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An augmented Lagrangian method for
solving total variation (TV)-based image
registration model

Noppadol Chumchob1 and Ke Chen2

Abstract

Variational methods for image registration basically involve a regularizer to ensure that the resulting well-posed problem

admits a solution. Different choices of regularizers lead to different deformations. On one hand, the conventional

regularizers, such as the elastic, diffusion and curvature regularizers, are able to generate globally smooth deformations

and generally useful for many applications. On the other hand, these regularizers become poor in some applications

where discontinuities or steep gradients in the deformations are required. As is well-known, the total (TV) variation

regularizer is more appropriate to preserve discontinuities of the deformations. However, it is difficult in developing an

efficient numerical method to ensure that numerical solutions satisfy this requirement because of the non-

differentiability and non-linearity of the TV regularizer. In this work we focus on computational challenges arising in

approximately solving TV-based image registration model. Motivated by many efficient numerical algorithms in image

restoration, we propose to use augmented Lagrangian method (ALM). At each iteration, the computation of our ALM

requires to solve two subproblems. On one hand for the first subproblem, it is impossible to obtain exact solution. On

the other hand for the second subproblem, it has a closed-form solution. To this end, we propose an efficient nonlinear

multigrid (NMG) method to obtain an approximate solution to the first subproblem. Numerical results on real medical

images not only confirm that our proposed ALM is more computationally efficient than some existing methods, but also

that the proposed ALM delivers the accurate registration results with the desired property of the constructed defor-

mations in a reasonable number of iterations.
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Introduction

One of important tasks in image analysis is image reg-

istration. Generally speaking, it is the process of match-

ing two or more images of the same or similar object

obtained from different times, perspectives, and/or

imaging sensors. This process can be done mathemat-

ically by computing a spatial geometric transformation

of deformations (also known as displacement fields)

that maps each point in one image onto a correspond-

ing point in the other image with an optimal or mean-

ingful manner. Image registration has played an

important role in several areas of applications.

Especially in medical applications, for example, it has

been used routinely in medical diagnosis, treatment

guidance and monitoring for providing complementary

information. A good survey of the medical applications
can be seen in literature1–4 and the references therein.

Variational methods for image registration have
been actively and extensively studied and applied in
the field of image analysis. The main idea is to find
spatial correspondences between two given images, a
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so-called reference image R : X � R2 ! V � R and a
so-called template image T : X � R2 ! V � R, where
the image domain X is assumed to be a rectangle. This
is usually done by finding an optimal deformation u :
R2 ! R2; u : x 7!u xð Þ ¼ ðu1ðxÞ; u2ðxÞÞ>; such that the
transformed version of the template image TuðxÞ ¼
Tðxþ uðxÞÞ and the reference image R are spatially
matched, according to an image-to-image dissimilarity
measure, D uð Þ. Without loss of generality, this work
assumes that X ¼ ½0; 1�2 � R2 and V ¼ ½0; 1� for 2D
gray intensity images. Note that the choice of X is
somewhat arbitrary. The unit square X ¼ ½0; 1�2 is
adopted and used in all numerical sections throughout
this work in order to make the performance compari-
son of the proposed numerical method with that of
literature.5

If the image intensities of the given images R and T
are comparable, one may have various choices for D.
Probably the most popular choice for the dissimilarity
measure is provided by the so-called sum of squared
differences (SSD)

D uð Þ ¼ 1

2

Z
X
TuðxÞ � R xð Þ� �2

dx

The registration task is then to solve the minimiza-
tion problem

min
u
fD uð Þg (1)

where u is searched over a set of admissible functions U
minimizing D. As is well-known, the minimization of D
does not have a unique minimizer and it becomes nec-
essary to impose a constraint on the solution u via a
regularizer R. By modifying (1), the desired deforma-
tion u is a minimizer of the variational problem

min
u
fJ a uð Þ ¼ D uð Þ þ aR uð Þg (2)

where a > 0 is a positive constant that compromises the
quality of the similarity between Tu and R, measured
by D, and the level of penalty for unwanted deforma-
tions, measured by R.

In this work, we focus on the regularizer of the form

RðuÞ ¼
X2
l¼1
RTVðulÞ (3)

where

RTVðulÞ ¼
Z
X
rulj jdx ¼

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2l;x þ u2l;y

q
dx

with ul;x ¼ @ul
@x and ul;y ¼ @ul

@y to ensure that the con-
structed deformation u is unique and preserves discon-
tinuities of the deformations. This term is known as the
total variation (TV) regularizer.5–7 In contrast to other
traditional regularizers generating globally smooth
deformations, e.g. elastic8 diffusion9 and curvature reg-
ularizers10,11 the TV regularizer is able to produces
locally non-smooth deformations, which are required
in matching several moved objects or partially occluded
objects in medical applications, particularly at organ
boundaries during the breathing induced organ
motion.

In order to get a numerical solution of the variation-
al problem (2), the standard gradient descent method
can be applied. We first embed the associated Euler-
Lagrange (EL) equation of (2) into a dynamic equation
and drive it to a steady state. This yields the explicit
scheme as given by

u
½kþ1�
1 � u

½k�
1

s
¼ ar � ru½k�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu½k�1;xÞ2 þ ðu½k�1;yÞ2 þ b
q

0
@

1
A–f1ðu½k�Þ;

u
½kþ1�
2 � u

½k�
2

s
¼ ar � ru½k�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu½k�2;xÞ2 þ ðu½k�2;yÞ2 þ b
q

0
@

1
A–f2ðu½k�Þ;

8>>>>>>><
>>>>>>>:

(4)

where flðu½k�Þ ¼ Tu½k� � Rð Þ@ulTu½k� ; k ¼ 0; 1; 2; . . . is the
time step, s > 0 is the step size, and b > 0 is a small
real parameter to avoid zero division; see more details
in literature.12–14 This numerical scheme is easy to
implement, but very slow to converge due to the con-
straint of stability conditions in the step size s. In order
to speed up the convergence of (4), we may linearize
nonlinear ‘coefficients’ in the associated system and
define the iteration step as follows:

u
½kþ1�
1 � u

½k�
1

s
� ar � ru½kþ1�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu½k�1;xÞ2 þ ðu½k�1;yÞ2 þ b
q

0
@

1
A

¼ �f1ðu½k�Þ;

u
½kþ1�
2 � u

½k�
2

s
� ar � ru½kþ1�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu½k�2;xÞ2 þ ðu½k�2;yÞ2 þ b
q

0
@

1
A

¼ �f2ðu½k�Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(5)

