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A B S T R A C T

The spherical pendulum is a mathematically interesting model that has been studied extensively in the past.
In the field of energy harvesting however, the pendulum energy harvesters are generally confined to planar
motions. This minimisation of the available degrees of freedom potentially limits the areas of application of
the energy harvester, and certainly its overall capability. In this work an omnidirectional pendulum energy
harvester is proposed in the form of a two degree of freedom system which has the potential to harvest energy
from motions along the three axes of translation and from the three corresponding rotations about those axes.
The dynamics of such an energy harvester are examined experimentally for different power take-off modes and
are subsequently compared to numerical predictions from an analytical model. An optimal operational point
is proposed for the harvester and it is shown how an up-sweep and down-sweep of the excitation frequency
can significantly broaden the operational range of the energy harvester by up to 130%.
1. Introduction

The work compares some experimental results with the associ-
ated numerical predictions for an omnidirectional pendulum energy
harvester. The numerical results were based on the solution of a dif-
ferential equation model which was derived in a previous article that
numerically examined the dynamics of the spherical pendulum energy
harvester excited in all three orthogonal directions [1]. This numerical
analysis was supported by bifurcation diagrams and Poincaré sections
and concluded with different graphed results that showed the mean
power take-off over the different excitational parameters of the en-
ergy harvester. The power take-off term was constructed to model
an imposed mechanical load applied to the omnidirectional pendulum
energy harvester, operating every half cycle in a manner similar to the
approach taken in the work of Watt and Cartmell [2] and McRobb [3].
The previously published article [1] concludes with an optimisation
process that was proposed to simplify the selection of optimal excitation
parameters for the optimal power output of the pre-prototype. For the
numerical examination previously published articles from the literature
are found to be of importance. The fundamentals of the dynamics of
the spherical pendulum and a simple pendulum with different forcing
conditions can be attributed to Miles [4–7] and they were subsequently
examined by Olsson [8,9]. Tritton examined the trajectories of the
experimentally forced spherical pendulum [10]. Other experimental
studies on the spherical pendulum were undertaken by Markeyev [11]
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and Pospíšil, Fischer and Náprstek [12]. Articles in which observa-
tions of chaotic or quasi-periodic dynamics were carried out for the
spherical pendulum are attributable to Bryant [13], Kana and Fox [14],
Cartwright, Julyan, and Tritton [15], Náprstek and Fischer [16], Litak
et al. [17], and Leung and Kuang [18].

The experimental rig that was used for this work applies the prin-
ciple of electromagnetic energy conversion [19] in the form of two DC
motor-generators arranged in such a way that they can be used to con-
vert the angular motions of the pendulum into electrical energy. As the
direction of rotation of the DC motor-generators changes periodically a
form of rectification is required to get a useful form of electrical energy
output. The works of Vullers et al. [20], Shen, Qiu, and Balsi [21],
Chen et al. [22], and Elmes et al. [23] discuss the implementation of
electrical rectification for vibration-based energy harvesters. Notewor-
thy previous work in the field of energy harvesting that incorporated
an experimental or numerical analyses of a simple pendulum energy
harvester was published by Borowiec et al. who examined a pendulum
energy harvester excited by random white noise [24]. Cartmell and
Lawson showed that unwanted vibration could be absorbed with an
absorber element in the form of an inverted pendulum by arranging for
autoparametric interaction between two oscillating components [25].
The energy harvesting from a parametrically forced pendulum in a ver-
tical direction was examined by Marszal et al. [26]. An electromagnetic
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Fig. 1. Diagram of a spherical pendulum with the kinematic relations and the conversion of numerical coordinates 𝜃 and 𝜙 to the numerically calculated and transformed
experimental coordinates 𝜃𝑛14 and 𝜃𝑛23 and showing the limits of the spherical motion reached by the bob (dotted line).
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endulum energy harvester that mechanically rectifies the motion was
ntroduced by Liang et al. [27]. A counterweight pendulum energy
arvester excited in a horizontal direction was proposed by Graves
t al. [28]. Zhang et al. examined an autoparametric pendulum energy
arvester [29].

Spherical pendulum energy harvesters are represented less fre-
uently in the literature compared to simple pendulum energy har-
esters. Anurakpandit, Townsend and Wilson [30] observed that as well
nd noted that a two degree of freedom pendulum energy harvester
otentially has the ability to harvest more of the excitational energy.
oreover, efficient energy harvesting is possible regardless of the

irection of excitation. Anurakpandit, Townsend and Wilson proposed a
imballed pendulum energy harvester with two degrees of freedom and
xamined it experimentally and numerically [30]. Another interesting
oncept for a pendulum energy harvester was the biaxial-pendulum
ntroduced by Wang, Lou, and Zhu [31]. The design of the pendu-
um energy harvester incorporated two shafts and therefore allowed
nrestricted movement of the hemispherically shaped pendulum. The
nergy was converted to electricity by coils and magnets that were
itted to the hemispherically shaped pendulum. The system was excited
y a six degree of freedom platform, and even with an arbitrary exci-
ation direction and excitation frequency the energy harvester showed
n energy output.

It is evident that single degree of freedom energy harvesters are
isproportionately present in the literature when compared with those
xploiting more degrees of freedom. This gap is addressed in the work
resented in this article in which an omnidirectional pendulum energy
arvester, whose dynamics can be represented by two generalised
oordinates, is investigated experimentally. The responses of the ex-
erimental system are subsequently compared with theoretical results
btained from numerical integrations of the derived nonlinear ordinary
ifferential equations.

. Methodology

.1. Mathematical model

The derivation of the mathematical model for the omnidirectional
endulum energy harvester with an active power take-off term is
2

ummarised in an earlier journal article related to this work [1]. f
In Fig. 1 the schematic model of the spherical pendulum energy har-
vester is shown. The local coordinate system (𝑜, 𝑥, 𝑦, 𝑧) is attached to the
pivot of the pendulum. The excitations 𝑢(𝑡), 𝑣(𝑡), and 𝑤(𝑡) are referred to
he global coordinate system (𝑂,𝑋, 𝑌 ,𝑍). The excitations are defined
ith the excitation frequencies by the symbols 𝛺𝑢, 𝛺𝑣, and 𝛺𝑤 and the
xcitation amplitudes with 𝑈0, 𝑉0, and 𝑊0. 𝜃 and 𝜙 are the generalised
oordinates chosen for the numerical calculations. They are defined
ith the necessary kinematic relations shown in Fig. 1. In the figure

he length 𝑙 of the pendulum arm and the mass 𝑚 of the pendulum bob
s shown. Additionally, another pair of coordinates 𝜃𝑛14 and 𝜃𝑛23 are
hown in Fig. 1. Generalised coordinates 𝜃𝑛14 and 𝜃𝑛23 relate directly
o the experimental model, on the basis that this system uses two
ffset orthogonal shafts to provide the necessary geometrical freedom
or spherical motion, within the practical constraints of building a
roperly functioning system in the laboratory. The subscript n indicates
hat these coordinates are also used in the numerical analysis, for
irect comparison purposes. This subscript is absent on the coordinates
ssociated with the experimental system. The relation between the
umerical and experimental coordinates is shown in Eqs. (1) and (2).

14 = 𝜃𝑛14. (1)

23 = 𝜃𝑛23. (2)

his notation allows a clear distinction to be made between discussions
nvolving the experimental coordinates and the coordinates that are
ttributed to the numerical calculation. By observing the kinematic re-
ations in Fig. 1 the generalised coordinates 𝜃 and 𝜙 can be transformed
n the coordinates 𝜃𝑛14 and 𝜃𝑛23, see Eqs. (3) and (4).

