed with MCMgs of an array with
ew seismometers (i.e. 12) deployed at a patch geometry versus a
arge array ( = 122 seismometers) deployed at square grid geometry.
educing the number of receivers results in dramatically reducing

on the order of N 

2 ) the computation time and hardware cost. Patch
rra y geometries ha ve been pre viousl y presented in the international
iterature (e.g. Eisner et al. 2010 , 2011 ; Maxwell et al. 2010 ; Dun-
an et al. 2010 ; Zimmer 2011 ; Yaowen et al. 2017 ; McClellan et al.
018 ). The main advantage of the patch design is that the receivers,
hich are close to one another, provide recordings that can be used

or de-noising purposes and thus increasing the SNR (Eisner et al.
010 ; McClellan et al. 2018 ). For these reasons, we chose the patch
rray geometry to test the performance of MCMgs. We run numer-
cal simulations for the magnitude sensitivity of the array to detect
mall events. Then we use synthetic data to compare the accuracy of
he patch array against a larger grid array using MCMgs for locat-
ng the events. We use a larger array with 122 receivers in a square
eometry at a 200 m spacing between receivers (Fig. 5 ). The patch
rray used in this work consists of 12 recei vers di vided into 3 groups
f small aperture (200 m), and a larger distance among the groups
1730 m, Fig. 6 ). We test the theoretical magnitude sensitivity of
ach deployment geometry using the InSite software. Magnitude
ensitivity refers to the minimum theoretical magnitude of an event
hat can be detected at each point of the monitoring space. To cal-
ulate this value, the parameters used are as defined in Havskov
t al. ( 2010 ): the Q factor, the density of the medium, the sensitivity
hreshold of the receivers, the SNR and the wave velocities within
he medium. The magnitude scale used is the moment magnitude.
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Figure 5. (a) Plan view, (b) cross-section north–south and (c) and side view of the magnitude sensitivity results for a surface array with 122 receivers in a grid 
of 200 m and the iso-surface of M w −1.5 magnitude. The array can detect a signal of M w −1.5 for depth up to 2200 m in minimum three receivers within a total 
rock mass volume of 64 km 

3 . 
In our tests, we consider SNR = 1 and Q -factor = 75 in a homoge- 
neous isotropic medium with 4.5 and 2.5 km s −1 , as P - and S -wave 
v elocities, respectiv ely. For the sensor sensitivity, we use 5.685 ×
10 −9 m s −1 which is the sensitivity of a commercial seismometer, 
commonly used for microseismic monitoring applications. The re- 
sults of the magnitude sensitivity analysis are presented in Figs 5 
and 6 . This difference is acceptable considering the very small mag- 
nitude of the seismic event and how much smaller the number of 
surface receivers, used in the patch array geometry, is. Therefore, 
using a smaller number of surface stations, installed in a patch array 
design, can provide a cost-ef fecti v e volume cov erage compared to 
that provided by a large, 122-station array: A smaller number of 
receivers translates to reduced hardware cost and computation time 
(approximately 10 times lower) for data processing. 

We also investigate the ability of MCMgs to accurately locate a 
seismic event recorded by arrays of the two aforementioned geome- 
tries. The purpose of these two models is to provide an example of 
the efficiency of the patch array design not only on the detectability 
of the events but also on locating the event. The models for the 
generation of synthetic data for this part of the analysis are ho- 
mogeneous isotropic and their properties described in the previous 
sections. The size of the models is a cuboid with dimensions 4 km 

art/ggad465_f5.eps


MCMgs in locating microseismic events 1049 

Figure 6. (a) Plan view, (b) cross-section north–south and (c) side view of the magnitude sensitivity results for the patch array design with 12 surface receivers 
divided into three groups of small aperture (200 m), and a larger distance among the groups (1730 m) and the iso-surface of M w −1.5 magnitude. The array 
can detect a signal of M w −1.5 for depth up to 2100 m in minimum three receivers within a total rock mass volume of 50 km 

3 . 
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4 km × 2 km (N, E, D). For both arra ys, w e ha ve used the same
ingle theoretical source location at a depth of 0.8 km and epicentral
ocation 0.2 km west of the centre of the model. We found that the
ocation error of the two arrays is the same for all iterations. The

ajor difference is the error on the origin time of the event which is
igher for the coarse grid but it gets to zero value as we collapse the
rid in Iterations 2 and 3. The iteration time for the large rectangu-
ar array is about 10 times larger compared to the patch array. The
agnitude of the location error between the patch and large arrays
s identical for the size of this specific array. In order to understand
f the aperture of the array has an impact on the location error, we in-
rease linearly the distances among the receivers for both arrays. We
epeat the same analysis for an array with a larger spacing (400 m)
etween neighbouring receivers for the rectangular large array and
 km aperture, from centre to centre among groups on the patch
rray and 3 km between the central receivers of each group. The
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Table 5. Summary statistics of location errors and computation times for MCMgs and MCM patch and large grid arrays (Figs 5 and 6 ). 

Maximum array 
aperture (m) 

Minimum distance 
between stations 

Median epicentral 
location error (m) 

Median depth location 
error (m) 

Computation 
time (s) 

Patch array 1 1940 100 100 100 70 
Large array 1 2000 200 100 100 760 
Patch array 2 3880 200 110 200 70 
Large array 2 4000 400 110 200 760 

Figure 7. Epicentres of 31 events from the Larisa earthquake sequence: red circles—solutions provided by the NOA (red circles), and blue circles—derived 
in this study using MCMgs. 
error differences between the two array geometries (large and patch 
arrays) are the same as pre viousl y, the results are summarized in 
Table 5 . Consequently, the aperture of the array is not changing the 
ef fecti veness of the patch array against the large array. We show fur- 
ther evidence of the efficiency of MCMgs with real microseismicity 
data and support our findings on computational efficiency. 

