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Abstract: This work aims to explore effective online torque estimation techniques for tidal
turbine control under varying flow conditions. A modified Kalman filter with adaptive features
is developed to estimate hydrodynamic torque from a tidal turbine’s available measurements,
based on which a modified Newton-Rapson method is employed to calculate the effective flow
speed. The rotor speed reference signal required for tidal turbine control can be produced using
the estimated torque and flow speed. The Kalman filter model is constructed using on a low
frequency lumped parameter model of a horizontal-axis, fixed-pitch, two-bladed variable speed
tidal turbine, established from a fully characterised model of a real turbine. The adaptive feature
of the Kalman filter allows the tracking of the spatial-temporal variations of the effective flow
speed caused by turbulence. Simulation studies are implemented to test the developed algorithm
over the full envelope of the flow speeds.
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1. INTRODUCTION

Tidal energy systems are becoming a fast emerging tech-
nology in offshore renewable energy domain. In the evalu-
ation of tidal power resources, the prediction of achievable
energy at given sites is important. Sufficiently fast flowing
currents are rare and tend to be concentrated in areas
where the topography of the land causes the currents to
be constrained or channelled, such as in straits, estuaries,
in between islands or around the end of large headlands.
Sites worth exploring should have mean spring peak speeds
between 2 to 3m/s (Winter, 2011). One advantage of tidal
flows is that speeds can be accurately predicted, since
they occur at some point between the high and low tides
and have the same periodicity as the vertical movement
(Whitby and Ugalde-Loo, 2014). Extremely high flow
speeds are statistically uncommon, requiring the use of
hydrodynamic power limiting at values above the design
flow speed.

Prediction of tidal flows over a region can be split into
two categories: short–term prediction and long–term pre-
diction. These two categories are also called operational
and planning (Jahromi et al., 2011), respectively. Planning
in the sense that the available power in a region is pro-
portional to the cubic flow speed, thus accurate flow pre-
diction leads to accurate resource characterisation. Long–
term prediction algorithms used for planning are reviewed
in (Jahromi et al., 2011), they are beyond the scope of
this paper. Short-term tidal current speed prediction can
be developed based on the recorded tidal current speeds
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data or using turbine operational data. For the purpose of
this paper, short-term prediction using turbine operational
data is called short-term estimation as the methods used
do not have prediction capabilities.

Prediction using recorded tidal current data has been
reported in a number of works (Jahromi et al., 2010;
Kavousi-Fard, 2017b; Kavousi-fard, 2017; Yang et al.,
2017; Qiao et al., 2020). Preferred models for this type
of prediction include neural networks, fuzzy systems, sup-
port vector regression, auto-regression and auto-regression
moving average models. The last two methods based on
identification techniques are found to be less suitable for
large datasets (Jahromi et al., 2010). For the other meth-
ods it was found that the prediction accuracy is mostly
dependent on the optimisation design (Qiao et al., 2020)
and is affected by the presence of uncertainty in the
measurement data (Kavousi-Fard, 2017a). Hybrid models
have been proposed to overcome these issues, for instance,
local optimal solutions of neural networks can be avoided
using genetic algorithms with global optimisation abilities,
and progressing from deterministic prediction to proba-
bilistic prediction, to account for prediction uncertainty,
can improve neural networks’ forecasting accuracy. In wind
industry, similar hybrid models have been proposed as well
as other simpler statistical techniques, e.g. using Kalman
filtering for wind turbine control, and particularly, to com-
pensate components’ time lags a few seconds ahead, or for
start/stop actions several minutes ahead (Bossanyi, 2000).

In the short-term current estimation, turbine operational
data is commonly used to calculate hydrodynamic torque,
either at the converter level or the rotor level. In both
cases, the tidal current speed estimation can be taken as a
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by-product of the torque estimation. The control scheme
is often called sensorless control when the estimator is
implemented at the converter level.

