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A new image deconvolution method
with fractional regularisation
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Abstract

Image deconvolution is an important pre-processing step in image analysis which may be combined with denoising, also

an important image restoration technique, and prepares the image to facilitate diagnosis in the case of medical images and

further processing such as segmentation and registration. Considering the variational approach to this problem, regu-

larisation is a vital component for reconstructing meaningful information and the problem of defining appropriate regu-

larisation is an active research area. An important question in image deconvolution is how to obtain a restored image

which has sharp edges where required but also allows smooth regions. Many of the existing regularisation methods allow

for one or the other but struggle to obtain good results with both. Consequently, there has been much work in the area

of variational image reconstruction in finding regularisation techniques which can provide good quality restoration for

images which have both smooth regions and sharp edges. In this paper, we propose a new regularisation technique for

image reconstruction in the blind and non-blind deconvolution problems where the precise cause of blur may or may not

be known. We present experimental results which demonstrate that this method of regularisation is beneficial for

restoring images and blur functions which contain both jumps in intensity and smooth regions.
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Introduction

Blur in images is a significant problem in many areas of
imaging including medical, astronomical and consumer
photography. Typically occurring in the acquisition of
medical images due to various factors such as refractive
error, the skill of the photographer, media opacity, the
age and physical condition of the patient and, in oph-
thalmic imaging, eye movement, severe blur imposes a
significant resolution cost which hampers clinical
assessment and prevents further processing. In an exist-
ing programme of diabetic retinopathy screening,
approximately 5% of the colour fundus images col-
lected are too blurred for assessment. This necessitates
the development of effective techniques for obtaining as
much information as possible of the underlying sharp
and detailed image.

As a mathematical consideration, we view an image
as a function over a domain � whose range is deter-
mined by the bits-per-sample rate of the image. The
action of blurring such an image may be then viewed

as a convolution ½� � u�ðxÞ of the image uðxÞ with a
point spread function � which describes how the
image is degraded. We also take into account the pres-
ence of noise �ðxÞ in the blurred image which makes
image deconvolution an ill-posed and challenging prob-
lem. We thus model the forward problem of a sharp
image uðxÞ being corrupted by blur �ðxÞ and noise �ðxÞ
to produce a blurred image zðxÞ as

zðxÞ ¼ ½� � u�ðxÞ þ �ðxÞ,

½� � u�ðxÞ ¼

Z
�

�ðx� yÞuðyÞdy
ð1Þ
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The idea of approximating the image uðxÞ given the
image zðxÞ is known as image deconvolution, whose
problems may be categorised as: (1) non-blind1–3 in
the case of known blur, so that �ðxÞ is known and
uðxÞ is to be recovered; (2) semi-blind4–6 in the case
where some information of the blur function is
known or may be assumed and the task is to complete
this information in order to obtain the blur function
while restoring the unknown sharp image; (3)
blind7–10 which makes no assumptions about the blur
related to a particular problem. In the blind case, the
challenge is to identify the blur function and the image
using only the given blurred image data.

In this work, we have considered solutions to the issue
of blur degradation in images using variational model-
ling, which is a popular and very successful approach to
image processing problems. Such methods typically
involve the minimisation of a variational functional con-
sisting of data fitting and regularisation components,
among others. In image reconstruction, data fitting
terms arise from assumptions about the cause of degrad-
ation, such as the forward problem given by equation (1)
while regularisation ideas arise from the need to control
the ill-posedness of the problem and to improve the
quality of the restored image. In forming such terms,
assumptions are typically made about the underlying
image which is to be restored and is not yet known.
The question of how to effectively provide such regular-
isation has given rise to an active research area.2,11–14

In this paper, we propose a new method for image
deconvolution using fractional derivatives to build a
regularisation technique which can outperform com-
parable regularisation methods. We build in ideas for
implicitly constrained image restoration in order to
form an effective image deconvolution technique. We
next extend this idea to the blind case of restoring the
blur function and image simultaneously using frac-
tional regularisation.

The rest of this paper is organised as follows. In the
next section, we review some relevant image deconvolu-
tion and regularisation techniques. In the section ‘A frac-
tional regularised image deconvolution model’, we
present the new method for image deconvolution
which is proposed in this paper. In the section ‘A blind
deconvolution model with fractional regularisation’, we
extend this idea to the case of blind deconvolution. In
the ‘Experimental results’ section, we present experimen-
tal results and in the final section, we conclude this work.

Existing image deconvolution methods

In this section, we review some existing methods for
image reconstruction, focusing on regularisation

techniques for data representing underlying smooth
and sharp images which we are aiming to recover.