The idea of the linearized gradient descent (LGD)
method in (5) is to linearize and solve the EL equation
via a fixed-point (FP) iteration in a similar way to the
so-called Lagged-diffusivity method15 or Quasi-Newton
scheme.16,17 For each iteration, a linear system needs to
be solved. As can be seen, both gradient descent
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methods in (4) and (5) share two drawbacks. At first,
these gradient descent methods provide only the the
approximate solutions of the original problem (2),
since the TV regularizer R uð Þ in (3) is replaced with

RbðuÞ ¼
X2
l¼1
RTV

b ðulÞ (6)

where

RTV
b ðulÞ ¼

Z
X
rulj jbdx ¼

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2l;x þ u2l;y þ b

q
dx

is used to avoid non-differentiability of RTVðulÞ and
thus approximated to get (4) and (5). On the second,
the choice of b will effect on the computational effi-
ciency of the numerical methods and the smoothness of
the constructed deformations. Larger the b, more effi-
cient the methods are, whereas more smooth the con-
structed deformations will be. Therefore the
registration performance in smoothing deformations
by these gradient descent methods is very sensitive to
the parameter b. Indeed, there are a few different
methods existing in the literature for solving the asso-
ciated EL equation of (2). For example, the use of the
nonlinear multigrid (NMG) methods can be found in
literature.5–7,18 However, these existing NMG methods
also suffer from difficulties related to the non-
differentiability and non-linearity of RTVðulÞ. To devel-
op efficient numerical methods for TV-based image
registration is still a challenging task and has been an
active research area so far.

Recently, the variable-splitting methods are the well-
known techniques in the field of image restoration for
solving variational models, which require the minimi-
zation of nonlinear and non-differentiable functionals.
To the best of the author’s knowledge, the variable-
splitting methods for TV-based image registration
model in (2) are still missing in the literature. In this
paper, the proposed method is based on the so-called
augmented Lagrangian method (ALM). We compare
the performance of the proposed ALM with the LGD
method in (5) and the NMG method developed by lit-
erature.5 Numerical results show that our proposed
ALM is more computationally efficient than these
existing methods

The rest of this paper is organized as follows.
In the second section, we derive our ALM algorithm
to solve the variational problem (2), following its
numerical implementation in the third section. In the
fourth section, numerical comparisons are carried out
to confirm the effectiveness of the proposed ALM.
Finally, some concluding remarks are made in the
last section.

The proposed ALM

Before we derive the proposed ALM, we first rewrite

(2) as

min
u
J uð Þ ¼ D uð Þ þ a

X2
l¼1

Z
X
rulj jdx

( )
(7)

Next, we introduce an auxiliary variable w ¼
ðw1;w2Þ such that wl ¼ rul and reformulate the mini-

mization problem (7) to the the following constrained

minimization problem

min
u;w
J u;wð Þ (8)

J u;wð Þ ¼ D uð Þ þ a
X2
l¼1

Z
X
wlj jdx

s:t:wl¼rul for l ¼ 1; 2

For the minimization of (8), this work proposes

to use the ALM and rewrite the constrained minimiza-

tion problem (8) into an unconstrained minimization

problem. We define the augmented Lagrangian func-

tional for the above constrained minimization as

follows

L u;w; k1; k2ð Þ ¼ J u;wð Þ þ
X2
l¼1

hl
2

Z
X
wl �rulj j2dx

þ
X2
l¼1

Z
X
kl � wl �rulð Þdx

(9)
where h1; h2 are the positive penalty parameters and

k1; k2 are the Lagrange multipliers.

Algorithm 1. ALM for TV-based image registration

1) Initialization: set m¼ 0, choose h1; h2 > 0 and
k
ð0Þ
1 ; k

ð0Þ
2 .

2) Repeat
2.1) Compute ðuðmÞ;wðmÞÞ as an (approximate)

minimizer of the augmented Lagrangian
functional with the Lagrange multipliers
k
ðm�1Þ
1 ; k

ðm�1Þ
2 , i.e.,

ðuðmÞ;wðmÞÞ� argmin
u;w

Lðu;w; kðm�1Þ1 ; k
ðm�1Þ
2 Þ (10)

2.2) Update Lagrange multipliers

k
ðmÞ
1  k

ðm�1Þ
1 þ h1ðwðmÞ1 �ruðmÞ1 Þ (11)
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k
ðmÞ
2  k

ðm�1Þ
2 þ h2ðwðmÞ2 �ruðmÞ2 Þ (12)

until a stopping rule for ALM method is satisfied.

We propose an iterative algorithm to solve the min-

imization of L u;w; k1; k2ð Þ; see Algorithm 1. Since u

and w are coupled together in the minimization prob-

lem (9), it is very difficult to solve all variables simul-

taneously. We separate the minimization problem into

two sub-problems and develop an alternating minimi-

zation procedure to approximate the solution. This

process is repeated until one of the following stopping

rules is satisfied:

RelSSDðmÞ ¼ Dðu
ðmÞÞ

Dðuð0ÞÞ < �1; (13)

max
kuðmÞ1 � u

ðm�1Þ
1 k

kuðmÞ1 k
;
kuðmÞ2 � u

ðm�1Þ
2 k

kuðmÞ2 k

( )
< �2; (14)

max
kwðmÞ1 �ruðmÞ1 k

Xj j ;
kwðmÞ2 �ruðmÞ2 k

Xj j

( )
< �3; (15)

max
kkðmÞ1 � k

ðm�1Þ
1 k

kkðmÞ1 k
;
kkðmÞ2 � k

ðm�1Þ
2 k

kkðmÞ2 k

( )
< �4; (16)

m � �5; (17)

where �1, �2, �3 and �4 denote the predefined small pos-

itive numbers, and �5 is the maximum iteration. Here m

denotes the index of the current iteration.
The two-subproblems are as follows:

u-subproblem. Given w ¼ ðw1;w2Þ; k1 and k2, we search

a minimizer u ¼ ðu1; u2Þ> of the minimization problem:

min
u
J uð Þ (18)

J uð Þ ¼ D uð Þ þ
X2
l¼1

hl
2

Z
X
wl �rulj j2dx�

X2
l¼1

Z
X
rul � kldx

(19)

According to the calculus of variation, the solution

of u-subproblem is determined by the associated EL

equation

�h1�u1 þ f1ðuÞ ¼ g1;

�h2�u2 þ f2ðuÞ ¼ g2;

(
(20)

subject to the homogeneous Neumann boundary con-

ditions @ul
@n ¼ 0, where n denotes the unit outward

normal vector on the image boundary @X; flðuÞ ¼
ðTu � RÞ@ulTu; gl ¼ �h1r � wl �r � kl, and l¼ 1, 2.

w-subproblem. Given u, k1 and k2, the following mini-

mization problem

min
w
J wð Þ (21)