Torque estimation for tidal turbines has been suggested
in (Whitby and Ugalde-Loo, 2014) following experiences
in wind turbines. In wind turbine estimators, the turbine
dynamics models are used to build either a simple filter as
presented in (Leithead and Connor, 2000), an observer as
in (Cardenas-dobson et al., 1996), or a stochastic technique
such as Kalman filter as used in (Bourlis and Bleijs, 2010).
The controller-estimator interaction has been found to
constrain the speed bandwidth, and consequently reduce
the controller’s tracking capability. Observers for tidal
turbines have been implemented in (Jung et al., 2010)
using a sliding mode observer, and in (Azelhak et al., 2021)
using a Luenberger observer. Both estimators are designed
off-line and implemented at the power converter level
to estimate generator speed and hydrodynamic torque,
respectively. The latter also uses a Newton-Rapson (NR)
algorithm to estimate flow speed based on hydrodynamic
torque estimations. The NR algorithm can be replaced by
a look-up table to reduce computational complexity but
at a cost of reduced accuracy. There are very few methods
fully developed to achieve online torque estimation in the
presence of flow disturbance.

In this work, we aim to tackle the online estimation prob-
lem for tidal turbine control by developing a modified
Kalman filter, to estimate hydrodynamic torque, and a
modified NR algorithm to calculate the flow speed. The
modified Kalman filter should have the feature to ac-
commodate the spatial-temporal variations of flow speed
caused by turbulence, whereas the modified NR algorithm
is meant to speed up the calculation of flow speed without
compromising the accuracy. The estimates of hydrody-
namic torque and flow speed are then used to determine
the reference speed, for the tidal turbine’s speed controller,
across the whole operating envelope, i.e., below rated vari-
able speed operation and above rated stall regulation.

The remaining part of the paper is organised as follows.
In Section 2 a low order lumped parameter model of the
turbine dynamics is presented, and the overall control
scheme is given. The turbine control strategy is defined and
its link with hydrodynamic torque estimation to improve
the turbine operation efficiency is discussed. The proposed
method to estimate both hydrodynamic torque and flow
speed is presented in Section 3. Simulation studies and
results, using time series data for a 100kW tidal turbine,
are presented in Section 4. Finally, conclusions are drawn
in Section 5.

2. TURBINE MODEL FOR ESTIMATION AND
CONTROL

2.1 Tidal Turbine Model

The turbine to be controlled is a stall regulated variable
speed tidal turbine from the H2020 project industrial
partner. The turbine rotor comprises of two blades with
bidirectional operation capability, and the drive-train has
a direct drive permanent magnet synchronous genera-
tor (PMSG) configuration. With this configuration, rotor

speed is equal to generator speed, which is the output of
the turbine dynamics model.

For the purpose of model-based estimation, a well-suited
linear model of the turbine is required with emphasis
on low frequency dynamics. In this work, a linear tidal
turbine model is developed following a similar work for
wind turbine modelling (Leithead and Rogers, 1996) to
accommodate the dynamics of the drive-train of a direct
drive tidal turbine. The rotor can be interpreted as a single
blade attached to the hub by a massless shaft, which is
then attached rigidly to the generator. The approximated
inertia of the hub is added to the generator.

The developed lumped parameter model is a multi-input
single-output (MISO) model with two inputs, hydrody-
namic torque, Th, and generator torque, TG, and one
output, generator speed, ΩG. During machine operation,
the generator reaction torque and speed are two available
measurements at the turbine drive. In this model, the gen-
erator reaction torque can be replaced by the demanded
reaction torque, Td, since the generator dynamics are suf-
ficiently fast to make any difference insignificant, and to
avoid high frequency noise from the drive train. Control is
therefore attained with a speed feedback loop as shown in
Fig. 1, where the system output is given by

y = ΩG − Ωref . (1)

Here Ωref is the reference speed.

Fig. 1. Turbine speed control loop

Hydrodynamic torque measurements are not readily avail-
able but can be inferred from drive-train torque (me-
chanical torque) measurements for steady state conditions.
However, under varying flow speed conditions, an estimate
of hydrodynamic torque is required to track the turbine
hydrodynamic efficiency over the full envelope. Hydrody-
namic torque can be assumed to be slowly varying and
the stochastic variation due to flow speed variation can be
modelled as a random walk process as (Bourlis, 2011)

Ṫh (t) = m (t) , (2)

where m is a white noise sequence with probability dis-
tribution p (m) ∼ N (0, Q), and Q is sufficiently large to
provide freedom for the variation.