It may be tempting to try to invert the blur function
� of the forward problem (1) in order to recover the
image uðxÞ. After finding the singular value decompos-
ition of the discrete counterpart of the blur function,
the ill-posedness of the problem may be mitigated by
attempting to filter out small singular values. This can
be achieved by multiplying the singular values si of the
decomposition by a function such as

!�ðs
2
i Þ ¼

1 if s2 4 �

0 if s2 � �

�
,

!�ðs
2
i Þ ¼

s2i
s2i þ �

which yield the Truncated and Tikhonov Filter
Singular Value Decomposition models,15 respectively,
where � 2 R40 is a small positive parameter. These
models are quick to implement and may offer reason-
able results but the quality of results can be significantly
improved by building variational regularised models
which may be optimised in order to provide a solution.

The Tikhonov Filter model may be reformulated as
the following variational problem of minimising a func-
tional including a fitting term which makes the assump-
tion that the received data zðxÞ is the result of a
convolution of the blur function �ðxÞ and the hidden
true image uðxÞ which we aim to recover. This assump-
tion is included in the problem by the requirement that
this energy be minimised. In order to make the problem
well posed, the functional is regularised by a restriction
on the square of the L2-norm of the image intensity
values

min
u

�
FTik ¼

1

2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþ

�

2

Z
�

juðxÞj2dx

�

Assuming that the blur function is known, this func-
tional is minimised by solving the below Euler–
Lagrange equation resulting from deriving the first-
order optimality condition with respect to the image
uðxÞ. We thus recover the image by solving the problem

�yðxÞ � ½� � u�ðxÞ � zðxÞð Þ þ �uðxÞ ¼ 0

where �yðxÞ ¼ �ð�xÞ. Discretising this equation, we
may solve it efficiently using the Conjugate Gradient
method by rewriting it as

½�y � ��ðxÞ þ ��ðxÞ
� �

� uðxÞ ¼ ½�y � z�ðxÞ
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Since this equation is linear in terms of the image func-
tion uðxÞ, it is very efficient to solve. However, the rather
simple regularisation assumption that the intensity values
should be minimised is not reliable and typically insuffi-
cient to provide a good quality restored image.

You and Kaveh16 made use of the H1 semi-norm in
order to provide regularisation for the image using gra-
dient information. In the non-blind case, this leads to
the minimisation problem

min
u
FH1 ¼

1

2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþ

�

2

Z
�

jruðxÞj2dx

� �

which is similar to the Tikhonov case except that here
we are aiming to minimise the overall gradient of
the image. A solution is found by solving the Euler–
Lagrange equation

�yðxÞ � ½� � u�ðxÞ � zðxÞð Þ � ��uðxÞ ¼ 0

where � denotes the Laplacian of the image. This equa-
tion is again linear in terms of uðxÞ, which can be seen
by rewriting it as

½�y � ��ðxÞ � �D2ðxÞ
� �

� uðxÞ ¼ ½�y � z�ðxÞ

where D2 represents the Laplacian as a convolution
operation. This model typically improves on the
Tikhonov model and can give good results for smooth
images but struggles to accurately reconstruct edges.

To improve on H1, mean curvature gives a popular
regularisation technique in image registration and
denoising14 which may also be applied to image decon-
volution. A regularisation term based on this may be
given by Z

�

K K �ðxÞð Þð Þdx, KðsÞ ¼
1

2
s2,

Kð�ðxÞÞ ¼ r �
r�ðxÞ

jr�ðxÞj�

ð2Þ

where j � j� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�Þ

2
þ �

q
for some small � 2 R40. The

corresponding Euler–Lagrange equation for this term
is given by

r �
rK

0
Kð�Þð Þ

jr�j�
�
r� � rK

0
Kð�Þð Þ

jr�ðxÞj3�
r�

 !
¼ 0

Similar to H1 regularisation, models using mean
curvature for regularisation can struggle to reconstruct
sharp edges in images.

In order to improve the quality of restoration at
edges, the total variation (tv) semi-norm, popular in
image denoising17–19 as well as deconvolution,7,11,12

may be used. This gives rise to the optimisation problem

min
u
FTV ¼

1

2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþ

�

2

Z
�

jruðxÞjdx

� �
ð3Þ

In practice, we replace the absolute value j � j with a

smooth approximation j � j� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�Þ

2
þ �

q
where � 2 R40

is a small non-negative value used to avoid division by
zero at zero-gradient points and which may be tweaked
to improve the result. This regularisation term provides
improved reconstruction of edges in images but the
results are dependent on the value of � selected. Too
high a choice of � can result in overly smooth results
while too low a choice can result in a piecewise constant
result, exhibiting the staircase effect. This model can be
used to reconstruct sharp edges but there is typically a
trade-off between sharpness and smoothness in the
restored image.