𝑛14 = 𝜃 sin(𝜙). (3)

𝑛23 = 𝜃 cos(𝜙). (4)

The dimensionless ordinary differential equations for the omni-
irectional pendulum energy harvester were derived by assembling
he potential and kinetic energy expressions based on the kinematic
elations shown in Fig. 1 and subsequently by substituting them ap-
ropriately into Lagrange’s equation of the second kind. This gives the
ifferential Eqs. (5) and (6). Where the parameters 𝜉𝜃 and 𝜉𝜙 define the
amping ratios, the parameter 𝜔𝑛 defines the linear undamped natural
requency, and the parameter 𝑇 defines the power take-off torque.
𝜃
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For a detailed summary of the derivation of the ordinary nonlinear
differential equations of motion for the system the preceding article [1]
and PhD Thesis (Chapter 4) [32] is recommended.

𝜃̈(𝑡) + 2𝜉𝜃𝜔𝑛𝜃̇(𝑡) +
𝑔
𝑙
sin(𝜃(𝑡))

− sin(𝜃(𝑡)) cos(𝜃(𝑡))𝜙̇(𝑡)2 =

−
𝑈0𝛺2

𝑢
𝑙

cos(𝜃(𝑡)) sin(𝜙(𝑡)) cos(𝛺𝑢𝑡)

+
𝑉0𝛺2

𝑣
𝑙

cos(𝜃(𝑡)) cos(𝜙(𝑡)) cos(𝛺𝑣𝑡)

+
𝑊0𝛺2

𝑤
𝑙

sin(𝜃(𝑡)) cos(𝛺𝑤𝑡)

−
2𝑇𝜃
𝜋𝑚𝑙2

tan−1
(

𝜃̇(𝑡)
0.01

)

.

(5)

𝜙̈(𝑡) +
2𝜉𝜙𝜔𝑛

sin2(𝜃(𝑡))
𝜙̇(𝑡) +

2𝜃̇(𝑡) cos(𝜃(𝑡))𝜙̇(𝑡)
sin(𝜃(𝑡))

=

−
𝑈0𝛺2

𝑢 cos(𝜙(𝑡)) cos(𝛺𝑢𝑡)
𝑙 sin(𝜃(𝑡))

−
𝑉0𝛺2

𝑣 sin(𝜙(𝑡)) cos(𝛺𝑣𝑡)
𝑙 sin(𝜃(𝑡))

.

(6)

To avoid scaling effects dimensionless parameters are introduced,
see Eq. (7).

𝜏 = 𝜔0𝑡, 𝜔2
0 =

𝑔
𝑙 , 𝑃𝜃 = 𝑇𝜃

𝑚𝑙2𝜔2
0
,

𝑎𝑢 =
𝑈0
𝑙 , 𝑎𝑣 = 𝑉0

𝑙 , 𝑎𝑤 = 𝑊0
𝑙 ,

𝛽𝑣 = 𝛺𝑣
𝜔0

, 𝛽𝑤 = 𝛺𝑤
𝜔0

, 𝛽𝑢 =
𝛺𝑢
𝜔0

,

𝛼𝜃 = 2𝜉𝜃
𝜔𝑛
𝜔0

, 𝛼𝜙 = 2𝜉𝜙
𝜔𝑛
𝜔0

.

(7)

These as-derived equations are then nondimensionalised to give the
dimensionless ordinary differential equations in terms of the coordi-
nates 𝜃 in Eq. (8) and 𝜙 in Eq. (9).

𝜃̈(𝜏) + 𝛼𝜃 𝜃̇(𝜏) + sin(𝜃(𝜏))

− sin(𝜃(𝜏)) cos(𝜃(𝜏))𝜙̇(𝜏)2 =

− 𝑎𝑢𝛽
2
𝑢 cos(𝜃(𝜏)) sin(𝜙(𝜏)) cos(𝛽𝑢𝜏)

+ 𝑎𝑣𝛽
2
𝑣 cos(𝜃(𝜏)) cos(𝜙(𝜏)) cos(𝛽𝑣𝜏)

+ 𝑎𝑤𝛽
2
𝑤 sin(𝜃(𝜏)) cos(𝛽𝑤𝜏) −

2𝑃𝜃
𝜋

tan−1
(

𝜃̇(𝜏)
𝜖𝑟

)

.

(8)

𝜙̈(𝜏) +
𝛼𝜙

sin2(𝜃(𝜏))
𝜙̇(𝜏) +

2𝜃̇(𝜏) cos(𝜃(𝜏))𝜙̇(𝜏)
sin(𝜃(𝜏))

=

− 𝑎𝑢𝛽
2
𝑢
cos(𝜙(𝜏))
sin(𝜃(𝜏))

cos(𝛽𝑢𝜏)

− 𝑎𝑣𝛽
2
𝑣
sin(𝜙(𝜏))
sin(𝜃(𝜏))

cos(𝛽𝑣𝜏).

(9)

2.2. Experimental rig

The experimental rig with the omnidirectional pendulum energy
harvester is shown in Fig. 2. In Fig. 2(b) the pivoting suspension and
power-take-off sub-systems are shown, these being the most critically
important components of the harvester. The power-take-off consists of
four small electric generators with coaxial gearboxes and integrated
shaft encoders. There is one symmetrically configured pair of gener-
ators per axis, and the electrical loads presented by the generators
act back on the harvester as mechanical loads on each shaft. The
two shafts are designated by subscripts 14 and 23 and their axes are
orthogonal. The experimental rig was built with a limited budget and
therefore the motivation for this experiment was mechanical simplicity
and economy. To that end a sensible design was selected that uses
the two shafts already described and is therefore represented by the
two coordinates 𝜃14 and 𝜃23. The pendulum pivot and power take-
ff system is mounted within a protective steel cage to provide a
3

p

highly rigid support. The energy harvester is attached to a shaker
table supplied by Centrotecnica SRL and this is shown in Fig. 2(a).
The shaker table can excite test objects through excitation frequen-
cies from static up to 100 Hz. The maximum excitation amplitude
of 14.3 cm is given by the physical restrictions of the linear motors
in the shaker table. Noting that the maximum excitation amplitude
can only safely be reached for test objects that are small in mass
and size and for low excitation frequencies. Because of the large mass
and the geometrical size of the energy harvester rig, noting its overall
dimensions of 0.75 m × 0.75 m × 1.12 m, the maximum excitation
parameters cannot be achieved and the maximum excitation amplitude
is therefore restricted to a value of 5.0 cm. This is still sufficient to run
the harvester properly and to generate results of considerable interest.
The energy harvester’s pendulum arm has a length of 0.35 m. The
pendulum length is a pragmatic choice made in line with the adopted
overall scaling of the experimental rig. The bob mass slightly exceeds
1 kg, at a nominal 1.32 kg, and this ensures that sufficient restoring
torque is available, even at the lowest velocities. The pendulum rod
can be easily replaced to adapt the energy harvester to other exci-
tation frequencies, and pendulum lengths from 0.1 m to 0.75 m can
be accommodated within the framework of the system. The damping
ratio is solely attributed to the friction within the energy harvester
and a tiny amount of aerodynamic dissipation. The calculation of the
damping ratio is achieved by observing the oscillation decay process for
each shaft and then obtaining the damping ratios from the calculated
logarithmic decrement. The measured damping ratios are 𝜉14 = 0.0373
nd 𝜉23 = 0.0339, respectively. The power take-off in the high power
ake-off mode is entirely represented by the last term in Eq. (8).