The following lumped parameter state-space model is
established for the tidal turbine that includes three states,
x1 = θG, x2 = ΩG and x3 = Th.[

ẋ1 (t)
ẋ2 (t)
ẋ3 (t)

]
=

[
0 1 0

−γ1 − (I1 + I2) 1
0 0 0

][
x1 (t)
x2 (t)
x3 (t)

]

+

[
0
1
0

]
Td (t) +

[
0
0
1

]
m (t)

(3)

ΩG (t) = [0 1 0]

[
x1 (t)
x2 (t)
x3 (t)

]
(4)
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by-product of the torque estimation. The control scheme
is often called sensorless control when the estimator is
implemented at the converter level.

Torque estimation for tidal turbines has been suggested
in (Whitby and Ugalde-Loo, 2014) following experiences
in wind turbines. In wind turbine estimators, the turbine
dynamics models are used to build either a simple filter as
presented in (Leithead and Connor, 2000), an observer as
in (Cardenas-dobson et al., 1996), or a stochastic technique
such as Kalman filter as used in (Bourlis and Bleijs, 2010).
The controller-estimator interaction has been found to
constrain the speed bandwidth, and consequently reduce
the controller’s tracking capability. Observers for tidal
turbines have been implemented in (Jung et al., 2010)
using a sliding mode observer, and in (Azelhak et al., 2021)
using a Luenberger observer. Both estimators are designed
off-line and implemented at the power converter level
to estimate generator speed and hydrodynamic torque,
respectively. The latter also uses a Newton-Rapson (NR)
algorithm to estimate flow speed based on hydrodynamic
torque estimations. The NR algorithm can be replaced by
a look-up table to reduce computational complexity but
at a cost of reduced accuracy. There are very few methods
fully developed to achieve online torque estimation in the
presence of flow disturbance.

In this work, we aim to tackle the online estimation prob-
lem for tidal turbine control by developing a modified
Kalman filter, to estimate hydrodynamic torque, and a
modified NR algorithm to calculate the flow speed. The
modified Kalman filter should have the feature to ac-
commodate the spatial-temporal variations of flow speed
caused by turbulence, whereas the modified NR algorithm
is meant to speed up the calculation of flow speed without
compromising the accuracy. The estimates of hydrody-
namic torque and flow speed are then used to determine
the reference speed, for the tidal turbine’s speed controller,
across the whole operating envelope, i.e., below rated vari-
able speed operation and above rated stall regulation.

The remaining part of the paper is organised as follows.
In Section 2 a low order lumped parameter model of the
turbine dynamics is presented, and the overall control
scheme is given. The turbine control strategy is defined and
its link with hydrodynamic torque estimation to improve
the turbine operation efficiency is discussed. The proposed
method to estimate both hydrodynamic torque and flow
speed is presented in Section 3. Simulation studies and
results, using time series data for a 100kW tidal turbine,
are presented in Section 4. Finally, conclusions are drawn
in Section 5.

2. TURBINE MODEL FOR ESTIMATION AND
CONTROL

2.1 Tidal Turbine Model

The turbine to be controlled is a stall regulated variable
speed tidal turbine from the H2020 project industrial
partner. The turbine rotor comprises of two blades with
bidirectional operation capability, and the drive-train has
a direct drive permanent magnet synchronous genera-
tor (PMSG) configuration. With this configuration, rotor

speed is equal to generator speed, which is the output of
the turbine dynamics model.

For the purpose of model-based estimation, a well-suited
linear model of the turbine is required with emphasis
on low frequency dynamics. In this work, a linear tidal
turbine model is developed following a similar work for
wind turbine modelling (Leithead and Rogers, 1996) to
accommodate the dynamics of the drive-train of a direct
drive tidal turbine. The rotor can be interpreted as a single
blade attached to the hub by a massless shaft, which is
then attached rigidly to the generator. The approximated
inertia of the hub is added to the generator.