Efforts to try to benefit from the edge-preserving
properties of total variation regularisation and the
smooth results from regularisation techniques such as
H1 within a single image include mixed models. In these
cases, the aim is to use tv regularisation in regions with
sharp jumps and smooth regularisation terms in more
homogeneous regions. In Lysaker and Tai,20 the
authors propose a noise removal method by denoising
an image first using tv and then denoising the same
image using the second-order LLT model21 in order
to obtain approximations utvðxÞ and ulltðxÞ, respectively.
The final denoised image uðxÞ is created as a convex
combination of the two images, allowing the best
regions of each image to appear in the final restoration
result. In Chang et al.,22 the authors propose a single
model which combines tv and second-order regularisa-
tion, presenting the functional minimisation problem
for deconvolution

min
u

�

Z
�

�jrujdxþ

Z
�

ð1� �ÞjD2ujdx

� �
þ
1

2
jj� � u� zjj2L2

� �

where � is chosen depending on the absolute value of
the gradient of intensity values at each point. At lower
and larger gradient values, �! 1 so that the regular-
isation is predominantly tv while at smoother regions,
as assumed by mid-range gradients, �! 0 so that the
second-order regulariser has more influence. This is a
useful idea but in the case of deconvolution the method
relies on correct distinction between sharp and smooth
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regions in order to determine the regularisation yet such
information is not reliable in blurred and noisy images.

A fractional regularised image
deconvolution model

In this section, we develop a method for image decon-
volution which makes use of fractional regularisation
which can preserve both edges and smoothness. We
then improve this model by enforcing intensity-range
constraints implicitly in the problem functional. The
total �-order variation of the function u is given by

TV�ðuÞ ¼ sup
	2K

Z
�

�u div �	ð Þdx,

div �	 ¼
Xd
i¼1

@�	i
@x�i

where @�	i=@x
�
i denotes a fractional �-order derivative

D�
½a,b�	i of 	i along the xi direction. It has been proven

that if the function uðxÞ is contained in the Banach
space Wp

�ð�Þ ¼ fu 2 Lpð�ÞjjjujjWp
�ð�Þ5 þ1g with

norm

jjujjWp
�ð�Þ ¼

Z
�

jujpdxþ

Z
�

jr�ujpdx

� �1=p

,

r�u ¼
@�u

@x1
, . . . ,

@�u

@xd

� �>

then the following equality holds

TV�ðuÞ ¼

Z
�

jr�ujdx

We build this idea into a deconvolution minimisa-
tion problem consisting of data fitting and �-order frac-
tional regularisation as

min
u
F ¼

�

2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþ

Z
�

jr�ujdx

� �
ð4Þ

where u is the image to be recovered, z is the available
blurred and noisy image data and � is the blur function
which, in this case, we assume to be known. In order to
solve this minimisation problem, we may derive the
corresponding Euler–Lagrange equation by minimising
the functional with respect to the image. First, we con-
sider a method of improving the speed of finding a
solution.

We transform equation (4) to the constrained opti-
misation problem, introducing the variable
dðxÞ ¼ ðd1ðxÞ, d2ðxÞÞ

> into the functional to form the

new but equivalent problem

min
u,d

F ¼
�

2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþ

Z
�

jdðxÞjdx

� �
s:t: dðxÞ¼r�uðxÞ

This constraint is enforced by incorporating it into
the functional, transforming it to the Bregman
formulation

ukþ1, dkþ1
	 


¼ min
u,d

�
�

2

Z
�

� � u� zð Þ
2dxþ

Z
�

jdjdx

�

Z
�

5 pkd, d� dk 4 dx

�

Z
�

5 pku, u� uk 4 dx

þ



2

Z
�

d� r�uð Þ
2dx

�
,

pkþ1u ¼ pku �



2
r�ð Þ
>
r�ukþ1 � dkþ1
	 


,

pkþ1d ¼ pkd �



2
dkþ1 � r�ukþ1
	 


which can be simplified to

min
u,d

�
�

2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþR�
ðdðxÞ, uðxÞ; pðxÞÞ

�
ð5Þ

R�
ðdðxÞ, uðxÞ; pðxÞÞ

¼

Z
�

jdðxÞjdxþ



2

Z
�

dðxÞ � r�uðxÞ þ
pðxÞ




����
����2dx

þ

Z
�

jpðxÞj2jpðxÞj2dx

ð6Þ

where the multiplier pðxÞ ¼ p1ðxÞ, p2ðxÞð Þ
> is updated by

pkþ1ðxÞ ¼ pkðxÞ � � dðxÞ � r�uðxÞð Þ

We may split equation (5) into two subproblems
given by

min
u

�
�

2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dx

þ



2

Z
�

dðxÞ � r�uðxÞ þ
pðxÞ




����
����Þ2dx

� ð7Þ

min
d

�Z
�

jdðxÞjdxþ



2

Z
�

dðxÞ � r�uðxÞ þ
pðxÞ




����
����2dx

�
ð8Þ
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It can be noted that equation (8) has a closed form
solution.23 It remains to solve the minimisation prob-
lem (7) which can be achieved by finding the solution of
the corresponding Euler–Lagrange equation