J wð Þ ¼ a
X2
l¼1

Z
X
wlj jdxþ

X2
l¼1

hl
2

Z
X
wl �rulj j2dx

þ
X2
l¼1

Z
X
wl � kldx;

(22)

is solved for w ¼ ðw1;w2Þ. Despite the fact that the

variables w1 and w2 do not decouple we can still explic-

itly solve this minimization problem for w using the

generalized shrinkage formula as used in:

wl ¼ max Slj j � a
hl
; 0

� �
Sl
Slj j (23)

with the convection ð 00j j ¼ 0Þ, where Sl ¼ rul � kl
hl
and

l¼ 1, 2. Note that several numerical methods, such as

iterative reweighted least squares and interior-point

method, have been applied to the minimization of sub-

problems as represented in (21), but these methods

cannot usually converge to satisfactory solutions, espe-

cially for large-scale problems. To guarantee the con-

vergence of minimization of subproblem (21), as well as

to reduce the costs of numerical computation, general-

ized shrinkage/thresholding functions as given in (23)

are employed as the solvers; see literature.19–21

Numerical implementation

In this section, we present the details of how to solve

the equation (20) and update the variables w1; w2; k1,

and k2 for each iteration.

Finite difference discretization

In order to discretize the EL equation (20), let

uhl

� �
i;j
¼ uhl x1i ; x2jð Þ; uhð Þi;j ¼ ððuh1Þi;j; ðuh2Þi;jÞ>

wh
l;1

� �
i;j
¼ wh

l;1 x1i ; x2jð Þ; wh
l;2

� �
i;j
¼ wh

l;2 x1i ; x2jð Þ;

wh
l

� �
i;j
¼ ððwh

l;1Þi;j; ðwh
l;2Þi;jÞ; ðghl Þi;j ¼ ghl x1i ; x2jð Þ;
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denote the grid functions for l¼ 1, 2 with the grid spac-
ing h ¼ h1; h2ð Þ ¼ 1=n1; 1=n2ð Þ, where the integers n1 ¼
1=h1 and n2 ¼ 1=h2 are the number of uniform intervals
in the x1 and x2 coordinate directions. Each grid point
x in the discretized domain Xh � X is given by x ¼
ðx1i ; x2jÞ> ¼ 2i�1ð Þh1

2 ; 2j�1ð Þh2
2

� �>
for 1 � i � n1 and

1 � j � n2.
Applying the finite difference approximations with

(20), the discrete EL equation at a grid point ðx1i ; x2jÞ
over the discrete domain Xh is given by

�h1�hðuh1Þi;j þ fh1 uhð Þi;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N h

1ðuhÞi;j

¼ ðgh1Þi;j;

�h2�hðuh2Þi;j þ fh2 uhð Þi;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N h

2ðuhÞi;j

¼ ðgh2Þi;j;

8>>>>>><
>>>>>>:

(24)

with the following notation

d�x1ðuhl Þi;j ¼ ððuhl Þi;j � ðuhl Þi�1;jÞ=h1;

dþx1ðuhl Þi;j ¼ ððuhl Þiþ1;j � ðuhl Þi;jÞ=h1;

d�x2ðuhl Þi;j ¼ ððuhl Þi;j � ðuhl Þi;j�1Þ=h2;

dþx2ðuhl Þi;j ¼ ððuhl Þi;jþ1 � ðuhl Þi;jÞ=h2;

rhðuhl Þi;j ¼ ðdþx1ðuhl Þi;j; dþx2ðuhl Þi;jÞ>;

rh � ðwh
l Þi;j ¼ d�x1ðwh

l;1Þi;j þ d�x2ðwh
l;2Þi;j;

��hðuhl Þi;j ¼ �rh � ðrhðuhl Þi;jÞ;

¼ 1

h21
ð Rð Þhi;jðuhl Þi;j � ð�RhÞi;jðuhl Þi;jÞ;

Rð Þhi;j ¼ 2ð1þ c2Þ; c ¼ h1=h2;

�Rð Þhi;jðuhl Þi;j ¼ ðuhl Þiþ1;j þ ðuhl Þi�1;j þ c2ðuhl Þi;jþ1
þ c2ðuhl Þi;j�1;

fh1 uhð Þi;j ¼ fh1 uh1; u
h
2

� �
i;j

¼ ðTh	
i;j � Rh

i;jÞ
Th	
iþ1;j � Th	

i�1;j
2h1

;

fh2 uhð Þi;j ¼ fh2 uh1; u
h
2

� �
i;j

¼ ðTh	
i;j � Rh

i;jÞ
ðTh	

i;jþ1 � Th	
i;j�1Þ

2h2
;

Th	
i;j ¼ Thðiþ ðuh1Þi;j; jþ ðuh2Þi;jÞ;

ðghl Þi;j ¼ �d�x1ðhlðwh
l;1Þi;j þ ðkhl;1Þi;jÞ

� d�x2ðhlðwh
l;2Þi;j þ ðkhl;2Þi;jÞ:

We note that all finite difference approximations

need to be adjusted at the image boundary @Xh using

the approximations of the boundary conditions

ðuhl Þi;1 ¼ ðuhl Þi;2; ðuhl Þi;n2 ¼ ðuhl Þi;n2�1;

ðuhl Þ1;j ¼ ðuhl Þ2;j; ðuhl Þn1;j ¼ ðuhl Þn1�1;j:

In the following subsections the symbols ‘h’ and

‘ð�Þi;j’ will sometimes drop for simplicity.

Nonlinear multigrid method for solving u-subproblem

The most difficult part of the proposed ALM is the solu-

tion of the EL equation for u-subproblem in (20). This

subproblem is nonlinear and impossible to obtain a

closed-form solution. It therefore requires one to approx-

imately solve the corresponding nonlinear discrete system

via some iterative method (e.g, a FP method and a

Newton-type method). As is well-known, the computa-

tional costs of iterativemethods are too expensive and we

are motivated to develop an efficient numerical method

for reducing the computational work.
In this section, we propose a nonlinear multigrid

(NMG) method due to literature.22 The basic idea is

to accurate the convergence of some basic iterative

method on the finest grid by relying on the complemen-

tary interplay of smoothing and coarse-grid correction

principles. For a more comprehensive treatment of MG

methods in the area of image registration, we refer

literature5,11,18,23–28 and references therein.
Let us denote the nonlinear discrete system in (24)

using the following notation:

N h
1ðuhÞ ¼ gh1;

N h
2ðuhÞ ¼ gh2

(
(25)

where uh denotes the exact solution. Let �uh ¼ ð�uh1; �uh2Þ>
be an approximate solution of uh resulting from apply-

ing a few iterations of the smoother on a fine-grid

Xh (pre-smoothing step). Define the algebraic error as

Chumchob and Chen 5



eh ¼ uh � �uh. Therefore, the residual equation is given
by

N h
l ð�uh þ ehÞ � N h

l ð�uhÞ ¼ ghl �N h
l ð�uhÞ ¼ rhl ðl ¼ 1; 2Þ:

To correct �uh numerically on Xh, e
h is required to

compute, but this computation is considerably and
prohibitively expensive on Xh. Since the smoother in
the pre-smoothing step removes the high frequency
component of the error, one can represent the nonlin-
ear system to the coarse grid XH as given by

N h
l ð�uh þ ehÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N h

l ðuhÞ

¼ rhl þN h
l ð�uhÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

gh
l

# (26)

NH
l ð�uH þ eHÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
NH

l ðuHÞ

¼ rHl þNH
l ð�uHÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

gH
l

;

where H is the index for the new cell size H1 
H2 with
H1 � h1 and H2 � h2. Next, the nonlinear residual
equation (27) on XH has to be solved by an efficient
method (the coarsest grid solver). The coarse-grid cor-
rection eH ¼ uH � �uH on XH is then interpolated back
to that on the fine grid eh, which can now be used to
update �uh on Xh by using �uh

new ¼ �uh þ eh (coarse-grid
correction step). Finally, the smoother is again per-
formed with a few iterations on Xh to remove high
frequency parts of the interpolated error (post-smooth-
ing step). This procedure is known as a two-grid cycle,
and it can be extended to a MG method with recursive
application.

Below, we provide the technical details for our MG
components.

1. The standard coarsening method is used in XH by
doubling the grid spacing in each space direction
— i.e. hl ! 2hl ¼ Hl for l¼ 1, 2.

2. The restriction operator IHh and interpolation opera-
tors IhH are used as the intergrid transfer operators
and determined by the averaging and bilinear inter-
polation techniques — cf. literature29–33 for more
details.

3. The discretization coarse grid approximation method
is used to compute the coarse-grid operators.

4. The coarsest grid solver is the LGD method.
5. The MG cycle is Vð�1; �2Þ-cycle, where �1 and �2

denote respectively the numbers of pre- and post-
smoothing steps.

6. The MG smoother to be discussed shortly in the next
section is obtained from a coupled outer-inner iter-
ation method using a relaxation parameter x.

The implementation of the proposed NMG method

can be summarized as follows: �uh  NMGCYCð�uh;

gh1; g
h
2;R

h;Th; �1; �2; h1; h2;x; SiterÞ
1Þ If Xh ¼ coarsest grid Xhj j ¼ 4
 4ð Þ, solve (25)

using the LGD method and then stop.
Else continue with following step.
2Þ Pre-smoothing:
For k¼ 1 to �1,
�uh½ �  Smootherð�uh; gh1; g

h
2;R

h;Th; h1; h2;x; SiterÞ
(Siter represents the maximum number of the inner

iterations)
3Þ Restriction to the coarse grid:

�uH1  IHh �u
h
1; �u

H
2  IHh �u

h
2; R

H  IHh R
h; TH  IHh T

h

4Þ Set the initial solution for the coarse-grid prob-

lem: ~uH1 ; ~u
H
2


 � �uH1 ; �u
H
2


 �
5Þ Compute the new right-hand side for the coarse-

grid problem:

gH1  IHh ðgh1 �N h
1ð�uhÞÞ þ NH

1 �uHð Þ,
gH2  IHh ðgh2 �N h

2 �uhð ÞÞ þ NH
2 ð�uHÞ

6Þ Implement the NMG method on the coarse-grid

problem:
�uH  NMGCYCð�uH; gH1 ; g

H
2 ;R

H;TH; �1; �2; h1; h2;
x; SiterÞ
7Þ Add the coarse-grid corrections:
�uh1  �uh1 þ IhH �uH1 � ~uH1

� �
; �uh2  �uh2 þ IhH �uH2 � ~uH2

� �
8Þ Post-smoothing:
For k¼ 1 to �2,
�uh½ �  Smootherð�uh; gh1; g

h
2;R

h;Th; h1; h2;x; SiterÞ
To solve u-subproblem using (25) numerically, the pro-

posed NMG method is stopped if the maximum number

of the MG cycles e1 is reached or the mean of the relative

residuals obtained from the discrete EL equation (25) is

smaller than a small prescribed number e2 > 0.

Finally, the pseudo-code implementation of the pro-

posed NMG method can be given in Algorithm 2.

Algorithm 2 The NMG algorithm for u-subproblem

�uh  NMG �uh; gh1; g
h
2;R

h;Th; �1; �2; h1; h2;x; Siter;~e
� �

1Þ Initialization: select~e ¼ e1; e2ð Þ>, set K¼ 0,
½�uh�½K� ¼ �uh and RelRes ¼ e2 þ 1.
2Þ Repeat

2:1Þ ½�uh�½Kþ1�  NMGCYCð½�uh�½K�; gh1; gh2; Rh; Th;
�1; �2; h1; h2;x; SiterÞ.

2:2Þ Compute

RelRes ¼ mean
jjgh

l
�N h

l ð½�uh�½Kþ1�Þjj
jjgh

l
�N h

l ð½�uh�½0�Þjj j l ¼ 1; . . . ; 2

� 

.

2:3Þ Set K ¼ K þ 1.
until a stopping rule for NMG method is met.

6 Journal of Algorithms & Computational Technology



The MG smoother

Following literature5,11,18,23–27 the local Fourier analy-
sis can be used to guarantee that there exists an efficient
point-wise smoother within a MG method for solving
the discrete nonlinear system (25). To obtain a high-
potential point-wise smoother, this work proposes a
coupled outer-inner iteration method in a FP
framework.

Let � denote the index for the outer step. We start
the outer iteration by introducing the iterative scheme
as follows

�h1�u
½�þ1�
1 þ f1ðu½�þ1�Þ ¼ g1;

�h2�u
½�þ1�
2 þ f2ðu½�þ1�Þ ¼ g2:

(

Since this iterative scheme is fully implicit, a linear-
ization procedure of the nonlinear term flðu½�þ1�Þ is
required. As pointed out in literature5,11,23,26–28 it is
appropriate to apply a global linearization technique
with the nonlinear terms flðu½�þ1�Þ. Thus, the resulting
approximation is given by

flðu �þ1½ �Þ ¼ flðu �þ1½ �
1 ; u �þ1½ �

2 Þ

�flðu �½ �
1 ; u

�½ �
2 Þ þ r �½ �

l1 du
�½ �
1 þ r �½ �

l2 du
�½ �
2 (27)

where

rl1ðu �½ �Þ ¼ @u1flðu �½ �
1 ; u

�½ �
2 Þ

¼ ð@ulTðu �½ �ÞÞð@u1Tðu �½ �ÞÞ

þ ðTðu �½ �Þ � RÞð@u1ulTðu �½ �ÞÞ;

rl2ðu �½ �Þ ¼ @u2flðu �½ �
1 ; u

�½ �
2 Þ

¼ ð@ulTðu �½ �ÞÞð@u2Tðu �½ �ÞÞ

þ ðTðu �½ �Þ � RÞð@u2ulTðu �½ �ÞÞ

To obtain a simple and fast iterative scheme, we use
the approximations for rl1 and rl2 as introduced by
literature.11,34–36 Therefore, we have

r11ðu �½ �Þ ¼ @u1Tu½��ð Þ @u1Tu½��ð Þ

þ Tu½�� � Rð Þ @u1u1Tu½��ð Þ

� @u1Tu½��ð Þ @u1Tu½��ð Þ;

r22ðu �½ �Þ ¼ @u2Tu½��ð Þ @u2Tu½��ð Þ

þ Tu½�� � Rð Þ @u2ulTu½��ð Þ

� @u2Tu½��ð Þ @u2Tu½��ð Þ;

r12ðu �½ �Þ ¼ r21ðu �½ �Þ ¼ 0:

These approximations leads to the following linear-
ized system

�h1�u �þ1½ �
1 þ r11ðu �½ �Þu �þ1½ �

1 ¼
g1 � f1ðu½��Þ þ r11ðu �½ �Þu �½ �

1 ;

�h2�u �þ1½ �
2 þ r22ðu �½ �Þu �þ1½ �

2 ¼
g2 � f2ðu½��Þ þ r22ðu �½ �Þu �½ �

2

8>>>>>><
>>>>>>:

(28)

Next, we apply the finite difference discretization as
discussed in Section 3.1 with (28) and solve the associ-
ated linear system for each outer step � by the Gauss-
Seidel (GS) method as the inner iteration. The kth step
of the GS method defined at a grid point ðx1i ; x2jÞ is
then given by

ðu �þ1½ �Þ½kþ1�i;j ¼ ðvÞ½kþ1�i;j (29)

where

ðvÞ½kþ1�i;j ¼
F

�½ �
1

F
�½ �
2

0
B@

1
CA;

F
�½ �
1 ¼

1

ðh1=h21ÞðRÞi;j þ ðr11ðu �½ �ÞÞi;j

 !



h
ðg1Þi;j � f1ðu½��Þi;j þ ðr11ðu �½ �ÞÞi;jðu �½ �

1 Þi;j
þ ðh1=h21Þð�RÞi;jðu �þ1½ �

1 Þ½kþ1=2�i;j

i

F
�½ �
2 ¼

1

ðh2=h21ÞðRÞi;j þ ðr22ðu �½ �ÞÞi;j

 !



¼
h
ðg2Þi;j � f2ðu½��Þi;j þ ðr22ðu �½ �ÞÞi;jðu �½ �

2 Þi;j

þ ðh2=h21Þð�RÞi;jðu �þ1½ �
2 Þ½kþ1=2�i;j

i

and

ð�RÞi;jðu �þ1½ �
l Þ½kþ1=2�i;j ¼ ðu �þ1½ �

l Þ½k�iþ1;j þ ðu �þ1½ �
l Þ½kþ1�i�1;j
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þ c2ðu �þ1½ �
l Þ½k�i;jþ1

þ c2ðu �þ1½ �
l Þ½kþ1�i;j�1

Here the superscripts k, kþ 1=2, and kþ 1 denote

the current, intermediate and new approximations

computed by the GS method.
In order to obtain more efficiency, one introduces a

relaxation parameter x 2 0; 2ð Þ and iterates the succes-

sive over relaxation (SOR) steps by

ðu �þ1½ �Þ½kþ1�i;j ¼ 1� xð Þðu �þ1½ �Þ½k�i;j þ xðvÞ½kþ1�i;j (30)

Finally, the implementation of the proposed MG

smoother (30) on Xh is summarized in Algorithm 3.

Algorithm 3 The MG smoother for the proposed
NMG algorithm (Algorithm 2)

�uh  Smootherð�uh; gh1; g
h
2;R

h;Th; h1; h2;x; SiterÞ

1Þ] Use input parameters to compute ðvÞi;j for all
1 � i � n1 and 1 � j � n2.
2Þ] Perform SOR steps for k ¼ 0; 1; 2; . . . ; Siter
2:1Þ] Update ð�uhÞ½kþ1�i;j by (30) for all 1 � i � n1 and
1 � j � n2.

Note that we applied the so-called local Fourier

analysis (LFA) to test the smoothing performance of

the proposed MG smoother with different values of x
(the relaxation parameter) and Siter (the maximum

number of inner iterations) for the four representative

registration problems given by Problems 1–4 (as shown

respectively in Figure 1. Our results shows that the pro-

posed FP smoother with x ¼ 1:85 and Siter¼ 2 is rec-

ommended; see its performance in leading the proposed

ALM method to fast convergence from Tables 3 and 4.

The theoretical details for applying LFA to analyze the

proposed smoother are straightforward and similar to

our previous work in (11)

The closed form expressions for w1; w2; k1, and k2

Based on the formulation (23), we can get the closed

form expressions for w1 and w2 as given by

ðwlÞi;j ¼ max ðSlÞi;j
��� ���� a

hl
; 0

� � ðSlÞi;j
ðSlÞi;j
��� ��� ; (31)

where Sl ¼ dþx1ðulÞi;j �
ðkl;1Þi;j
hl

; dþx2ðulÞi;j �
ðkl;2Þi;j
hl

� �>
for

l¼ 1, 2.

Similarly, based on the formulations in (11) and
(12), we may update all the Lagrangian multipliers by

ðkðkþ1Þ1 Þi;j ¼ ðkðkÞ1 Þi;j þ h1ððw1Þðkþ1Þi;j �rþðu1Þðkþ1Þi;j Þ
(32)

ðkðkþ1Þ2 Þi;j ¼ ðkðkÞ2 Þi;j þ h2ððw2Þðkþ1Þi;j �rþðu2Þðkþ1Þi;j Þ
(33)

Numerical experiments

In this section, we present a number of numerical
experiments to

• compare the overall performance of the proposed
ALM with two related numerical solutions, which

Figure 1. Four registration problems of the real medical images.
(left column) Reference images; (right column) Template images;
(top row) Problem 1; (2nd row) Problem 2; (3rd row) Problem 3;
(bottom row) Problem 4.
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are the LGD method (5) and the NMG method by
Chumchob (5)

• assess the accuracy and efficiency of the proposed
ALM with regard to parameter changes.