The developed lumped parameter model is a multi-input
single-output (MISO) model with two inputs, hydrody-
namic torque, Th, and generator torque, TG, and one
output, generator speed, ΩG. During machine operation,
the generator reaction torque and speed are two available
measurements at the turbine drive. In this model, the gen-
erator reaction torque can be replaced by the demanded
reaction torque, Td, since the generator dynamics are suf-
ficiently fast to make any difference insignificant, and to
avoid high frequency noise from the drive train. Control is
therefore attained with a speed feedback loop as shown in
Fig. 1, where the system output is given by

y = ΩG − Ωref . (1)

Here Ωref is the reference speed.

Fig. 1. Turbine speed control loop

Hydrodynamic torque measurements are not readily avail-
able but can be inferred from drive-train torque (me-
chanical torque) measurements for steady state conditions.
However, under varying flow speed conditions, an estimate
of hydrodynamic torque is required to track the turbine
hydrodynamic efficiency over the full envelope. Hydrody-
namic torque can be assumed to be slowly varying and
the stochastic variation due to flow speed variation can be
modelled as a random walk process as (Bourlis, 2011)

Ṫh (t) = m (t) , (2)

where m is a white noise sequence with probability dis-
tribution p (m) ∼ N (0, Q), and Q is sufficiently large to
provide freedom for the variation.

The following lumped parameter state-space model is
established for the tidal turbine that includes three states,
x1 = θG, x2 = ΩG and x3 = Th.[

ẋ1 (t)
ẋ2 (t)
ẋ3 (t)

]
=

[
0 1 0

−γ1 − (I1 + I2) 1
0 0 0

][
x1 (t)
x2 (t)
x3 (t)

]

+

[
0
1
0

]
Td (t) +

[
0
0
1

]
m (t)

(3)

ΩG (t) = [0 1 0]

[
x1 (t)
x2 (t)
x3 (t)

]
(4)

θG is the generator angular position. The lumped inertias
I1 and I2 are the sum of all inertias in the drive-train
reflected to the hub, that is, I1 + I2 = JR + JH + JG,
with the inertia of hub JH , the generator inertia IG
and the rotor inertia JR. The lumped damping is γ1 =
BR +BS , with BS representing the losses from the shaft.
The hydrodynamic damping BR can be omitted since
other sources of damping in the drive-train are generally
much larger (Leithead and Rogers, 1996). Under these
assumptions, the resulting lumped parameter model is
time-invariant across the loci of equilibrium points, and
only the changes in the hydrodynamic torque in response
to changes in flow speed, at any equilibrium point, is time-
varying.

2.2 Full Envelope Switching Control Scheme

Expressions for hydrodynamic torque, Th, and flow speed,
v, are given using Blade Element Momentum (BEM)
theory as follows:

Th =
1

2
ρπR5Ω2

R · Cp (λ, β)

λ3
, (5)

v =
RΩR

λ
, (6)

where ρ is the water density, 1, 027kg/m3, R is the rotor
radius, ΩR is the rotor speed and Cp (λ) is the power
coefficient, which is a function of the pitch angle, β, and
the tip speed ratio, λ. In stall regulated turbines, the pitch
angle is kept constant for above-rated operation, hence
the power coefficient is only a function of tip speed ratio,
Cp (λ).

A suitable control strategy for the tidal turbine under
study is described in Fig. 2, where the reference speed,
across the whole operating envelope, is given by

Ωref (t) =




Ω0 ; Tloss ≤ Th ≤ T0
Th (t)

Kopt
; T0 ≤ Th ≤ T1

Ω1 ; T1 ≤ Th ≤ Trated

P0

Th (t)
; Trated ≤ Th ≤ Tstall

(7)

Ω0, Ω1 are constant speed values, P0 is the turbine rated
power, and Kopt is an optimal gain given by (5) for
tracking the maximum turbine efficiency, CT (λopt). The
four torques, T0, T1, Trated and Tstall are labelled in Fig. 2.
The stalling front is a hydrodynamic constraint imposed
on the turbine design and splits the above rated operation
in stall operation (right hand side of the stalling front) and
deep stall operation (left hand side of the stalling front).
The use of an additional controller during deep stall was
suggested in Whitby (2013) since the turbine dynamics
may change significantly in that operation region.