ð�1Þr
Cdiv� r�uðxÞ � dðxÞ �
pðxÞ




� �
þ ��yðxÞ � ð½� � u�ðxÞ � zðxÞÞ ¼ 0

Separation method for fitting and regularisation

Solving problems (5) and (6) by deriving optimality
conditions and discretising the resulting Euler–
Lagrange equations over an m� n grid �m,n requires
forming a dense mn�mn matrix. This increases the
computational time required to solve the non-linear
equations considerably. We aim to improve the cpu
time by introducing a dual function vðxÞ which replaces
the function uðxÞ in the fractional regularisation func-
tional R. This allows us to separate the non-linear but
sparse regularisation from the dense but linear data
fitting problem. We solve the resulting minimisation
problem subject to the constraint of equality of the
image function and its dual. That is, we solve the prob-
lem subject to uðxÞ � vðxÞ ¼ 0. We then transform this
constrained problem to an unconstrained one by incor-
porating the equality requirement into the functional.
This results in the unconstrained optimisation problem

min
u,v,d

�1
2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dx

�

þ
�2
2

Z
�

uðxÞ � vðxÞð Þ
2dxþR�
ðdðxÞ, vðxÞ; pðxÞÞ

� ð9Þ
where R�
 is given above. We can now split equation (9)
into three subproblems given by

min
u

�
�1
2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþ

�2
2

Z
�

uðxÞ � vðxÞð Þ
2dx

�
ð10Þ

min
v

�
�2
2

Z
�

uðxÞ � vðxÞð Þ
2dxþ




2

Z
�

dðxÞ � r�vðxÞ þ
pðxÞ




����
����2dx

�
ð11Þ

min
d

�Z
�

jdðxÞjdxþ



2

Z
�

dðxÞ � r�vðxÞ þ
pðxÞ




����
����2dx

�
ð12Þ

where equation (12) has a closed form solution. We find
the functions uðxÞ and v(x) which minimise equations (10)
and (11), respectively, as the solutions of the respective

Euler–Lagrange equations. The first is given by

�1½�
y � � � u�ðxÞ þ �2uðxÞ ¼ �1½�

y � z�ðxÞ þ �2vðxÞ

whose solution uðxÞ is a minimiser of equation (10).
Since the associativity and distributivity properties are
satisfied by convolution and we can write
uðxÞ ¼ ½� � u�ðxÞ for the delta function �ðxÞ ¼ 1 for
x ¼ 0 and �ðxÞ ¼ 0 otherwise, this equation is linear in
terms of the function uðxÞ and can be solved efficiently
using Fourier transforms. The Euler–Lagrange equation
corresponding to equation (11), such that solution the
vðxÞ is a minimiser of the subproblem, is given by

�2ðvðxÞ � uðxÞÞ þ ð�1Þr
Cdiv� r�vðxÞ � dðxÞ �
pðxÞ




� �
¼ 0

Implicitly constrained deconvolution

The above models can give good performance but do
not take into account the range of image intensity (or
point spread function) values. It is typical in image res-
toration for values to fall outside of the expected range
of the restored image which can have a significantly
detrimental effect on the result, particularly in the
case of blind deconvolution. Traditionally, this issue
has been addressed by projection of the data by scaling
or truncation at the end of or at points during the solu-
tion algorithm. This can result in the recovered image
not being the minimiser of the optimisation problem
and can lead to poor quality results. There have been
several pieces of work recently1,11,24–27 which consider
methods of improving on this. We achieve constraints
on both the upper and lower bounds of the image fol-
lowing the work of Williams et al.27 by introducing
functions  ðxÞ and �ðxÞ such that uðxÞ ¼ 
að�ðxÞÞ and
vðxÞ ¼ 
að ðxÞÞ for a function 
a which is naturally con-
strained. Such a function and its inverse �a are given as


að Þ ¼
a1 þ 2a4

1þ a2e
�

2 
a3

, �aðuÞ ¼ �
a3
2
ln
a1 � uþ a4
a2ðuþ a4Þ

Substituting this automatically constrained function
for the image into the functional and including the con-
dition that this must be equal to the image, we build the
optimisation problem

min
 ,�,d

�
�1
2

Z
�

� � 
að�Þ � zð Þ
2dx

þ
�2
2

Z
�


að�Þ � 
að Þð Þ
2dxþR�
ðd, ; pÞ

� ð13Þ

s:t: uðxÞ � 
að�ðxÞÞ ¼ 0 ð14Þ

vðxÞ � 
að ðxÞÞ ¼ 0 ð15Þ

Williams et al. 269



Since both 
að Þ and 
að�Þ have the same range and we
already have the requirement that these functions be equal,
we may enforce the condition (14) explicitly in the func-
tional (13) by replacing the range-constrained function