In this work, both low and high power take-off modes are examined.
he defining difference between these two modes is based on the
mount of energy that is converted within the energy harvester. A load-
esistor is connected to each generator for this purpose, see Fig. 3.
alues of 10 kΩ for the low power take-off mode and 10 Ω for the
igh power take-off mode are selected. The terms high and low power
ake-off are therefore just extremes of a continuum. We note that the
erm ‘mode’ as used here does not imply a flexural mode of vibration
nd instead refers to a basis of operation. The circuit in Fig. 3 shows a
oltage divider, see the blue double dotted dashed frame, that is used
o measure the voltage output. With both switches (S1 and S1) being
pened, as shown in Fig. 3, the parallel series resistor is disconnected
nd therefore the energy harvester operates in the low power take-
ff mode, see the green dotted dashed frame. The load resistor (𝑅𝑆 )
nd the resistors for the voltage bridge divider are in line in this
etup. Therefore, the total resistance in the low power take-off mode
s 𝑅low = 47.5 kΩ. With this high total resistance the overall current
utput is very small. For the high power take-off mode both switches
S1 and S2) are closed, see the purple dotted frame. This results in a
hortening of the resistor 𝑅𝑆 and additionally, the current is divided
etween both branches in the circuit. With the resistors in the different
ranches being parallel the overall resistance of the circuit has a value
f 𝑅high = 9.997 Ω in the high power take-off mode. This results
n a high current output and therefore a high power output of the
nergy harvester. The circuit shown in Fig. 3 is used for each individual
enerator. Note that because of the different resistor values the voltage
utput 𝑉out needs to be multiplied in the microcontroller by a factor of
in the high power take-off mode and by 6.33 in the low power take-off
ode. Additionally, the current is measured once for each shaft right

fter the output of the generators 3 and 4 and in front of the shown
ircuit. After the post-processing of the voltage output as described
n Fig. 9 the power output of the energy harvester for each shaft is
alculated with Eq. (10).

14 = 2 𝑉14 𝐼4, 𝑃23 = 2 𝑉23 𝐼3. (10)

Fig. 4 shows the top view of the omnidirectional pendulum energy
arvester mounted on the shaker table. The cage of the omnidirectional

endulum energy harvester has been removed to increase clarity. The
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Fig. 2. Experimental rig.
Fig. 3. Circuit defining the low and high power take-off modes and the measurement
positions for voltage and current.

shaker table excites the system horizontally, as shown in Fig. 4 . The
two shafts (shaft 14 and shaft 23) and their corresponding coordinates
𝜃14 and 𝜃23 are shown in Fig. 4 . The motor-generators M1 to M4 are
connected to the shafts. The generators M1 and M2 are used as points
of reference to define the direction of rotation for the coordinates. This
means that when the pendulum bob is deflected, as shown in Fig. 4, in a
positive 𝑥-direction and a negative 𝑦-direction both coordinates show a
positive deflection value. Another adjustment parameter is the offset
angle 𝛼𝑜𝑓𝑓𝑠𝑒𝑡 which defines the static angular position by which the
omnidirectional pendulum energy harvester is mounted on the shaker
table. An offset angle of 0◦ is equivalent to a simple pendulum energy
harvester where the only oscillating shaft is shaft 23, and with an offset
angle of 90◦ a simple pendulum energy harvester is observed where
only shaft 14 is oscillating. Therefore, for the work reported in this
article the offset angle is set to a value of 45◦, as shown in Fig. 4 to
ensure participation of both shafts.
4

Fig. 4. Top view of the experimental rig mounted on the shaker table with the
pendulum deflected to the bottom.

Fig. 5. Block diagram of the microcontroller, shaker table, and post-processing process.
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Fig. 6. Qualitative deflection values of the generators 1 and 4.

Fig. 5 shows a block diagram for the experimental equipment and
he post processing. The figure shows one of the four generators and
ncoders as an example connected to the microcontroller. The personal
omputer connects the shaker table with a CAN to a USB cable, see the
urple dotted dashed frame. This transfers the input signal as a text file
o the shaker table. After the excitation process is performed the shaker
able sends back an output signal giving the real position of the shaker
able at any point during the experiment. Additionally, the computer
s connected to a suitable microcontroller, which is connected to the
oltage bridges, see Fig. 3, and the encoders, see dotted green frame.
he microcontroller processes the input signals and gives a text file
s output with different columns for time, encoder position, voltage,
nd current output for different generators. These files are then used in
he post-processing, see the blue double dotted dashed frame, to create
requency responses as described in greater detail in the following.

.3. Post-processing of the experimental data

The generators are connected to a suitable microcontroller that
easures the output voltage of each of the generators. Additionally, the

enerators are equipped with inbuilt encoders that measure the angular
eflections of each of the generator shafts. The microcontroller stores
he pulse trains from the encoder and gives an output of the summed-
p encoder values every 12 ms. This rate of repetition is a result of the
imiting factor of the microcontroller the baud rate.

Since the two generators on each shaft are facing each other the
utput of each of the encoders and measured voltage are oppositely
igned. This results in a phase shift between the two generator values
hat needs to be addressed, this work uses an artificial post-processing
rocess. Fig. 6 is used to describe this process. It shows the deflection
alues of generator 4, generator 1, and the additive inversed deflection
f generator 4. Note that in this work it is defined that the output
alues of the generators 3 and generators 4 are always those additive
nversed. With this inversion the deflection over time outputs of the
enerators on the shaft does not have a phase shift anymore. They are
ubsequently arithmetically averaged to get the overall deflection value
f shaft 14 the coordinate 𝜃14. The same procedure is used with the
eflection values connected to shaft 23. For the voltage output values
he same artificial procedure is applied, this is discussed later see Fig. 9.

The experimental data is processed and the frequency responses are
hown in the results section, see Figs. 11 and 12 which is discussed
ater. Some clarifications need to be made here about the process
ehind the generation of the figures. The frequency responses contain
hree different parts the linear part of the frequency response, the
ower nonlinear jump region and the upper nonlinear jump region,
ee Fig. 11. The are determined with three different measurement
ethods and are shown with different symbols and colours in the fre-

uency responses. The post-processing process to obtain these regions
s described in greater detail in the following. The linear part of the
5

frequency response (blue circles) is measured with an excitation input
signal that applies a constant excitation frequency (𝛺) for 200 s, see
Fig. 7(b). Afterwards, the maximum and additive inversed minimum
deflection values of the coordinates 𝜃14 and 𝜃23 are arithmetically
averaged over the last 20 s to remove unwanted transient features of
the response and emphasise the more persistent steady-state features
instead, see Fig. 7(a). It is clear that the transient response charac-
teristics are no longer present. In Fig. 7(b) the excitation frequency
is shown over time. It is visible that the excitation frequency is held
at a constant level for the whole experiment. These measurements are
repeated at least once. These arithmetically mean maximum deflection
values from each individual measurement are stored into a data file for
the frequency response, and then the response for the next excitation
frequency is measured. This process is repeated until the pre-defined
frequency range has been captured. This averaging over twenty seconds
ensures that the measurement points all represent steady-state response
values. Henceforth these frequency responses are referred to as the
linear part of the frequency responses or linear frequency response. The
other two types of points shown in the figures are frequency down-
sweeps (orange triangles) and frequency up-sweeps (red diamonds)
where the excitation frequency is reduced or increased, at a constant
linear rate, see Fig. 8. These results then form the lower and upper
nonlinear jump regions in the frequency responses, see Fig. 11. Note
that the defining parameter is the time period of the sweep, in this case
200 s. This results in a changing sweep rate depending on the starting
and end frequency of the sweep. Mathematically for a determination
of jump down points the sweep rate needs to be infinitesimal low.
Unfortunately, practically this is not possible therefore the following
sweep rates are selected as a compromise. The sweep rate for the
low power take-off mode is −0.012 Hz/min for the down-sweep and
0.039 Hz/min for the up-sweep. In the high power take-off mode the
sweep rate for the down-sweep is −0.024 Hz/min and 0.042 Hz/min
for the up-sweep. Subsequently, the up- and down-sweeps are divided
into twenty elements. Fig. 8(a) shows the division of an up-sweep in
twenty elements as an example for the coordinate 𝜃23. In Fig. 8(b)
the linear increase of excitation frequency over time is shown. The
excitation time signal is divided into twenty elements and the ele-
ments are then subsequently mirrored with the linear increase of the
excitation frequency and therefore transform into frequency bandwidth
elements. This shows that an element in the time domain can directly
be transformed to the bandwidth element in the frequency domain
for a linear increase in the excitation frequency during the sweep. To
consider an example, in Fig. 8(a) the energy harvester is excited with
a frequency up-sweep with a starting frequency of 0.82 Hz and an
end frequency of 0.96 Hz. The difference between the two excitation
frequencies is therefore 𝛥𝛺 = 0.14 Hz. Because of the previously men-
tioned linear increase rate of the excitation frequency over the 200 s
of excitation period 𝛥𝛺 can be divided by 20, which is the quantity
of the bandwidth elements. Therefore, a bandwidth element has a
value of 0.007 Hz. Subsequently, the maximum and additive inversed
minimum deflections of the experimental coordinates are stored and
then arithmetically averaged for each bandwidth element. The result
of this calculation is the maximum deflection at the position in the
middle between the two borders of the bandwidth element. At the
start of the frequency sweeps the dynamics of the energy harvester
undergo a transient response and therefore in some cases the deflection
output is lower or higher than in the linear frequency response, see
Fig. 8(a) as an example. These points that clearly can be attributed to
the transient dynamics are shown in the experimental result figures
for the sake of completeness but are not discussed in greater detail
since they do not directly affect the operational range of the energy
harvester. The starting points of the sweeps are marked with black
circles, see Figs. 11 and 12. The linear operational range is defined as
the frequency range between the two local maxima of the frequency
response for the coordinate 𝜃14, see Fig. 11(a) where this is discussed in