As seen in (7), the reference speed is a function of the
hydrodynamic torque, which is unavailable at the turbine
drive-train. Under steady state conditions, the shaft torque
is similar to the hydrodynamic torque, however, with flow
speed variations, the hydrodynamic torque is needed to
improve the tracking performance. To estimate the hydro-
dynamic torque, we propose to use the simplified linear
model developed in Section 2.1 together with the BEM

Fig. 2. Turbine control strategy in the torque/rotor speed
plane

Fig. 3. Hydrodynamic torque and flow speed estimation
using Kalman filter

equations for torque. The BEM equations are nonlinear,
thus requiring a suitable algorithm for its solution.

3. ESTIMATION WITH MODIFIED KALMAN
FILTER

3.1 Hydrodynamic Torque Estimation

A modified Kalman filter with adaptive features is devel-
oped to estimate hydrodynamic torque. The inputs are
the generator speed and the generator torque, both are
available at the drive-train. The formulation of the Kalman
filter follows the work in (Bourlis, 2011) for wind turbine
advanced control. The estimated hydrodynamic torque can
be used to calculate flow speed using a Newton Rapson
(NR) routine, and to generate reference operating points
with high accuracy. The proposed estimation scheme is
presented in Fig. 3.
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The modified Kalman filter algorithm including predict,
update and adapt, are given in the following.

(i) Predict

X̂ (k + 1|k) =AX̂ (k|k) +BU (k) (8)

P̂ (k + 1|k) =AP̂ (k|k)AT +Q (k) (9)

(ii) Update

X̂ (k + 1|k + 1) =AX̂ (k + 1|k)
+K (k + 1) r (k + 1) (10)

P̂ (k + 1|k + 1) =A (I −K (k + 1)C) P̂ (k + 1|k) (11)
K (k + 1) = P̂ (k + 1|k)CTS−1 (k + 1) (12)

where X̂ (k + 1|k) and P̂ (k + 1|k) are the a-priori state
vector and estimation error covariance, respectively, and
X̂ (k + 1|k + 1), P̂ (k + 1|k + 1) are the a-posteriori ones.

During prediction, the estimated state vector, X̂ (k|k)
at time k, which is the mean of the true state vector,
is dynamically projected forward to time k + 1. The
projected state vector, X̂ (k + 1|k), is then used to update

the a-posteriori mean X̂ (k + 1|k + 1). The Kalman gain
K (k + 1) is used to correct the a-posteriori mean at time
k+1. The correction is applied to the innovation sequence
r (k + 1), which represents the estimation error between
the measured output and its estimated value, i.e.,

r (k + 1) = Z (k + 1)− CX̂ (k + 1|k) . (13)

The estimation error covariance is also dynamically pro-
jected and updated, but depends on Q (k), which for tidal
turbines, varies due to turbulence intensity, and may re-
quire a recursive correction.

(iii) Adapt

In (Bourlis, 2011), an innovation adaptation estimation
method is used to provide adaptability to the Kalman
filter for time-varying process noise. A non-recursive Q (k)
adaptation criterion, based on PI control, was found to
be useful when the noise variance is also time-varying and
needs to be adapted. The equations to provide adaptation
to the Kalman filter are as follows.