að�Þ with the unconstrained function uðxÞ and rely on
the subsequently implicitly imposed constraint of equality
between u and 
að Þ to enforce the restriction on the inten-
sity range of u. Doing this, we can rewrite equations (13) to
(15) as the unconstrained optimisation problem

min
 ,u,d

�
�1
2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþR�
ðdðxÞ, ðxÞ; pðxÞÞ

þ
�2
2

Z
�

uðxÞ � 
ð ðxÞÞð Þ
2dx

�
ð16Þ

where R�
 is given above. We can now split equation
(16) into three subproblems given by

min
 

�
�2
2

Z
�

uðxÞ � 
ð ðxÞÞð Þ
2dx

þ



2

Z
�

dðxÞ � r� ðxÞ þ
pðxÞ




����
����2dx

� ð17Þ

min
u

�
�1
2
½� � u�ðxÞ � zðxÞð Þ

2dxþ �2

Z
�

uðxÞ � 
ð ðxÞÞð Þ
2dx

�
ð18Þ

min
d

�Z
�

jdðxÞjdxþ



2

Z
�

dðxÞ � r� ðxÞ þ
pðxÞ




����
����2dx

�
ð19Þ

where equation (19) has a closed form solution and  ðxÞ
and uðxÞ which minimise equation (16) can be found by
solving the corresponding Euler–Lagrange equations to
equations (17) and (18), respectively, given by

ð�1Þr
Cdiv� r� ðxÞ � dðxÞ �
pðxÞ




� �

þ �2
@
að ðxÞÞ

@ ðxÞ
ð
að ðxÞÞ � uðxÞÞ ¼ 0,

½ð�1�
y � �þ �2�Þ � u�ðxÞ ¼ �1½�

y � z�ðxÞ þ �2
að ðxÞÞ

ð20Þ

In order to solve the optimisation problem (16) for
discrete data, we define a mesh �m,n ¼ fðxi1, x

j
2Þj

i 2 ½0, nþ 1�, j 2 ½0,mþ 1�g of the image domain �. At
the point xi1, x

j
2

	 

, the discretisation of the fractional

derivative of order � is given along the x1 direction as

D�
½a,b�u xi1, x

j
2

	 

¼

h��

2

Xiþ1
k¼0

��kui�kþ1,j þ
Xn�iþ2
k¼0

��kuiþk�1,j

 !
þOðhÞ

ð21Þ

for j 2 ½0, nþ 1�, where u xi1, x
j
2

	 

:¼ ui,j and where ��k is

given by

��k ¼
1 for k ¼ 0

1� k�1ð1þ �Þ
	 


��k�1 for k4 0

�

Let � denote the discrete form of the transformed
image  to be restored, discretised over the mesh �m,n,

and let �
!

denote the corresponding vector given by

‘unpacking’ the matrix �, that is �
!
½s� ¼ �½i, j � where

s ¼ iþ nð j� 1Þ: From equation (21), we can write the
discrete fractional �-order derivatives of � in the x1 and
x2 directions, respectively, as

Im � B�n
	 


�
!

, B�m � In
	 


�
!

where B�m and B�n are symmetric and negative definite
Toeplitz matrices derived from equation (21) as the
derivative coefficient matrices. We can thus give the
discrete equation to be solved for � as

ðB�nÞ
> B�n�
	 


þ�ðB�mÞ
>B�m

	 

þ
ð�1Þr�



�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

w�

¼ f,

f ¼
ð�1Þr�



uþ ðB�nÞ

>D1 þD2B
�
m

	 

þ

1



ðB�nÞ

>P1 þ P2B
�
m

	 

ð22Þ

where D1,D2,P1,P2 are matrices given by the discret-
isation of the functions d1, d2, p1, p2. The discrete
restored transformed image � can then be found by
solving equation (22) using the conjugate gradient
method.

In order to obtain the restored image uðxÞ given the
blurred and noisy image zðxÞ and the blur function �ðxÞ,
we make an initial estimate of the restored image
which, in the absence of a closer estimate, is typically
taken as the blurred image. We give a value for the
regularisation parameters and proceed with Algorithm
1 below. Results achieved using this method are pre-
sented in the ‘Experimental results’ section and com-
pared with existing work.