We note first that four registration problems consist-
ing of four real medical images to be denoted as
Problems 1–4 were selected for the experiments, as
shown respectively in Figure 1. Second, we used n1 ¼
n2 ¼ n (i.e. we assume the grid spacing h1 ¼ h2 ¼
h ¼ 1=n) in all numerical tests. Third, the bilinear inter-
polation was employed to compute the transformed
template image Tu once the deformations are found
in all cases. We also note that all numerical algorithms
for the proposed ALM, LGD and NMG methods were
started with u½0� ¼ 0 and implemented under MATLAB
R2018a and run on a machine configured with Intel(R)
Core(TM) i7 Quad-core 4.2GHz and 32GB of RAM.

Performance comparison with the other two
methods

In this test, the performance of three different methods
for TV-based image registration model is compared.
We apply the relative SSD (a qualitative measure in
the accuracy), time per iteration (in seconds), total
CPU time (in seconds), and total iterations to perform
our evaluation on the four registration problems shown
in Figure 1.

For the LGD method, we chose s ¼ 10�5 and b ¼
10�6 and implemented a direct solver using
MATLAB’s n-operator (also known as mldivide oper-
ator) for solving each linear system of equations arising
from applying the FP method with the nonlinear dis-
crete EL system.

For the NMG method, we implemented with the
FAS-NMG method of Chumchob (5) The details of
our numerical implementation can be summarized as
follows. We solved the nonlinear discrete EL system
with b ¼ 10�6 in a V-cycle framework, where the coars-
est grid is 4
 4. The LGD method was used to solve
the coarsest problem with s ¼ 10�3. We used the stan-
dard coarsening method and standard interpolation
technique for transferring data between grids. We
applied 15 pre- and 15 post-smoothing steps with a
so-called FP-SOR smoother.

For the proposed ALM, we chose the penalty
parameters h1 ¼ h2 ¼ 1=10. We used the predefined
numbers �1 ¼ 10�2; �2 ¼ 10�4; �3 ¼ �4 ¼ 10�8 and �5 ¼
200 with Algorithm 1. The predefined numbers e1 ¼ 20
and e2 ¼ 10�6 were applied by the proposed NMG
method in Algorithm 2 to solve u-subproblem. In all
registration problems, the proposed NMG method
with the MG smoother in Algorithm 3 was performed
with the MG parameters, �1 ¼ �2 ¼ 5 (5 pre- and 5

post-smoothing steps), x ¼ 1:85 (the relaxation param-
eter), and Siter ¼ 2 (2 iterations of SOR steps).

All numerical methods in this test used the
same regularization parameter a ¼ 1=50 with the grid
spacing h¼ 1/256. Each method was stopped when the

relative solution, max
kuðmÞ

1
�uðm�1Þ

1
k

kuðmÞ
1
k ;

kuðmÞ
2
�uðm�1Þ

2
k

kuðmÞ
2
k

� 

, was

brought below 10�4 or the number of iterations
increases beyond a predefined number. Here we used

the predefined numbers mLGD
max ¼ 200 for the LGD

method, mNMG
max ¼ 50 for the NMG method, and

mALM
max ¼ 200 for the proposed ALM.

From Table 1, one can see that only the proposed
ALM converges, whereas the LGD and NMGmethods
are unable to converge in a reasonable number of iter-
ations. As expected, we have found in this case that the
small value of b has a significant effect on the accuracy
of the registered images and the convergence of the
LGD and NMG method. Moreover, Figure 2 shows
that for each registration problem the proposed ALM
yields the best value of the relative SSD. It is important
to note that the smaller the value of the relative SSD is,
the accurate registered image is achieved. This evidence
ensures that the registration results by the proposed
ALM are more reliable than the LGD and NMGmeth-
ods. Particularly, Figure 3 shows that the proposed
ALM is computationally efficient than the other two
methods in delivering the high quality of the registered
images. The proposed ALM takes only a few iterations
(say 5 iterations) to drop the relative SSD below 0.20,
which means that the dissimilarities between the
reference and registered images have been reduced
more than 80% within the first 5 iterations. This is a
remarkable result to conclude that the computational
performance of the proposed ALM in solving TV-
based image registration is much more efficient than
those of the other two methods.

In terms of computation times per iteration, we can
see that the proposed ALM requires to solve two sub-
problems for u and w in each step. Thus, in accordance
with our measurements, we expect that more computa-
tion time per iteration is required for the proposed
ALM than those of the other two methods. As can
be seen from Table 1, our numerical experiments reflect
this expectation.

In terms of total CPU times, Table 1 illustrates the
LGD method is the slowest method, while the NMG
method is slightly faster than the proposed ALM.
However, both LGD and NMG method are unable
to converge. Thus we can conclude that the LGD and
NMG methods are less computationally efficient than
the proposed ALM.

In Figure 4 we present the constructed deformations
by the proposed ALM for all registration problems.
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In Figure 5, we show the constructed surfaces of both

components of the deformations in Figure 4. In Figure

6, we present the middle slices of the constructed sur-

faces of the components of the deformations in Figure

5. As expected from the use of TV regularizer, the visual

inspection in Figure 4 shows that the proposed ALM

delivers the visually appealing results in preserving the

discontinuities of the constructed deformation as shown

in the corresponding close-up regions. We can also see in

Figure 4 that the constructed deformation yields multiple

motions in the image to be registered and the motion dis-

continuities can be observed at the boundaries of the local

Figure 2. Qualitative comparison of registered images by three
different methods on the four registration problems in Figure 1.
(left) Registered images by LGD; (middle) registered images by
NMG; (right) registered images by the proposed ALM. ‘RelSSD’
means the relative SSD defined in (13) to represent the dissim-
ilarities between R and Tu. Note that the small the value of
RelSSD is, the accurate registered image is obtained.

Table 1. Comparison of the relative SSD, time per iteration, total CPU time (s), and total iterations by three different numerical
methods on the four registration problems in Figure 1 with a ¼ 1

50
and h ¼ 1

256
. * indicates that maximum number of iterations reached

without convergence.