Q (k) = Q (k − 1)+(Kp +KiTs) e (k)−Kpe (k − 1) (14)

e (k) = trace
{
CP̂ (k|k − 1)CT

}

−trace
{
CP̃ (k|k − 1)CT

} (15)

CP̂ (k|k − 1)CT = S (k)− R̂ (k) (16)

CP̃ (k|k − 1)CT = S0 (k)− R̂ (k) (17)

S0 (k) =
1

N

k∑
i=k−N

rir
T
i (18)

R̂ (k + 1) =
1

N − 1

k+1∑
i=k+1−N

(ri − r̃) (ri − r̃)
T

(19)

r̃ =
1

N

k∑
j=k−N

rj (20)

In the adapt scheme, the PI controller gains, Kp and
Ki, are determined by testing the performance of the

algorithm for the lowest and highest expected Q values.
Variable e (k) is the controller input error, S (k) is the
predicted innovation error covariance, and S0 (k) is the
innovations autocovariance computed from samples r (k).

When the Kalman filter is optimum, the innovations are
zero mean white noise, i.e. S (k) = S0 (k), which is not
the case for spatial-temporal flow speed variations. Fur-
thermore, measurement noise variance R̂ (k) is also time-
varying and needs to be updated. The mean noise vari-
ance can be calculated from data measurements, however,
variations due to model mismatch are expected since the
simplified turbine model might omit unknown dominant
modes. The adaptation of R̂ (k) is achieved by keeping
the consistency between the innovation error covariance
and the innovations auto covariance, which makes the
Kalman filter algorithm to converge. The adaptation of
R̂ (k + 1) is given in (19) and (20) of the adapt scheme. The
relationship between the estimated hydrodynamic torque
and flow speed, through BEM equations, can be exploited
to find a numerical solution for flow speed.

3.2 Effective Flow Speed Calculation

Flow speed can be determined numerically by solving
the nonlinear hydrodynamic torque equation in (5), e.g.,
using the NR method, as presented in (Bourlis and Bleijs,
2010; Azelhak et al., 2021). The solution requires the
Cp − λ characteristics of the rotor be represented by
a suitable polynomial that accurately approximates the
power coefficient. In practice, the selected control strategy
does not sweep the full Cp − λ characteristics, thus the
order of the polynomial can be reduced to provide accurate
approximation only in the range of operation. A suitable
polynomial approximation of the turbine power coefficient
regarding the tip speed ratio is written as

Cp (λ) =

4∑
i=0

piλ
i (21)

where pi are polynomial coefficients.

Other approximations for the power coefficient can be
found in (Carpintero-renteria et al., 2020). However the
polynomial approximation from (21) simplifies the imple-
mentation of the NR algorithm. Additionally, the modified
NR algorithm presented in (Abbasbandy, 2003) is used
to reduce the number of iterations required to obtain
the solution. The modified NR algorithm to solve (5), as
f (λ) = 0, is given by

f (λ) =
2T̂h

ρπR5Ω2
R

λ3 − Cp (λ) (22)

λn+1 = λn − f (λn)

f ′ (λn)
− f2 (λn) f

′′
(λn)

2f ′3 (λn)

−f3 (λn) f
′′2

(λn)

2f ′5 (λn)

(23)

where f
′
(λn) and f

′′
(λn) are the first and second deriva-

tive of f (λn), since the modified NR algorithm uses a
Taylor series expansion of the traditional NR method.
The subscript n is the iteration number in the NR search
progress. The numerical solution of (23) using the modified
NR algorithm is valid for the range of tip speed ratio
defined to obtained the polynomial approximation of the
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The modified Kalman filter algorithm including predict,
update and adapt, are given in the following.

(i) Predict

X̂ (k + 1|k) =AX̂ (k|k) +BU (k) (8)

P̂ (k + 1|k) =AP̂ (k|k)AT +Q (k) (9)

(ii) Update

X̂ (k + 1|k + 1) =AX̂ (k + 1|k)
+K (k + 1) r (k + 1) (10)

P̂ (k + 1|k + 1) =A (I −K (k + 1)C) P̂ (k + 1|k) (11)
K (k + 1) = P̂ (k + 1|k)CTS−1 (k + 1) (12)

where X̂ (k + 1|k) and P̂ (k + 1|k) are the a-priori state
vector and estimation error covariance, respectively, and
X̂ (k + 1|k + 1), P̂ (k + 1|k + 1) are the a-posteriori ones.