5  P E R F O R M A N C E  O F  M C M G S  W I T H  

R E A L  DATA  

The MCM algorithm has already been tested and proved ef fecti ve 
in terms of localization with real data as opposed to synthetic data 
(Shi et al. 2019a , b ). Here, we provide results obtained by MCMgs 
using a microseismicity data set from Greece and focus on the time 
efficiency of our method. The data we use were recorded by the 
National Obser vator y of Athens (NOA) network in Greece, and 
made av ailable b y the Aristotle Uni versity of Thessaloniki (EIDA 

2021 ; Karakostas et al. 2021 ). The monitoring network consists of 
13 seismometers, seven of which are part of the permanent network 
and six were deployed in the area after a major earthquake M L = 6.3 
from 2021 March 03 in the area of Elassona–Larisa. We use a 24-hr 
segment of continuous recordings on 2021 March 17. The event 
catalogue published by NOA for this day contains detected and 
automatically located events using the HYPOINVERSE method 
(Klein 2000 ). To locate the events we used the recordings from 

the 27 channels closest to the area of interest (nine 3-component 
receivers), while NOA has used data from up to 82 channels. For 
the location of each event, we cut the recordings into 45 s windows 
around the origin time of the event based on the NOA catalogue (15 s 
before the origin time and 30 s after) of each event and MCMgs is 
applied. The origin time is provided in the av ailable w aveforms. A 

detailed velocity model of the area, consisting of five layers up to 
the depth of 29 km as described in Karakostas et al. ( 2021 ), is used. 
The average runtime of the MCMgs to locate an event using three 
iterations each time with 100 m target resolution was 60 s (using 
the workstation). 

The epicentral locations of the 31 seismic events obtained by 
MCMgs are provided in Table A1 (Suppor ting Infor mation). The 
local magnitudes shown in Table A1 (Suppor ting Infor mation) are 
those from the published catalogue by NOA. We did not calculate 
the magnitudes of the events as part of this study. The differences be- 
tween the epicentres of the catalogued events by NOA and MCMgs 
vary between 0 to 3.3 km. These differences can be attributed to a 
number of factors, the main being the different velocity models used 
by NOA and by this study. It should be noted that the differences 
between the epicentral locations (which fall within the error mar- 
gins from both approaches) are not used here to show comparison 
between the methods or to support whether one is more accurate 
than the other since the true locations of real seismic events are 
never known. We use them to show the proximity in the epicen- 
tral locations obtained for the same event so that the computation 
time and comparisons of the number of recordings used are put into 
context Fig. 7 . 
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 C O N C LU S I O N S  

e present a location algorithm that has all the advantages of a
av ourab le migration-based localization method, that is, the MCM
ocation algorithm, but at the same time is more efficient in terms
f computation time, by combining an existing method of a col-
apsing grid based on PDF (Lomax et al. 2001 ). Faster results allow
or quicker decision-making, which is important when it comes
o safety and production in geo-energy projects. The MCMgs algo-
ithm incorporates a modified collapsing grid approach that reduced
omputation time up to 64 times in our tests based on synthetic data
hile keeping the epicentral location error within an acceptable

ange. This renders our algorithm able to work in almost real-time
sing a simple workstation/laptop. For quick locations within an ac-
eptable error (100 m), we find that seven is the minimum number
f recordings required (this error is based on the model and grid
sed in this study). When the number of available receivers is small,
 patch array geometry is recommended. We find that 12 seismome-
ers deployed in a patch array geometry offer a detection capability
imilar to a rectangular array consisting of > 100 receiv ers. Ev en
hough the grid array offers coverage over a somewhat larger vol-
me, when considering the extra hardware and computation cost
hat such an array needs, a patch array with a significantly smaller
umber of receivers is a cost-ef fecti ve alternati ve. MCMgs made
ossible the location of synthetic events with the same magnitude
or the location error for both types of array geometries despite the
arge difference in the number of recordings used between the two,
ven for noisy recordings (SNR = 1). We locate 31 microseismic
vents using the MCMgs approach. The differences in the epicentral
ocations are within the location errors by both approaches (MCMgs
nd HYPOINVERSE). The MCMgs novelty is that it can provide
ocations in near-real time using a simple workstation with no need
or an advanced computer and no phase picking which might be
hallenging for small magnitude and low SNR seismic events or
vents with short inter-event times. Further improvements on the
untime of the algorithm could include the application of more ad-
anced stochastic optimization algorithms to further speed up the
rocessing time as described by Li et al. ( 2019 ). 
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picentral locations of the 31 events used in this study as pub-

ished in the catalogue by NOA can be found at http://bbnet.gein
noa.gr/HL/d atabases/d atabase , using as search criteria Date: 2021

arch 17, Latitude: 39.5–39.9, Longitude: 21.9–22.3. The wave-
orms of the 31 real seismic events were made available to us by
he University of Thessaloniki. They could also be accessed upon
equest from http://www.or feus-eu.or g/data/eida/ , using as search
riteria stations: TYRN, TYR1, TYR2, TYR3, TYR4, TYR5 TYR6,
RKS, KANL and THL and date: 2021 March 17. 
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