Registration problem

Method 1 2 3 4

LGD

Relative SSD 0.8027 0.7853 0.7841 0.8250

Time per iteration (s) 0.2467 0.2458 0.2457 0.2463

Total CPU time (s) 49.3423 49.1558 49.1301 49.2524

Total iterations 200	 200	 200	 200	

NMG

Relative SSD 0.2465 0.1670 0.0710 0.0852

Time per iteration (s) 0.4941 0.4930 0.4814 0.4914

Total CPU time (s) 24.7045 24.6477 24.0701 24.5724

Total iterations 50	 50	 50	 50	

Proposed ALM

Relative SSD 0:1836 0:1476 0:0664 0:0681
Time per iteration (s) 0.5970 0.6893 0.7105 0.7138

Total CPU time (s) 28.4776 40.6674 37.6567 38.5466

Total iterations 41 59 53 54

Figure 3. History of the relative SSD by three different meth-
ods in solving the four registration problems in Figure 1.
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regions. We see further that the corresponding deforma-
tion in each registration problem is neither smooth nor
reflecting a homogeneous motion. For each local region,
the motion tends to change smoothly, and the gradients
of the constructed deformation in this area are small. At
the boundaries of the local regions, the gradients of the
constructed deformation are large, and the discontinuities
of the constructed deformation can be observed.
Moreover, we can see from Figures 5 and 6 that the con-
structed surfaces of both components of the deformations
are non-smooth and their middle slices are almost piece-
wise constant for all registration problems.

To summarize we have successfully developed the
efficient and effective numerical method for TV-based
image registration model. Our registration results on
the real medical applications shown in Figure 1 dem-
onstrate that the proposed ALM is more computation-
ally efficient and effective than the other two methods.
The most attractive features of our proposed method is
that it is able to produce the high quality of the regis-
tered images in a reasonable number of iterations while
it satisfies the requirement in constructing the deforma-
tions by the TV regularizer.

Performance tests with the regard to parameter
changes

We now present numerical results from several test
cases, to assess the accuracy and efficiency of our pro-
posed numerical techniques with the regard to param-
eter changes.

h-Independence test. One of the key properties of MG
techniques is that their convergence does not depend
on the number of grid points. Thus, in this test we
designed our numerical experiments to investigate this
property with the proposed ALM in Algorithm 1, and
to back up our proposed NMG method in
Algorithms 2.

We implemented the proposed ALM with the same
regularization parameter a ¼ 1

250 and the penalty
parameters h1 and h2 as shown in Table 2. In order
to stop our proposed ALM, we used the same prede-
fined numbers used in Section 4.1. We also used the
same MG parameters to solve u-subproblem as given
in the previous section.

In the numerical results shown in Table 2, one can
see five quantities: the relative SSD, the total iterations,
the total CPU times (in seconds), the ratio of the total
CPU times in increasing both image dimensions by a

Figure 4. Constructed deformations by the proposed ALM for
the four registration problems in Figure 1. Note that multiple
motions in the corresponding image and motion discontinuities
at the boundaries of the local regions determined by the con-
structed deformation can be observed in the corresponding
close-up regions.

Figure 5. Constructed surfaces of both components of the
constructed deformations by the proposed ALM for the four
registration problems in Figure 1. (left) the first component u1;
(right) the second component u2; (top row) Problem 1; (2nd row)
Problem 2; (3rd row) Problem 3; (bottom row) Problem 4.
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factor of 2, and the number of average MG steps used

to solve u-subproblem by Algorithm 2 with different

values of grid spacing h.
As expected from a numerical technique using a MG

framework, Table 2 shows that Algorithm 1 not only

converges within a few iterations, but it also provides

the accurate registration results because the dissimilar-

ities between the reference and registered images given

have been reduced more than 90% for Problem 1, 89%

for Problem 2, and 96% for Problems 3 and 4.

Moreover, the NMG method in Algorithm 2 can

reduce the mean of the relative residuals to e2 ¼ 10�6

within a few MG steps for different values of h. In

addition, we see an increase in the total CPU time by

a factor of approximately 4.5 when both image dimen-

sions is increased by a factor of 2. This shows that the

proposed ALM has an optimal efficiency resulting

from the NMG method proposed in Algorithm 2,

which should be of order OðNlogðNÞÞ where N ¼ n2.

Then we can conclude that the proposed ALM has no

effect on the convergence for different values of h.

a-Dependence test. Next we evaluate to show how our

proposed ALM in Algorithm 1 is affected with varying

the regularization parameter a.
To this end, we performed the proposed ALM on

the four registration problems in Figure 1 with the

same grid spacing h ¼ 1
256 and the penalty parameters

h1 and h2 as given in Table 2. Our proposed ALM in

Figure 6. The middle slices of the corresponding surfaces of
both components of the constructed deformations shown in
Figure 5 by the proposed ALM.

Table 2. Registration results for Problems 1–4 in Figure 1 by the proposed ALM in Algorithm 1 with a ¼ 1
250

and
different values of grid spacing h. Note that ‘Ratio’ means the ratio of the total CPU times in increasing both image
dimensions by a factor of 2.

Registration
Grid spacing (h)

problem 1
256

1
512

1
1024

1
2048

1 (h1 ¼ h2 ¼ 1)

Relative SSD 0.0968 0.0958 0.0951 0.0951

Total iterations 22 22 21 21

Total CPU time (s) 22.4489 74.1501 308.4895 1; 308:3476
Ratio – 3.3031 4.1603 4.2411

Average MG cycles 6 6 6 6

2 (h1 ¼ h2 ¼ 1)

Relative SSD 0.1028 0.1027 0.1025 0.1002

Total iterations 16 16 15 15

Total CPU time (s) 16.1900 58.8500 257.0531 1; 117:0938
Ratio – 3.6350 4.3679 4.4294

Average MG cycles 7 7 7 7

3 (h1 ¼ h2 ¼ 1
4
)

Relative SSD 0.0359 0.0359 0.0358 0.0357

Total iterations 36 34 33 33

Total CPU time (s) 38.8623 137.9971 577.3338 2; 578:2640
Ratio – 3.5509 4.1837 4.4658

Average MG cycles 7 7 7 7

4 (h1 ¼ h2 ¼ 1
4
)

Relative SSD 0.0377 0.0375 0.0374 0.0373

Total iterations 31 31 30 30

Total CPU time (s) 30.9928 116.8559 500.9036 2; 238:7849
Ratio – 3.7704 4.2865 4.4695

Average MG cycles 6 6 6 6
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Table 3. Registration results for Problems 1–4 in Figure 1 by the proposed ALM in Algorithm 1 with h ¼ 1
256

and different values of
the regularization parameter a.

Registration
Regularization parameter (a)

problem 1
250

1
200

1
150

1
100

1
50

1
25

1 (h1 ¼ h2 ¼ 1)

Relative SSD 0.0968 0.1015 0.1080 0.1313 0.2099 0.3466

Total iterations 20 21 25 30 33 49

Average MG cycles 6 6 6 6 6 6

2 (h1 ¼ h2 ¼ 1)

Relative SSD 0.1028 0.1028 0.1069 0.1174 0.1675 0.2104

Total iterations 16 18 20 27 37 40

Average MG cycles 7 6 6 6 6 6

3 (h1 ¼ h2 ¼ 1
4
)

Relative SSD 0.0359 0.0385 0.0436 0.0536 0.0958 0.2251

Total iterations 36 44 49 65 90 125

Average MG cycles 7 7 6 6 5 5

4 (h1 ¼ h2 ¼ 1
4
)

Relative SSD 0.0377 0.0406 0.0449 0.0548 0.0863 0.1909

Total iterations 31 34 49 57 102 139

Average MG cycles 6 6 5 5 5 5

Table 4. Registration results for Problems 1–4 in Figure 1 by the proposed ALM in Algorithm 1 with h ¼ 1
256

; a ¼ 1
250

and different
values of the penalty parameter h. Recall that * indicates that maximum number of MG cycles reached without convergence.