During prediction, the estimated state vector, X̂ (k|k)
at time k, which is the mean of the true state vector,
is dynamically projected forward to time k + 1. The
projected state vector, X̂ (k + 1|k), is then used to update

the a-posteriori mean X̂ (k + 1|k + 1). The Kalman gain
K (k + 1) is used to correct the a-posteriori mean at time
k+1. The correction is applied to the innovation sequence
r (k + 1), which represents the estimation error between
the measured output and its estimated value, i.e.,

r (k + 1) = Z (k + 1)− CX̂ (k + 1|k) . (13)

The estimation error covariance is also dynamically pro-
jected and updated, but depends on Q (k), which for tidal
turbines, varies due to turbulence intensity, and may re-
quire a recursive correction.

(iii) Adapt

In (Bourlis, 2011), an innovation adaptation estimation
method is used to provide adaptability to the Kalman
filter for time-varying process noise. A non-recursive Q (k)
adaptation criterion, based on PI control, was found to
be useful when the noise variance is also time-varying and
needs to be adapted. The equations to provide adaptation
to the Kalman filter are as follows.

Q (k) = Q (k − 1)+(Kp +KiTs) e (k)−Kpe (k − 1) (14)

e (k) = trace
{
CP̂ (k|k − 1)CT

}

−trace
{
CP̃ (k|k − 1)CT

} (15)

CP̂ (k|k − 1)CT = S (k)− R̂ (k) (16)

CP̃ (k|k − 1)CT = S0 (k)− R̂ (k) (17)

S0 (k) =
1

N

k∑
i=k−N

rir
T
i (18)

R̂ (k + 1) =
1

N − 1

k+1∑
i=k+1−N

(ri − r̃) (ri − r̃)
T

(19)

r̃ =
1

N

k∑
j=k−N

rj (20)

In the adapt scheme, the PI controller gains, Kp and
Ki, are determined by testing the performance of the

algorithm for the lowest and highest expected Q values.
Variable e (k) is the controller input error, S (k) is the
predicted innovation error covariance, and S0 (k) is the
innovations autocovariance computed from samples r (k).

When the Kalman filter is optimum, the innovations are
zero mean white noise, i.e. S (k) = S0 (k), which is not
the case for spatial-temporal flow speed variations. Fur-
thermore, measurement noise variance R̂ (k) is also time-
varying and needs to be updated. The mean noise vari-
ance can be calculated from data measurements, however,
variations due to model mismatch are expected since the
simplified turbine model might omit unknown dominant
modes. The adaptation of R̂ (k) is achieved by keeping
the consistency between the innovation error covariance
and the innovations auto covariance, which makes the
Kalman filter algorithm to converge. The adaptation of
R̂ (k + 1) is given in (19) and (20) of the adapt scheme. The
relationship between the estimated hydrodynamic torque
and flow speed, through BEM equations, can be exploited
to find a numerical solution for flow speed.

3.2 Effective Flow Speed Calculation

Flow speed can be determined numerically by solving
the nonlinear hydrodynamic torque equation in (5), e.g.,
using the NR method, as presented in (Bourlis and Bleijs,
2010; Azelhak et al., 2021). The solution requires the
Cp − λ characteristics of the rotor be represented by
a suitable polynomial that accurately approximates the
power coefficient. In practice, the selected control strategy
does not sweep the full Cp − λ characteristics, thus the
order of the polynomial can be reduced to provide accurate
approximation only in the range of operation. A suitable
polynomial approximation of the turbine power coefficient
regarding the tip speed ratio is written as

Cp (λ) =

4∑
i=0

piλ
i (21)

where pi are polynomial coefficients.