Algorithm 1 Implicitly Constrained Fractional

Deconvolution: u AICFD z, ",�ð Þ

1: Initialise u0 z, �0 �a u0
	 


and P0
1, P

0
2;

2: for ‘ 1 : � do

3: Solve (19) for d using the closed form solution:

D1

D2

� �‘þ1
 shrink

B�n�‘þ1

�‘þ1ðB�mÞ
>

� �
þ

P1

P2

� �‘
,
1




 !
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4: Solve the subproblem (17) for the discrete solution
� by solving equation (22) using CG;

5: Solve the subproblem (18) by solving the discrete
counterpart of the EL equation (20) for the discrete
image u of u using discrete Fourier transforms;

6: Obtain the update for p:

P1

P2

� �‘þ1
 

P1

P2

� �‘
þ�

B�n�‘þ1

�‘þ1ðB�mÞ
>

 !
�

D1

D2

� �‘þ1 !
,

� 2 ð0, 1�

7: Check stopping criterion:
8: if jj�‘þ1 ��‘ jj5 " then
9: break;
10: end if

11: end for

12: u 
a �‘þ1
	 


;

Given the excellent ability of this fractional regu-
larised model to reconstruct both smooth regions and
sharp edges in images, it would be interesting to con-
sider its ability to reconstruct point spread functions.
Since convolution is associative, we may do this by
solving a similar optimisation problem to that given
above by providing regularisation to the blur function.
We present this problem as

min
�,�,d

Z
�

�1
2
½u � ��ðxÞ � zðxÞð Þ

2dxþR�
ðdðxÞ,�ðxÞ; pðxÞÞ

�

þ
�2
2

Z
�

�ðxÞ � 
bð�ðxÞÞð Þ
2dx

�
ð23Þ

where �ðxÞ is the inverse transform of the point spread
function such that we expect �ðxÞ ¼ 
bð�ðxÞÞ. By setting
up a test problem where we have the blurred and noisy
data zðxÞ and the sharp true data uðxÞ are known, we
may attempt to identify the blur function which solves
the optimisation problem (23) for the given z and u.
This can be done with synthetic images for interest
but we expect this to have a practical application to
blind deconvolution, as considered in the following
section.

A blind deconvolution model
with fractional regularisation

Here we consider an application of the work given in
the previous section to the case of blind deconvolution,
where we do not know the cause of the blur degrad-
ation. That is, we are aiming to reconstruct the image
uðxÞ assuming that the blurred and noisy image data are
given by zðxÞ ¼ ½� � u�ðxÞ þ �ðxÞ where � is also

unknown. Following the work of Chan and Wong7

and You and Kaveh,16 we form an optimisation
model for blind deconvolution in the form

min
u,�

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþ �1L1ðuðxÞÞ þ �2L2ð�ðxÞÞ

� �

where L1,L2 denote regularisation functions for the
image and blur function, respectively, and
�1,�2 2 R40 are small, positive regularisation param-
eters which measure the trade-off between data fitting
and regularisation. The blur and image functions are
sought subject to the constraints

�ðxÞ 	 0, uðxÞ 	 0,Z
�

�ðxÞdx ¼ 1, �ðxÞ ¼ �ð�xÞ
ð24Þ

which are imposed in order to reduce the space of func-
tions which may solve this problem since it is not jointly
convex. Extending this idea for blind deconvolution to
the work of the previous section, we incorporate the
fractional regularisation and implicit constraints of
equations (16) and (23). We present this new implicitly
constrained, fractional regularised blind deconvolution
problem as

min
 ,u,d, �, �, e

�
�1
2

Z
�

½� � u�ðxÞ � zðxÞð Þ
2dxþR�1
1

ðdðxÞ, ðxÞ; pðxÞÞ

þ �21

Z
�

uðxÞ � 
að ðxÞÞð Þ
2dxþR�2
2

ðeðxÞ, �ðxÞ; qðxÞÞ

þ �22

Z
�

�ðxÞ � 
bð�ðxÞÞð Þ
2dx

�
ð25Þ

Since the positivity constraints of equation (24) are
automatically satisfied, we require the solution of this
problem subject to only the symmetry and unit integral
constraints on the blur function. Minimising the func-
tional of equation (25) with respect to the arguments,
there exist closed form solutions to the corresponding
subproblems of minimising equation (25) with respect
to d, e. We derive the Euler–Lagrange equations whose
solutions are minimisers of equation (25) as

 ðxÞ : ð�1Þr
C
1 div

�1 r�1 � d�
p


1

� �

þ�21
@
að Þ

@ 
ð
að Þ � uÞ ¼ 0

ð26Þ

uðxÞ : ½ð�1�
y� �þ �21�Þ � u�ðxÞ ¼ �1½�

y� z�ðxÞ þ �21
að ðxÞÞ

ð27Þ
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�ðxÞ : ð�1Þr
C
2 div

�2 r�2�� e�
q


2

� �

þ �22
@
bð�Þ

@�
ð
bð�Þ � �Þ ¼ 0

ð28Þ

�ðxÞ : ½ð�1u
y� uþ �22�Þ � ��ðxÞ ¼ �1½u

y� z�ðxÞ þ �22
bð�ðxÞÞ

ð29Þ

Given initial estimates of the image and the blur
function, we proceed to solve the minimisation problem
following Algorithm 2 below.