greater detail. The linear operational range is branded by the presence



International Journal of Non-Linear Mechanics 159 (2024) 104588P. Sommermann and M.P. Cartmell

o
o
a
i
p
l
i
u
d

B

s
t

Fig. 7. Definition of the time period to calculate the linear part of the frequency response.
Fig. 8. Definition of the bandwidth element for the up- and down-sweeps, shown here up-sweep 0.82 Hz to 0.96 Hz.
a
r
c
F
I
t
p
f
a
A
r
f
c

f the lower and upper nonlinear jump region, which occur because
f frequency sweeps. Since the absolute values of these jump regions
nd linear operational range are low in value a dimensionless quantity
s introduced in Fig. 11 to see the broadening more user-friendly in
er cent. In accordance with the previously mentioned definition the
inear operational range in the low power take-off is 0.08 Hz wide and
n the high power take-off mode it is 0.11 Hz wide. These values are
sed as the basis for the calculation of the broadening of the up- and
own-sweeps in percentage terms, see Eqs. (11) and (12).

roadeningdown-sweep =
Lower jump region

Linear operational range 100. (11)

Broadeningup-sweep =
Upper jump region

Linear operational range 100. (12)

The post-processing for the voltage output is similar to the one
of the deflection values. There are subtle differences however which
are discussed in the following. The measuring position of the voltage
output for each of the generators is shown in Fig. 3. The microcontroller
however can only measure positive voltage output. To get an oscillating
signal for 𝑉14 the opposing orientation of the two generators of the shaft
is used. When the voltage output of generator 1 shows a voltage output
the voltage output of generator 4 shows in theory the additive inversed
value. Since negative values unfortunately cannot be measured with
this setup, the output that the microcontroller shows for generator 4
is equal to zero and vice versa. This can be exploited in order to
artificially construct a voltage output value for the shaft. This is done by
subtracting the voltage output of generator 4 from the voltage output
of generator 1 𝑉14 = 𝑉1 − 𝑉4. This gives an oscillating voltage output
ignal for the shaft with the direction of oscillation being equivalent to
he defined direction of rotation. The same procedure is done with the
6

generators 2 and 3 where the voltage output of generator 3 is subtracted
from the voltage output of generator 2. In Fig. 9 the post processing
of the voltage output 𝑉14 as an example. The voltage output 𝑉14 is
rtificially rectified in a first step. This artificial process mimics a diode
ectification as shown in Fig. 9(b). Afterwards the arithmetic mean is
alculated from the rectified voltage output. This is done over the in
igs. 7 and 8 defined bandwidth elements and steady-state elements.
n a further step the frequency responses for the voltage outputs with
he inclusion of the up- and down-sweeps are created as described
reviously. The arithmetic mean rectified value is indicated in the
requency responses with the notation ‘avg.’. The authors selected an
rithmetic mean rectified voltage over a RMS voltage to show that the
C-voltage output of the energy harvester is artificially undergoing a
ectification progress to a DC-voltage, see Fig. 9(b). With the factor
orm the RMS values can be calculated, for a sine function this is
alculated with 𝑅𝑀𝑆(𝑉14) = 𝑎𝑣𝑔.𝑉14 × 1.11 [33].

It is important to note that the voltage output of a DC generator is
dependent on the rate of revolution and therefore on the velocity [34,
35]. Therefore, it is possible that the global maximum deflection value
is not at the same position as the global maximum voltage output.
This is shown in greater detail in the results section in Fig. 12. The
linear relation between the arithmetic mean rectified velocity of the
coordinate 𝜃14 over the arithmetic mean rectified voltage output 𝑉14 is
shown in Fig. 10. The data used for this plot is taken from Figs. 12(c)
and 12(e). To only observe the relation between the avg. 𝜃̇14 and
avg. 𝑉14 in the operational area it is defined that voltage outputs with
a value lower than 1.4 V are not observed. The trend line and function
of the relationship between avg. 𝜃̇14 and avg. 𝑉14 is calculated with a
linear fit model and shown in Fig. 10.
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Fig. 9. Definition of the voltage output of the energy harvester.
Fig. 10. Arithmetic mean rectified voltage over arithmetic mean rectified velocity of
shaft 14 in the high power take-off mode.

3. Results

3.1. Experimental results

In Fig. 11 frequency responses of the coordinates 𝜃14 and 𝜃23 and
the associated arithmetic mean rectified voltage outputs for the energy
harvester are shown. The two parameters were selected for practical
reasons. From a design point of view it is crucial to know the maximum
deflections of the shafts to build the protective cage with enough
clearance for the pendulum bob to prevent a collision. Additionally,
the voltage output is needed for the calculation of the power output
of the energy harvester. Note that the velocity of the coordinates 𝜃14
and 𝜃23 is proportional to the voltage output 𝑉14 and 𝑉23, see Fig. 10.
The crucial point here to note that it is observed that in the linear
operational range and the lower and upper nonlinear jump region
an increase in the excitation frequency dose increase the oscillation
frequency of the pendulum. The resistor value was selected so that
the energy harvester is operating initially in the low power take-off
mode. The omnidirectional pendulum energy harvester is excited with
an excitation amplitude of 𝐴 = 32 mm, this is the maximum excitation
amplitude that can safely be used with the harvester rig, as set up,
before internal collisions occur.

In Fig. 11(a) the frequency response for the coordinate 𝜃14 is shown.
The linear operational region (blue arrow) is defined as the area
between the two maxima of the linear part of the frequency response
of the coordinate 𝜃14. In this region the coordinate 𝜃14 of the energy
harvester shows high deflections and therefore the efficiency of the
energy harvester is high. As mentioned before the linear operational
range is the area to which the upper and lower nonlinear jump regions
7

are referred to in order to calculate the broadening, see Eqs. (12) and
(11). The bandwidth and position of the linear operational range of
the coordinate 𝜃14 is directly applied to the coordinate 𝜃23 for reasons
of simplicity.