Other approximations for the power coefficient can be
found in (Carpintero-renteria et al., 2020). However the
polynomial approximation from (21) simplifies the imple-
mentation of the NR algorithm. Additionally, the modified
NR algorithm presented in (Abbasbandy, 2003) is used
to reduce the number of iterations required to obtain
the solution. The modified NR algorithm to solve (5), as
f (λ) = 0, is given by

f (λ) =
2T̂h

ρπR5Ω2
R

λ3 − Cp (λ) (22)

λn+1 = λn − f (λn)

f ′ (λn)
− f2 (λn) f

′′
(λn)

2f ′3 (λn)

−f3 (λn) f
′′2

(λn)

2f ′5 (λn)

(23)

where f
′
(λn) and f

′′
(λn) are the first and second deriva-

tive of f (λn), since the modified NR algorithm uses a
Taylor series expansion of the traditional NR method.
The subscript n is the iteration number in the NR search
progress. The numerical solution of (23) using the modified
NR algorithm is valid for the range of tip speed ratio
defined to obtained the polynomial approximation of the

Fig. 4. PI controller gain-scheduled

Cp − λ characteristics of the turbine. If no solution is
found at any time step, the algorithm may return to the
previously calculated value of tip speed ratio.

The flow speed can therefore be calculated by (6). The tip
speed ratio initial condition is set up by λ0 = RΩ0

vrated
, where

vrated is the rated flow speed for turbine operation.

4. SIMULATION RESULTS

The proposed lumped parameter model and the estimation
process (modified Kalman filter and modified NR algo-
rithm) are tested using simulation software DNV Tidal
Bladed. The turbine is a two-blade stall regulated variable
speed turbine. A PI controller is used to control the tur-
bine’s generator speed across the full envelope of flow speed
from 1m/s to 3.5m/s. The controller gain is made to follow
the variation of the partial derivative of the hydrodynamic
torque with respect to the flow speed, to implement a gain-
scheduled controller, as shown in Fig. 4.

Figures 5 to 9 are comparisons of the flow speed estimates
against the simulated flow speeds at the hub height. Per-
centage of fit is common practice in tidal flow prediction
and is calculated as in (Jahromi et al., 2010).

%FIT =

(
1− |v − v̂|

|v − v̄|

)
× 100 (24)

where v̂ is the estimated flow speed and v̄ is the mean
value of of the flow speed, v, obtained using Tidal Bladed.

Fit percentages and estimated flow speed mean values
are presented in Table 1. The estimator performs well at
flow speeds between 1.0m/s and 2.0m/s. At higher flow
speed values above 2.5m/s, the fit percentage drops due to
numerical instability. The NR method produces negative
estimates at tip speed ratio values below 2.5 and fails to
converge. The main cause of these unrealistic estimates
may come from the stiff characteristic of the performance
coefficient at that range of tip speed ratios. It is important
to note that, the estimator is still tracking the variation in
flow speed at 3m/s. The spikes in flow speed estimates at
250s and 310s represent a sustained change in generator
speed, however, the estimator continues to track after its
transient response.

Fig. 5. Flow speed estimation at 1.0m/s

Fig. 6. Flow speed estimation at 1.5m/s

Fig. 7. Flow speed estimation at 2.0m/s

Table 1. Flow speed estimates fit percentage

v (m/s) v̂ (m/s) FIT (%)

1.0 1.0528 57.7348
1.5 1.5119 59.0974
2.0 2.0204 63.4374
2.5 2.5891 36.5828
3.0 2.9724 13.7391
3.5 3.0762 1.5403

5. CONCLUSIONS

In this paper, our recent work on tidal turbine estimator
design is reported. A low order lumped parameter model
of the direct drive permanent magnet tidal turbine has
been developed to implement an adaptive Kalman filter.
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Fig. 8. Flow speed estimation at 2.5m/s

Fig. 9. Flow speed estimation at 3.0m/s

The model development is a novel contribution from
the H2020 ELEMENT project. The adaptive Kalman
filter is designed to estimate the hydrodynamic torque
and the estimated hydrodynamic torque is then used
to calculate the effective flow speed. The filter has an
adaptive step that improves the estimation process of the
spatial-temporal variations of the flow speed.

In simulation studies, it was found that the flow speed esti-
mates are satisfactory for flow speed values between 1m/s
and 2.0m/s. Beyond these flow speed values, the estimator
algorithm needs to be refined to overcome numerical insta-
bility that may come from the polynomial approximation
of the power coefficient. The current estimator tuning will
be explored for feedback control in a future paper.
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