Algorithm 2 Blind Fractional Deconvolution:

u, k ABFD z, "1, "2,�,�1,�2ð Þ

1: Initialise u0,0  z, �0,0 �a u0,0
	 


and P0,0
1 , P0,0

2 ;
2: Initialise k0,0 �,Y0,0  �b k0,0

	 

and Q0,0

1 , Q0,0
2 ;

3: for ‘ 1 : � do

4: for ‘1 0 : �1 do

5: Solve the subproblem of equation (25) for d‘,‘1þ1

using the closed form solution;
6: Solve the subproblem of equation (25) for �‘,‘1þ1

by solving the discrete form of equation (26)
using CG;

7: Solve the subproblem of equation (25) for u‘,‘1þ1

by solving the discrete counterpart of the EL
equation (27) for the discrete image u of u using
discrete Fourier transforms;

8: Obtain the update for p‘,‘1þ1

P1

P2

� �‘,‘1þ1
 

P1

P2

� �‘,‘1

þ �1
B�1n �‘,‘1þ1

�‘,‘1þ1ðB�1m Þ
>

 !
�

D1

D2

� �‘,‘1þ1 !
, �1 2 ð0, 1�

9: Check stopping criterion:
10: if jj�‘,‘1þ1 ��‘,‘1 jj5 "1 then

11: break;
12: end if

13: end for

14: ðu,�,P1,P2Þ
‘þ1,0
 ðu,�,P1,P2Þ

‘,‘1þ1;
15: for ‘2 0 : �2 do

16: Solve the subproblem of equation (25) for e‘,‘2þ1

using the closed form solution;
17: Solve the subproblem of equation (25) for Y‘,‘2þ1

by solving the discrete form of equation (28)
using CG;

18: Solve the subproblem of equation (25) for k‘,‘2þ1

by solving the discrete counterpart of the EL
equation (29) for the discrete image k of �
using discrete Fourier transforms;

19: Obtain the update for q‘,‘2þ1

Q1

Q2

� �‘,‘2þ1
 

Q1

Q2

� �‘,‘2

þ �2
B�2n Y‘,‘2þ1

Y‘,‘2þ1ðB�2m Þ
>

 !
�

E1

E2

� �‘,‘2þ1 !
, �2 2 ð0, 1�

20: Check stopping criterion:
21: if jjY‘,‘2þ1 � Y‘,‘2 jj5 "2 then

22: break;
23: end if

24: end for

25: Enforce the unit integral and symmetry
constraints

k‘þ
1
2, ‘2þ1 

k‘,‘2þ1P
i

P
j

k
‘,‘2þ1
i,j

,

k
‘þ1,‘2þ1
i,j  

k
‘þ1

2, ‘2þ1
i,j þ k

‘þ1
2, ‘2þ1

�i,�j

2
8i, j

26: ðY,Q1,Q2Þ
‘þ1,0
 ðY,Q1,Q2Þ

‘,‘1þ1;
27: end for

28: u 
a �‘þ1,‘1þ1
	 


;
29: k 
b Y‘þ1,‘1þ1

	 

;

Experimental results

In this section, we aim to show that the implicitly con-
strained fractional deconvolution method introduced in
the section ‘A fractional regularised image deconvolu-
tion model’ is capable of providing good quality decon-
volution results and that it can outperform competing
methods for image deblurring. We also demonstrate the
ability of the blind fractional model described in the
section ‘A blind deconvolution model with fractional
regularisation’ to restore image data from blur corrup-
tion without knowledge of the blur function. For com-
parison purposes, we attempt to restore a set of 10 test
images consisting of images with sharp and smooth
regions (examples 1–4), images which are predomin-
antly smooth (examples 5–8) and images correspond-
ing to Gaussian blur functions (examples 9–10).
Examples were restored using the total variation
model (3) with results denoted by u�tv for
� ¼ 10�3, 10�6 which are common values for this par-
ameter, using the mean curvature model by employing
the regulariser given by equation (2) with restoration
results denoted by umc. For the fractional deconvolu-
tion model, the order � was considered in the interval
½1:1, 1:9� and corresponding results are denoted u�f .
Tests were carried out for regularisation parameters
in the range ½10�9, 0Þ and the parameter providing
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the best quality results was used in each case. All
experiments were carried out on a Dell XPS 8700
with an Intel Core i7-4770 processor and 32GB
RAM and a tolerance of 10�8 was used in each case
for the stopping criteria. Where possible, the error of
the m� n discrete image u is measured comparative to
the true image u using the peak signal-to-noise ratio
(PSNR)28 PðuÞ given as

PðuÞ ¼ 20 log10
maxðu½i, j �Þ

1
mn

Pm�1
i¼0

Pn�1
j¼0 u½i, j � � u½i, j �ð Þ

 !

It can be noted in Table 1 and Figures 1 to 3 that the
fractional model consistently provides good deconvolu-
tion results and is capable of outperforming competing
models. It has been observed that, in the case of zero-
mean Gaussian noise, as the level (variance) of the
noise increases, the fractional model continues to per-
form well and to outperform total variation and mean
curvature for predominantly sharp and smooth images.
It can also be noticed that the fractional model has been
shown to outperform models which are typically suited
to problems with sharp jumps in intensity as well as to
those with smoother gradients.