The frequency response for the coordinate 𝜃14 is shown in Fig. 11(a).
The linear part of the frequency response (blue circles) shows a steep
rise in deflection for an excitation frequency from 0.75 Hz to 0.78 Hz.
The maximum deflection for the coordinate 𝜃14 of 43.20◦ is reached
at an excitation frequency of 0.78 Hz. With a further increase in the
excitation frequency the deflection of the coordinate 𝜃14 decreases and
shows a local minimum of 32.29◦ at a value for the excitation frequency
of 0.84 Hz. After the local minimum is passed the deflection continues
to increase and reaches a local maximum deflection of 34.85◦ for
an excitation frequency value of 0.86 Hz. With a further increase in
the excitation frequency the deflection of the coordinate 𝜃14 jumps
down to a value of 17.76◦ and continues to decrease as the excitation
frequency increases. The down-sweep (orange triangles) starts at an
excitation frequency of 0.789 Hz where the coordinate 𝜃14 shows a
deflection value that is lower than the linear frequency response. The
following deflection values of the down-sweep are slightly higher than
the linear frequency response. Additionally, the higher deflection is
visible for a broader range of the excitation frequencies. The maximum
deflection of the down-sweep of 51.58◦ is reached at a value of the
excitation frequency of 0.763 Hz and is, therefore, 0.017 Hz lower than
at the lower limit of the linear operational range. This is equivalent
to a broadening of the operational range of 21.25%, as defined in
Eq. (11). These softening characteristics are typical of the dynamics
of a pendulum based system. The starting point of the up-sweep (red
diamonds) is at an excitation frequency of 0.84325 Hz. With an increase
in the excitation frequency the deflection of the coordinate 𝜃14 increases
and reaches its maximum deflection of 47.97◦ at a value of the ex-
citation frequency of 0.94725 Hz. Therefore, the up-sweep broadens
the operational range by 0.08725 Hz which is equivalent to 109.06%
broadening, see Eq. (12) where the linear operational range is used
as base value. After the maximum deflection is passed the deflection
slightly decreases until jumping down to a value of 13.84◦ at a value
of the excitation frequency of 0.96025 Hz. With the hardening and
softening characteristics of the up- and down-sweep the operational
range of the coordinate 𝜃14 is overall drastically increased by more than
double the base value by 130.31% (0.10425 Hz).

In Fig. 11(b) the frequency response for the coordinate 𝜃23 is shown.
The linear frequency response (blue circles) sees a rising deflection for
the first three measurement points and then the response drops to a
value close to zero until the excitation frequency of 0.8 Hz is exceeded.
With a further increase in the excitation frequency the deflection of
the coordinate 𝜃23 rises and reaches its maximum deflection of 36.34◦

at a value for the excitation frequency of 0.87 Hz. The deflection of

the coordinate 𝜃23 decreases after the maximum is passed with an
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Fig. 11. Frequency responses for the omnidirectional pendulum energy harvester in the low power take-off mode with up- and down-sweeps. The parameters of the omnidirectional
pendulum energy harvester are: 𝑙 = 0.35 m, 𝑚 = 1.32 kg, 𝛼𝑜𝑓𝑓𝑠𝑒𝑡 = 45◦, 𝐴 = 32 mm, 𝜉14 = 0.0373, and 𝜉23 = 0.0339. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)
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ncrease in the excitation frequency. At an excitation frequency of
.7875 Hz the starting point of the down-sweep is circled in black. With
further decrease of the excitation frequency in the down-sweep the

eflection values of the coordinate 𝜃23 decrease first and then gradually
ncrease. However, the deflection values of the down-sweep show lower
alues than the linear frequency response for most of the excitation
requency range during the down-sweep. There is no broadening of
he operational area of the coordinate 𝜃23 observed during the down-
weep. The up-sweep starts at an excitation frequency of 0.84325 Hz
here the deflection of the coordinate 𝜃23 shows a lower value than the

inear frequency response. When the excitation frequency is increased
urther the deflection of the coordinate 𝜃23 continues to increase and
eaches its maximum value of 47.44◦ at an excitation frequency of
.94725 Hz. This is at the same position as the maximum deflection
f the coordinate 𝜃14. When the excitation frequency in the up-sweep
s increased further and after reaching the maximum deflection the
eflection decreases slightly in the next measurement point and then
umps down to 16.89◦ at an excitation frequency of 0.96025 Hz.
he up-sweep shows a value for the upper nonlinear jump region of
.08725 Hz and overall this results in a higher deflection by 11.10◦.
his is equivalent to a broadening by 109.06% compared to the linear
perating range as defined in Eq. (12).

Fig. 11(c) shows the arithmetic mean rectified voltage output of 𝜃14
n the frequency domain. The linear part of the frequency response
ollows the linear frequency response in Fig. 11(a) of the coordinate
14 well. The voltage output shows its first maximum of 1.44 V at
n excitation frequency of 0.78 Hz. With a further increase in the
xcitation frequency the voltage output decreases and reaches a local
inimum of 1.20 V at an excitation frequency of 0.84 Hz. The voltage

utput increases onwards and shows a local maximum of 1.31 V at an
xcitation frequency of 0.86 Hz. The mentioned voltage maxima and
8

inimum are observed at the same excitation frequency as those of
he coordinate 𝜃14. Similar to the linear frequency response the down-
weep shows good accordance with the coordinate 𝜃14 and reaches its
aximum of the arithmetic mean rectified voltage output of 1.647 V

or a value of the excitation frequency of 0.765 Hz. The up-sweep in
he voltage output in the frequency domain shows the same character-
stics as the up-sweep of the coordinate 𝜃14 with the maximum of the
rithmetic mean rectified voltage output of 1.77 V reached at the same
osition as the coordinate 𝜃14 at an excitation frequency of 0.94725 Hz.
ince the maximum voltage outputs are observed at the same position
s the ones for the coordinate 𝜃14 the broadening of the operational
ange is identical.

In Fig. 11(d) the voltage output in the frequency domain for the
oordinate 𝜃23 is shown. The linear frequency response of the arithmetic
ean rectified voltage output (avg. 𝑉23) shows similar results to that of

he coordinate 𝜃23 in Fig. 11(b). The maximum for the arithmetic mean
ectified voltage output of 1.34 V is reached at an excitation frequency
f 0.87 Hz. The frequency down-sweep starts at an excitation frequency
f 0.7875 Hz and follows the down-sweep of the coordinate 𝜃23 well.

At an excitation frequency of 0.84325 Hz the up-sweep starts. With
an increase in the excitation frequency the arithmetic mean rectified
voltage output increases and reaches its maximum of 1.78 V for a value
of the excitation frequency of 0.94725 Hz at the same position as the
maximum deflection of the coordinate 𝜃23 and is therefore identical.
With a further increase in the excitation frequency the arithmetic mean
rectified voltage output decreases slightly and jumps down to a value
of 0.88 V in the next step.

Fig. 12 shows frequency responses and the voltage output in the
frequency domain for the omnidirectional pendulum energy harvester
in the high power take-off mode. Because of the higher power take-off a
higher excitation amplitude is needed to see similar deflection values as
in the frequency responses for the low power take-off mode. Therefore,

the excitation amplitude is set to 𝐴 = 48 mm. This is the maximum
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Fig. 12. Frequency responses for the omnidirectional pendulum energy harvester in the high power take-off mode with up- and down-sweeps. The parameters of the omnidirectional
endulum energy harvester are: 𝑙 = 0.35 m, 𝑚 = 1.32 kg, 𝛼𝑜𝑓𝑓𝑠𝑒𝑡 = 45◦, 𝐴 = 48 mm, 𝜉14 = 0.0373, and 𝜉23 = 0.0339.
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xcitation amplitude that can safely be used with the harvester rig in
he high power take-off mode before internal collisions occur. From an
nergetic point of view the increase in excitation amplitude increases
he input energy in the system by a factor of 2.25.