Penalty
Registration problem

parameter 1 2 3 4

h¼ 10

Relative SSD 0.8128 0.8128 0.4923 0.5056

Total iterations 3 3 3 3

Average MG cycles 20	 15 18 18

h¼ 8

Relative SSD 0.7721 0.7774 0.4271 0.4401

Total iterations 3 3 3 3

Average MG cycles 20	 19 15 15

h¼ 6

Relative SSD 0.7098 0.7138 0.3476 0.3595

Total iterations 3 3 3 3

Average MG cycles 20	 20	 14 14

h¼ 4

Relative SSD 0.6033 0.6029 0.2615 0.2710

Total iterations 3 3 3 3

Average MG cycles 20	 20	 19 19

h¼ 2

Relative SSD 0.1935 0.2048 0.2187 0.2467

Total iterations 8 7 10 9

Average MG cycles 12 14 20	 20	

h¼ 1

Relative SSD 0.0968 0.1028 0.2057 0.2443

Total iterations 20 16 17 19

Average MG cycles 6 7 20	 20	

h ¼ 1
2

Relative SSD 0.0693 0.0696 0.0670 0.0441

Total iterations 39 31 25 19

Average MG cycles 5 5 20	 20	

(continued)
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Algorithm 1 was stopped with the same predefined
numbers used in Section 4.1. We also applied the
same predefined number and MG parameters as
shown in Section 4.1 with Algorithms 2 and 3 to
solve u-subproblem.

Table 3 presents the numerical results by the pro-
posed ALM in Algorithm 1 with different values of the
regularization parameter a. It contains three quantities:
the relative SSD, the total iterations, and the number of
average MG steps used to solve u-subproblem by
Algorithm 2.

As presented in Table 3, decreasing the values of a
has significant effects on the accuracy of the registered
images and the convergence of the proposed ALM in
Algorithm 1, whereas the value of a has only a small
effect on the convergence of the proposed NMG
method in Algorithm 2. We can see that large a is
not needed as small ones give better registration results,
typically a ¼ 1

250 ;
1

200 ;
1

150, and
1
100. It is important to note

that the process to select the optimal value of a is a
separate but important issue because it is in general
unknown a priori and it significantly affects on the
accuracy of registered images and the ALM
performance.

In order to find a suitable a automatically, the ‘cool-
ing’ (‘continuation’) process suggested in litera-
ture11,35,37–39 is recommended for real applications.
The basic idea is to start with a high initial value of a
and then slowly reduce a such that the obtained solu-
tion can be used to be an excellent starting point for the
next in order to decrease J in (8).

ðh1; h2Þ-dependence test. We now present numerical
results from several test cases to evaluate the

registration performance of our proposed ALM with
different values of h1 and h2.

We performed the proposed ALM in Algorithm 1
on the four registration problems shown in Figure 1
using h ¼ 1

256 and a ¼ 1
250. The predefined numbers

and the MG parameters for Algorithms 1–3 are the
same values used in Section 4.1.

We note that we take h1 ¼ h2 ¼ h in this numerical
test to evaluate the performance of the proposed ALM.
Table 4 presents the registration results for the four
registration problems by the proposed ALM in
Algorithm 1 with different values of h. Three qualities
for the performance tests are the relative SSD, the total
iterations, and the number of average MG steps used to
solve u-subproblem by Algorithm 2.

One sees from Table 4 that as h is decreased from 10
to 1

10 the dissimilarities between the given images
decrease (the accuracy of the registered image increase),
whereas the cost of the proposed ALM increases. We
observe that the smaller h is the better the proposed
NMG method performs and an increase in the number
of smoothing steps is required to achieve fast MG con-
vergence for large h. Next, we see that decreasing the
value of h leads to the best registration result at h ¼ 1

10.
We see further that large values of h are not required as
small ones deliver better registration performance.
Typically, h should be between 1

10 and 1
2 to give the

accurate registration results in a reasonable number
of iterations.

Concluding remarks

In this paper, we first explained how standard methods
solve the TV-based image registration model. Next, we

Table 4. Continued.

Penalty
Registration problem

parameter 1 2 3 4

h ¼ 1
4

Relative SSD 0.0617 0.0586 0.0359 0.0377

Total iterations 60 44 36 31

Average MG cycles 4 5 7 6

h ¼ 1
6

Relative SSD 0.0600 0.0549 0.0338 0.0348

Total iterations 75 60 46 52

Average MG cycles 4 4 5 5

h ¼ 1
8

Relative SSD 0.0584 0.0536 0.0328 0.0340

Total iterations 89 100 63 59

Average MG cycles 4 4 5 4

h ¼ 1
10

Relative SSD 0.0579 0.0535 0.0326 0.0336

Total iterations 108 191 75 62

Average MG cycles 4 4 4 4
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discussed how we are needed to develop a new method.

In order to efficiently solve the model, we therefore

proposed to use augmented Lagrangian method. We

separated the associated minimization problem into

two subproblems. As a result, the first subproblem is

a nonlinear problem and impossible to obtain exact

solution, whereas the other one has a closed-form solu-

tion. Next, we developed an efficient NMG method to

solve the associated discrete nonlinear system. In order

to assess the efficiency and effectiveness of our new

method, we tested, using four registration problems

of real medical images, how our new method performs.

We found in our first numerical test that the registered

images by different methods are not identical.

Therefore, it can be concluded that different numerical

algorithms for TV-based image registration model have

a significant effect on the accuracy of registered images.

We also found that our new method outperforms the

existing methods. Moreover we found by the perfor-

mance comparison in this test that our new method is

able to deliver the accurate registration results with the

desired properties of the constructed deformations in a

reasonable number of iterations. Next, we found in the

second test that there are no effect on the convergence

of the new method for different numbers of grid points.

Moreover, we observed from the third and last tests

that the choice of the regularization and penalty

parameters is important for the quality of the registered

images and the computational performance of the new

method. The outlines in selecting these two parameters

to obtain the accurate registration results were dis-

cussed. Future work will extend the proposed method

to high-order variational models for image registration.
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