Figure 1. Figure showing the results of restoring Example 1 using the total variation model for different � ðu�tvÞ, mean curvature umcð Þ

and the fractional model for different � ðu�f Þ. It can be seen that the fractional results, particularly for � ¼ 1:5 give improved quality

results and the fractional model is able to preserve both smooth and sharp regions. (a) True image. (b) Received image z. (c) u10�3

tv . (d)

u10�6

tv . (e) umc. (f) u1:3
f . (g) u1:4

f . (h) u1:5
f .

Table 1. Table of error values for the restored images achieved using the total variation model for different � ðu�tvÞ, mean curvature

umcð Þ and the fractional model for different � ðu�f Þ. Error was calculated using PSNR given above. Examples 1–4 involve images with

sharp and smooth regions, examples 5–8 are predominantly smooth images and examples 9–10 involve images resembling Gaussian

blur functions. All images were corrupted with Gaussian blur and 10% noise. In each case, the fractional model outperforms the

competing models. Bold values indicate the best PSNR achieved for each example.

Example z u10�3

tv u10�6

tv umc u1:3
f u1:4

f u1:5
f u1:6

f u1:7
f

1 33.02 35.07 33.58 37.98 42.69 42.63 42.66 42.55 42.41

2 29.03 31.13 30.24 31.90 34.77 34.77 34.72 34.29 34.13

3 24.18 24.42 24.29 24.92 26.65 26.70 26.66 26.64 26.39

4 23.40 23.93 23.82 24.19 24.76 24.76 24.76 24.70 24.65

5 44.30 45.17 44.20 45.83 45.95 45.96 45.97 46.10 46.11

6 40.87 45.11 44.22 45.69 45.47 45.74 45.98 45.98 45.99

7 44.71 45.66 45.10 45.98 46.32 46.32 46.22 46.16 46.14

8 44.30 45.63 45.13 45.93 46.17 46.26 46.17 46.11 46.09

9 25.40 26.12 26.09 26.32 26.69 26.68 26.65 26.60 26.54

10 25.17 26.05 25.97 26.21 26.60 26.59 26.55 26.51 26.39
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Figure 2. Figure showing the results of restoring the Gaussian blur function Example 9 using the total variation model for different �
ðu
�
tvÞ, mean curvature umcð Þ and the fractional model for different � u�f

� �
. It is clear from the cross section images (g)–(l) that tv does

not achieve very good results for this smooth function, as expected. Competition between mean curvature and the fractional model is

close but the numerical results P umcð Þ ¼ 26:32 and P u1:3
f

� �
¼ 26:69 demonstrate that the fractional model outperforms mc. (a) True

image. (b) Received image z. (c) u10�3

tv . (d) u10�6

tv . (e) umc. (f) u1:3
f . (g) True Image. (h) Received Image z. (i) u10�3

tv . (j) u10�6

tv . (k) umc. (l) u1:3
f .

Figure 3. Example of the satellite image corrupted by out of focus blur (a) and restored using the implicitly constrained fractional

blind deconvolution algorithm ABFD. Details in the reconstructed image have been restored and it is clear that smooth regions and

sharp edges have been well reconstructed. (a) Received image z. (b) Restored image uBFD .
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Conclusion

In this paper, we have considered the problem of image
deconvolution where the image to be restored may con-
tain both sharp and smooth regions. To achieve this, we
have built a new variational model for image deconvolu-
tion using fractional derivatives in order to provide
convex regularisation for the image. We have also
extended this to include intensity range considerations
by incorporating them implicitly in the problem func-
tional and formed a solution algorithm using variable
splitting. Given the good results achieved by attempting
to restore blur functions using fractional regularisation,
we extended this idea to the case of blind deconvolution
where we defined a model for restoring the image without
knowledge of the blur function, using fractional regular-
isation for the image and blur function. We have demon-
strated that the work introduced in this paper is capable
of achieving good results for image deconvolution and
that it can outperform competing models.

Considering future work, the choice of fractional
order used for experimental testing was chosen empir-
ically. While this allowed for good results to be
achieved in reasonable time, it would be useful to con-
sider how the order might be chosen automatically to
provide the optimal result in terms of result quality. It
was observed during experimental testing that the com-
putation time of the fractional model was comparable
to that of the total variation model when formed in a
similar manner. Given an effective order-selection tech-
nique, further work may be carried out to investigate
the computation time and complexity more thoroughly.

This work may be further extended to the case of
semi-blind deconvolution4,29,30 by relaxing the space of
blur functions considered to only those which may be
given by a set of parametric functions. We may also
extend this idea to colour images31 and the case of
deconvolution in the presence of Poisson noise.3,12
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