In Fig. 12(a) the frequency response for the coordinate 𝜃14 is shown.
he linear frequency response sees a steep rise over the first five
easurement points and reaches its maximum deflection of 51.77◦

t an excitation frequency of 0.765 Hz. With a further increase in
he excitation frequency the deflection of the coordinate 𝜃14 decreases
nd reaches a local minimum of 38.22◦ for an excitation frequency
f 0.84 Hz. The deflection of the coordinate 𝜃14 continues to increase
ith a further increase in the excitation frequency and reaches a second

ocal maximum of 40.91◦ at an excitation frequency of 0.875 Hz. The
own-sweep of the coordinate 𝜃14 starts at an excitation frequency of
.808 Hz. With a decrease in the excitation frequency the deflection
ontinues to increase and reaches a maximum of 53.14◦ at an excitation
requency of 0.76 Hz. The down-sweep increases the operational range
9

f the energy harvester slightly by 4.54% (0.005 Hz). The up-sweep
tarts at an excitation frequency of 0.8235 Hz. With an increase in the
xcitation frequency the deflection of the coordinate 𝜃14 follows the
inear frequency response well. When the linear operational range sees

jump down to a smaller deflection value the up-sweep continues to
ncrease in deflection and reaches its maximum deflection of 48.25◦ at
n excitation frequency of 0.9355 Hz. With a further increase in the
xcitation frequency the deflection decreases slightly and then jumps
own to a value of 14.73◦ in the next step. The upper nonlinear jump
egion broadened the operational range of the omnidirectional energy
arvester by an excitation frequency of 0.0605 Hz and the maximum
eflection of the coordinate 𝜃14 that is reached is 7.34◦ higher. This

is equivalent to a broadening of the operational range by 55.00%,
according to the definition described in Eq. (12). With the lower and
upper nonlinear jump regions the operational range of the coordinate
𝜃 shows an overall increase in possible operational range by 59.55%
14
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(0.0655 Hz) compared to the linear operational range used as a base
value.

The frequency response of the coordinate 𝜃23 is shown in Fig. 12(b).
ver the first four measurement points the linear part of the frequency

esponse sees an increase in deflection and reaches a local maximum
eflection of 17.36◦ at an excitation frequency of 0.755 Hz. With
further increase in the excitation frequency the deflection of the

oordinate 𝜃23 decreases and reaches a minimum deflection of 6.29◦

t an excitation frequency of 0.78 Hz. The deflection continues to
ncrease with an increase in the excitation frequency and reaches the
lobal maximum deflection of the linear frequency response of 35.63◦

t an excitation frequency of 0.88 Hz. With a further increase in the
xcitation frequency the deflection of the coordinate 𝜃23 gradually
ecreases. The starting frequency of the down-sweep is 0.808 Hz. The
own-sweep closely follows the linear frequency response. It shows
local maximum of 18.34◦ at an excitation frequency of 0.748 Hz.

he up-sweep starts at an excitation frequency of 0.8235 Hz and
ollows the linear frequency response of the coordinate 𝜃23 well until
he maximum of the linear frequency response is exceeded. Onwards
rom there the up-sweep continues to show an increase in deflection
f the coordinate 𝜃23 and reaches a maximum deflection of 45.31◦ at
n excitation frequency of 0.9425 Hz. With a further increase of the
xcitation frequency the deflection of the coordinate 𝜃23 decreases first
lightly and then jumps down to a value of 15.77◦. The upper nonlinear
ump region increases the operational range by a value of 0.0625 Hz
nd the maximum deflection of the coordinate 𝜃23 is 9.68◦ higher than
n the linear frequency response. This is equivalent to an increase in
he operational range of the coordinate 𝜃23 of 61.36% (0.0675 Hz),
ccording to the definition in Eq. (12).

In Fig. 12(c) the arithmetic mean rectified voltage output of the
oordinate 𝜃14 in the frequency domain is shown. The linear part of
he frequency response of the arithmetic mean rectified voltage output
14 closely follows the linear frequency response for the coordinate 𝜃14
nd shows maxima of the arithmetic mean rectified voltage outputs of
.76 V and 1.77 V at excitation frequencies of 0.77 Hz and 0.88 Hz. The
econd local maximum of the arithmetic mean rectified voltage output
as a higher value. This is as already mentioned in the methodology
ection and is attributed to the fact that the voltage output depends
n the velocity of the coordinate 𝜃14, see Fig. 10. When measuring the
scillation frequency of the coordinate 𝜃14 close to the first (left) maxi-
um and comparing it to the second (right) maximum it is evident that

t the right maximum the oscillation frequency is higher. With a higher
scillation frequency the velocity of shaft 14 is higher as well. And with
higher velocity a higher voltage output is observed. In between the

wo maxima a local minimum of 1.59 V at an excitation frequency of
.83 Hz is observed. The down-sweep of the arithmetic mean rectified
oltage output 𝑉14 follows the deflection of the coordinate 𝜃14 well
nd reaches its maximum arithmetic mean rectified voltage output of
.81 V for a value of the excitation frequency of 0.76 Hz. Therefore,
he broadening of the operational range with the down-sweep shows
dentical values. The up-sweep of the arithmetic mean rectified voltage
utput of shaft 14 shows the same characteristics as the up-sweep of
he coordinate 𝜃14. It reaches the maximum arithmetic mean rectified
oltage output of 2.06 V for a value of the excitation frequency of
.9425 Hz and is therefore broadened identically to the coordinate 𝜃14.

The arithmetic mean rectified voltage output 𝑉23 in the frequency
omain is shown in Fig. 12(d). The linear part of the frequency response
f the arithmetic mean rectified voltage output shows high accordance
ith the frequency response of the coordinate 𝜃23 for the most part. The
own-sweep shows similar arithmetic mean rectified voltage outputs
s the steady-state response. The up-sweep in the voltage output in
he frequency domain shows the same characteristics as the frequency
esponse of the coordinate 𝜃23. The maximum arithmetic mean rectified
oltage output of 1.86 V is reached at an excitation frequency of
.9425 Hz and the broadening of the operational range is therefore
10

dentical in position to that of the coordinate 𝜃23.
Additionally, the frequency responses of the arithmetic mean ve-
ocity of the two coordinates 𝜃14 and 𝜃23 of the energy harvester are

introduced in Figs. 12(e) and 12(f) to show the relationship between
voltage output and velocity of the shafts. Fig. 12(e) shows the velocity
of 𝜃14 over the excitation frequency. It is evident that the arithmetic
mean voltage output 𝑉14, in Fig. 12(c) shows the same characteristics as
the arithmetic mean of 𝜃̇14. The maximum velocity of the down-sweep
has a value of 𝜃̇14 = 163.507 deg

s and the maximum velocity of the up-
sweep has a value of 𝜃̇14 = 180.753 deg

s . The unit deg/s is used over the
SI-unit for the convenience of the reader. The higher maximum value of
the up-sweep compared to the down-sweep is observed in the frequency
response for the velocity as well, which is similar to the behaviour
observed in the frequency response for the voltage output.

In Fig. 12(f) the velocity of the coordinate 𝜃23 over the excitation
frequency is shown. The frequency response shows the same character-
istics as the frequency response of the arithmetic mean voltage output
of shaft 23 in Fig. 12(d). The maximum velocity output is observed at
the up-sweep and has a value of 𝜃̇23 = 170.498 deg

s .
The power output of each shaft can be generated by multiplying

the voltage output with the current output. For this calculation it is
assumed that the generators are connected in series. The power output
is calculated with Eq. (10). Therefore, the arithmetic mean rectified
power output at the optimal operational point of 0.9355 Hz has values
of 𝑃14 = 2.863 W and 𝑃23 = 2.525 W.

It is important to mention that both power take-off modes of the
omnidirectional pendulum energy harvester show operating frequency
ranges where the dynamics are similar to those of a simple pendulum.
In these areas only shaft 14 is moving and shaft 23 hardly shows any
deflection. These dynamics are observed in the vicinity of the first
maximum deflection of the coordinate 𝜃14 and are therefore for the
down-sweep as well. At the second local maximum of the coordinate
𝜃14 both shafts show high deflections. When looking at the energy
harvester from the top it can be observed the trajectory of the pendulum
bob follows an almost circular pattern. Therefore, the dynamics of the
omnidirectional pendulum energy harvester appear to be the same as
those of a conical pendulum, in the area of the second local maximum
of the coordinate 𝜃14. This applies to the complete upper nonlinear
jumping region as well.

With the inclusion of the lower and upper nonlinear jump regions
the operational range of the energy harvester can be broadened dras-
tically. An optimal operational point of the omnidirectional energy
harvester is on, or close to, the maximum deflection of the upper jump-
ing region before the jump down to the small deflection values occurs.
In this operational region both shafts show high deflection values,
and this results in a high overall power output of the omnidirectional
pendulum energy harvester.

3.2. Numerical reconstruction of experimental results

The dimensionless ordinary differential Eqs. (8) and (9) in terms
of the generalised coordinate 𝜃 and 𝜙 are solved using a suitable
process of numerical integration. Afterwards, they are transformed into
the experimental coordinates using the relations shown in Eqs. (3)
and (4). This allows a direct comparison to be made between the
numerical and experimental results. The numerical calculation uses
dimensionless variables that are introduced in the preceding journal
article [1]. Where necessary, the dimensionless variables have been
dimensionalised to allow a direct comparison between the numerical
and experimental results. The figures shown in this section are only
attributed to the numerical calculation, they need to be compared to
the figures in the preceding Section 3.1. In Fig. 13 the numerically
determined frequency responses for the coordinates 𝜃𝑛14 and 𝜃𝑛23 for
the omnidirectional pendulum energy harvester in the low power take-
off mode are shown. They are to be directly compared to experimental
determined frequency responses Figs. 11(a) and 11(b). In Figs. 13(a)
and 13(b) for the numerical calculation the omnidirectional pendulum



International Journal of Non-Linear Mechanics 159 (2024) 104588P. Sommermann and M.P. Cartmell

𝑔

a

Fig. 13. Numerical frequency responses for the omnidirectional pendulum energy harvester. The dimensionless values for the numerical calculation are: 𝑙 = 0.35 m, 𝑚 = 1.32 kg,
= 9.81 m
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energy harvester is excited with the same excitation amplitude as in
the experiments. The experimental excitation amplitude of 𝐴 = 32 mm
is dimensionalised with the relations given in Eq. (7) and has therefore
a value of 𝑎𝑢 = 0.0914286. In the experimental section it was defined
that the low power take-off mode is equivalent to a power output close
to zero. Therefore, in the theoretical numerical observation of the lower
power take-off mode the power take-off torque 𝑃𝜃 is set to zero as well.

The theoretical frequency response for the coordinate 𝜃𝑛14 is shown
in Fig. 13(a). The energy harvester is excited with an excitation ampli-
tude of 𝑎𝑢 = 0.0914286 which is representative of a dimsensionalised
excitation amplitude of 𝐴 = 32 mm, see Eq. (7). For an excitation
frequency from 0.5 Hz to 0.787 Hz the deflection of the coordinate
𝜃𝑛14 increases with approximately exponential characteristics. The max-
imum deflection of the coordinate 𝜃𝑛14 with a value of 59.42◦ is reached
at an excitation frequency of 0.787 Hz. This is in accordance with
the maximum of the linear frequency response in Fig. 11(a). With a
further increase in the excitation the deflection of the coordinate 𝜃𝑛14
gradually decreases. Since the maximum deflection of the coordinate
𝜃𝑛14 is observed at a lower frequency value than the natural frequency
an overall slight softening characteristics is visible.

In Fig. 13(b) the theoretical frequency response of the coordinate
𝜃𝑛23 where the energy harvester is excited with an excitation amplitude
of 𝐴 = 32 mm is shown. Until the excitation frequency of 0.789 Hz
is exceeded the coordinate 𝜃𝑛23 does not show any deflection. In the
range of excitation frequency from 0.789 Hz to 0.82 Hz the coordi-
nate 𝜃𝑛23 shows similar characteristics to those of the experimentally
determined frequency response in Fig. 11(b). With a further increase in
the excitation frequency the deflection of the coordinate 𝜃𝑛23 continues
to increase, and reaches a maximum deflection of 19.14◦, without
11

pplying the outliers, for an excitation frequency of 1.24 Hz. t
In Figs. 13(c) and 13(d) the excitation displacement amplitude is
ncreased to a value of 110 mm. This high excitation amplitude is
sed only in the theoretical numerical model because of the physical
nd safety restrictions of the experimental rig it is unfortunately not
easible to conduct such high excitation amplitudes. The importance
f the theoretical observation of such an excitation amplitude and the
ffect it has on the dynamics of the omnidirectional pendulum energy
arvest is discussed in the following. It is noticeable that the dynamics
f the system change with this increase in the excitation amplitude, see
ig. 13(c). For a range of excitation frequency from 0.5 Hz to 0.765 Hz
he deflection of the coordinate increases. However, the theoretical
requency response does not show points that form a neat line after
he excitation frequency of 0.70 Hz is exceeded and instead a range
f different deflection values is visible. The maximum deflection of
he coordinate 𝜃𝑛14 of 62.27◦ is reached at an excitation frequency
f 0.765 Hz. With a further increase in the excitation frequency the
eflection of the coordinate 𝜃𝑛14 decreases and reaches its local min-
mum for an excitation frequency of around 0.9 Hz. The deflection
f the coordinate 𝜃𝑛14 continues to increase, with a further increase
n the excitation frequency, and reaches a second local maximum of
5.43◦ at an excitation frequency of 1.08 Hz. With a further increase
n the excitation frequency the deflection of the coordinate 𝜃𝑛14 jumps
own to a value close to 30◦ and continues to slightly decrease in
eflection with an increase in excitation frequency. This selection of
he high excitation amplitude in the theoretical frequency response
eplicates the characteristics of the experimental frequency responses.
t is especially interesting that a hardening effect (upper nonlinear jump
egion) is reproduced for the first time. For the selected experimental
arameters in the numerical calculation the chosen excitation ampli-

ude is the lowest one where these characteristics are visible. For any
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𝑔

Fig. 14. Numerical frequency responses for the omnidirectional pendulum energy harvester. The dimensionless values for the numerical calculation are: 𝑙 = 0.35 m, 𝑚 = 1.32 kg,
= 9.81 m

s2 , 𝛼𝜃 = 𝛼𝜙 = 0.0712, 𝑎𝑣 = 𝑎𝑤 = 0, 𝜖𝑟 = 0.01, and 𝑃𝜃 = 0.0375092.
lower selected excitation amplitudes the hardening effect is not visible
in the numerical calculation.

In Fig. 13(d) the theoretical frequency response for the coordinate
𝜃𝑛23 with an excitation amplitude of 𝐴 = 110 mm is shown. Until the
excitation frequency of 0.673 Hz is exceeded the coordinate 𝜃𝑛23 does
not show any deflection. In the range of the excitation frequencies from
0.673 Hz to 0.76 Hz the coordinate 𝜃𝑛23 shows deflections that appear
not to follow any clear structure, similar to those in the experimentally
determined results. With a further increase in the excitation frequency
the deflection of the coordinate 𝜃𝑛23 increases and jumps up to a
deflection value of 54.43◦ at an excitation frequency of 0.937 Hz. The
deflection of the coordinate 𝜃𝑛23 continues to increase and reaches its
maximum deflection of 63.54◦ at a value of the excitation frequency
of 1.08 Hz. This is at the same position as the second local maximum
of the coordinate 𝜃𝑛14. The numerical calculation therefore shows the
upper nonlinear jump region similar to the experimental results. With
a further increase in the excitation frequency the deflection of the
coordinate 𝜃𝑛23 jumps down to a value of around 15◦ and continues
to slightly decrease as the excitation frequency increases onwards from
there.

In Fig. 14 the numerical frequency responses for the pendulum en-
ergy harvester in the high power take-off mode are shown. For this, the
damping ratio of the low power take-off mode is used and the level of
the power take-off torque is increased to simulate a higher power take-
off. The power take-off torque is selected by adapting the maximum
deflection of the experimental frequency response in Fig. 12(a) with
the numerical frequency response in Fig. 14(a) to a similar deflection
level. This is done with multiple iterations to find the closest fit. The
12

selected power take-off torque has a value of 𝑃𝜃 = 0.0375092 which
is equivalent to 0.17 N m. This power take-off torque is subsequently
selected for all the following theoretical frequency responses in Fig. 14.
The examination of different excitation amplitudes similar to the one
in Fig. 13 is used here as well. The theoretical frequency response of
the coordinate 𝜃𝑛14 with an excitation amplitude of 𝐴 = 48 mm is
shown in Fig. 14(a) . This is the same excitation amplitude as in the
experimental evaluation of the omnidirectional pendulum energy har-
vester in the high power take-off mode. The deflection of the coordinate
𝜃𝑛14 increases with an approximately exponential characteristic until
reaching a maximum deflection of 53.35◦ for a value of the excitation
frequency of 0.799 Hz. This is at the same position as the maximum
deflection of the linear part of the frequency response in the high power
take-off mode, see Fig. 12(a). With a further increase in the excitation
frequency the deflection of the coordinate 𝜃𝑛14 decreases drastically
and the deflection completely disappears for a range of the excitation
frequency from 0.83 Hz to 0.98 Hz. The deflection of the coordinate
𝜃𝑛14 jumps down to a value of 17.94◦ and decreases from there on,
with an increase in the excitation frequency.

Fig. 14(b) shows the theoretical frequency response for the coordi-
nate 𝜃𝑛23. The frequency response does not show a deflection of the
coordinate 𝜃𝑛23 for ranges of the excitation frequencies from 0.5 Hz
to 0.7 Hz and from 0.83 Hz to 0.984 Hz. In the range of excitation
frequency from 0.8 Hz to 0.83 Hz the coordinate shows deflection
values similar to the experimental values observed in this region. For an
excitation frequency from 0.984 Hz to 1.3 Hz the deflection of the coor-
dinate 𝜃𝑛23 shows a deflection where the trend slightly increases with
an increase in the excitation frequency. In some excitation frequency
regions outliers can also be observed.

In Fig. 14(c) the theoretical frequency response of the coordinate

𝜃𝑛14 with a high excitation amplitude of 𝐴 = 110 mm is shown. As before
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this only theoretical increase is done to show the upper nonlinear
jump region of the experimental frequency responses. The deflection of
the coordinate 𝜃𝑛14 increases for a range of excitation frequency from
0.5 Hz to 0.757 Hz where it reaches the maximum deflection of 65.81◦.
With a further increase in the excitation frequency the deflection of
the coordinate 𝜃𝑛14 decreases and shows a local maximum at a value of
he excitation frequency of around 0.88 Hz. The deflection continues to
ncrease with a further increase in the excitation frequency and jumps
p to a higher deflection value of 46.02◦ for an excitation frequency

of 0.93 Hz. With a further increase in the excitation frequency the
deflection of the coordinate 𝜃𝑛14 continues to increase and shows a sec-
nd local maximum of 54.46◦ for the excitation frequency of 1.06 Hz.
he deflection of the coordinate 𝜃𝑛14 jumps down to a deflection value
f around 25◦ with a further increase in the excitation frequency and
ontinues to decrease in value onwards from there.

The theoretical frequency response of the coordinate 𝜃𝑛23 with an
ncreased excitation amplitude of 𝐴 = 110 mm is shown in Fig. 14(d).
ntil the excitation frequency of 0.679 Hz is exceeded the coordinate
𝑛23 does not show any deflection. In the range of excitation frequencies
rom 0.72 Hz to 0.77 Hz the coordinate 𝜃𝑛23 shows deflection values
hat show a local maximum. The experimental results show similar
haracteristics. With a further increase in the excitation frequency the
eflection of the coordinate 𝜃𝑛23 continues to increase and jumps up
o a higher deflection value of 54.07◦ for the value of the excitation
requency of 0.948 Hz. The deflection continues to increase onwards
nd shows its maximum deflection of 61.68◦ at an excitation frequency
f 1.06 Hz. With a further increase in the excitation frequency the
eflection of the coordinate 𝜃𝑛23 jumps down to a value of around
5◦ and continues to show similar deflection values for the rest of the
xcitation frequency range.

It is evident that with an increase in the excitation amplitude the
haracteristics of the experimental results can be reproduced well. For
he theoretical frequency response of the coordinate 𝜃𝑛14 the two local
axima with the minimum in between are clearly visible. Additionally,

he upper nonlinear jumping regions are clearly visible for both of the
oordinates 𝜃𝑛14 and 𝜃𝑛23.

. Conclusions

The introduced omnidirectional pendulum energy harvester was
xamined experimentally for different power take-off modes and the
esults were compared with numerical calculations. A broadening effect
f the operational range of the energy harvester has been observed
nd the base value to which the results are referred to was defined at
he beginning of the results section. This broadening effect is mostly
ttributed to the upper nonlinear sweep region which increases the
eflections of both shafts drastically. The upper nonlinear sweep region
roadens the operational range of the coordinate 𝜃14 for the low power
ake-off by 109.06% and for the high power take-off mode by 55.0%.
or the coordinate 𝜃23 the up-sweep broadens the operational range
f the energy harvester in the low power take-off mode by 109.06%
nd in the high power take-off mode by 61.36%. The down-sweep
roadens the operational range of the coordinate 𝜃14 in the low power
ake-off mode by 21.25% and in the high power take-off mode by
.54%. Therefore the operational area of the coordinate 𝜃14 can overall
e increased by 130.31% in the low power take-off mode and by
9.55% in the high power take-off mode. The optimum operational
oint is located at the maximum deflection of the upper nonlinear
ump region where both shafts show high deflection values. The op-
imum operational point has the highest voltage output at this point
ecause of the higher velocity of the pendulum bob that is present.
o reach this point an initial excitation frequency between the two

ocal maxima in the linear frequency response of the coordinate 𝜃14
as to be selected from where an up-sweep of the excitation frequency
s performed. The numerical comparison of the experimental results
ith the exact excitation amplitude unfortunately does not show the
13
ame characteristics as the experiment. However, an increase in the
xcitation amplitude shows all the characteristics of the experimental
esults well. These characteristics include the two local maxima and
he local minimum in between for the coordinate 𝜃𝑛14. Additionally,
oth numerically determined coordinates 𝜃𝑛14 and 𝜃𝑛23 show a rep-
esentation of the upper nonlinear jump region similar to the upper
onlinear jump region observed for the experimental examination of
he omnidirectional pendulum energy harvester.

. Further research

When transferring the in this work examined experiment into a
eal live application the excitational forces are subject to change.
he excitations the energy harvester would be exposed to would be
redominantly random, therefore the approach of Stochastic Resonance
s most likely to be used, for further information on this see [36,37].

Additionally, energy harvesting based on the principle of double
opf jumping dynamic is subject to stability loss particularly under
andom excitation. Therefore, it is crucial that such a system is subject
o a careful analysis of stochastic stability. Work on this has been done
y [38,39].
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