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Selective segmentation of a feature
that has two distinct intensities

Liam Burrows1 , Ke Chen1 and Francesco Torella2

Abstract

It is common for a segmentation model to compute and locate edges or regions separated by edges according to a

certain distribution of intensity. However such edge information is not always useful to extract an object or feature that

has two distinct intensities e.g. segmentation of a building with signages in front or of an organ that has diseased regions,

unless some of kind of manual editing is applied or a learning idea is used. This paper proposes an automatic and selective

segmentation model that can segment a feature that has two distinct intensities by a single click. A patch like idea is

employed to design our two stage model, given only one geometric marker to indicate the location of the inside region.

The difficult case where the inside region is leaning towards the boundary of the interested feature is investigated with

recommendations given and reliability tested. The model is mainly presented 2D but it can be easily generalised to 3D.

We have implemented the model for segmenting both 2D and 3D images.
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Introduction

Segmentation of an image is the task of partitioning it

into different segments in order to classify and identify

objects. Although often the concepts of segmentation

and feature extraction are synonymously used, they are

not always the same thing. This paper considers a

common setting where an interested object or feature

has two distinct intensities e.g. segmentation of a build-

ing with signages in front or of an organ that has dis-

eased regions. Here the segmented results by the

common models show parts of an object, or not a com-

plete object. In particular we consider this challenging

setting and assume both domains have distinct intensi-

ties and are approximately homogeneous, so that a

region based model is applicable.
Classic variational approaches such as the Mumford

and Shah1 method aims to partition the entire image

domain . Here n regions such that X ¼ X1 [ X2 [ . . . [
Xn by finding an edge ition the entire image domain .

Here the segmented results by the common models

show parts of an object, or nots in an image, however

it is difficult to accurately solve. Chan and Vese2 intro-

duced a piecewise constant version of the Mumford-

Shah model, overcoming the difficulty of solving

Mumford-Shah model; another approach is by
Ambrosio and Tortorelli,3 who proposed an approxi-
mation to Mumford-Shah using t\\Normalization\\IN\
\INPROCESS\\1“ \o ”1¼Ref L. Ambrosioand V.vari-
ational segmentation models for global segmentation
i.e. locating all edges and different regions. Another
common type are known as edge based, which aim to
evolve a contour towards edges in an image by making
use of an edge detector. Kass et al.4 was among the first
of this type, which was further developed by the
Geodesic Active Contours model by Caselles et al.5

Selective segmentation aims to identify a particular
object or objects of interest, and so has very important
applications in medical imaging. A set M of marker
points (usually 3to identify a particular object or

1Department of Mathematical Sciences and Centre for Mathematical

Imaging Techniques, University of Liverpool, Liverpool, UK
2Liverpool Vascular & Endovascular Service, Liverpool University

Hospitals, Liverpool, UK

Corresponding author:

Ke Chen, Department of Mathematical Sciences and Centre for

Mathematical Imaging Techniques, University of Liverpool, Liverpool, UK.

Email: k.chen@liverpool.ac.uk

Journal of Algorithms & Computational

Technology

Volume 15: 1–16

! The Author(s) 2021

DOI: 10.1177/17483026211007776

journals.sagepub.com/home/act

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://

creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission

provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-6910-6693
mailto:k.chen@liverpool.ac.uk
http://dx.doi.org/10.1177/17483026211007776
journals.sagepub.com/home/act
http://crossmark.crossref.org/dialog/?doi=10.1177%2F17483026211007776&domain=pdf&date_stamp=2021-04-21


objects of interest, and so has very important applica-
tions et al.,6 who introduced a distance constraint to
the GAC model. A popular method to achieve selective
segmentation is to combine elements from both region
based and edge based models, as was done in Badshah

and Chen7 to encourage the contour to fit to the inten-
sity of an object. Rada and Chen8 made this more reli-
able by adding a constraint on the evolution of the
contour by making use of the polygon formed by the
marker points. More recently, Spencer and Chen9

introduced a convex model making use of the
Euclidean distance from the set of marker points as a
constraint. This model is able to achieve good results,
however can be parameter sensitive and not as robust.
It is recently improved in Roberts et al.10 by replacing

the Euclidean distance with a Geodesic distance, which
increases distance in an image when an edge is detected
and only needs a single marker point. For selective
segmentation, this is the most robust model discussed
so far and is the model which we will use to obtain our
segmentation results. To illustrate the differences, we
refer to Figure 1 where the purpose is to segment the
aorta in a real life CT image with a stent (stance in an
image when an edge is detected and only needs a single
marker point. For selective segmentation, this is the

However this paper addresses the case where the

intended object has inhomogeneous intensities that
may be broadly grouped into two regions of pixels
each having a very different mean-intensity value.

Then none of the above mentioned existing models
can be used because there exist xist r this pes’ in the

object that we are interested in.
To be precise, the task is to take a single input from

the user to obtain segmentations of two separate, con-
nected objects: one for the object with a marker, and
the other for a larger object containing the first. In this

paper we propose a nobel and yet simple method for
this task. The class of the secondary objects that we can

segment contains typically two phases in terms of
intensities. Such an object cannot be segmented by all
the known methods without manual editing. It is pos-

sible that a learning model can do the same job but
such a model can deal with one type of applications

per training, not for the variety of applications that we
aim for.

We begin by detailing the segmentation model and
then discuss some natural approaches to find a value to

threshold our image in order to segment it a
second time, before introducing our idea of threshold-
ing an image in order to model the three-phase

Figure 1. Illustration of the performance of an old model Roberts et al.10 in (a)–(j): its dependence on the initial marker set
l Roberts8" in microscopic images as a prelude to development of computer assisted automated di–(o), to segment the complete
object in (n). (a) Marker set 1. (b) Marker set 2. (c) Marker set 3. (d) Marker set 4. (e) Marker set 5. (f) Result 1. (g) Result 2. (h) Result
3. (i) Result 4. (j) Result 5. (k) Marker set. (l) Stage 1. (m) Stage 2. (n) Final. (o) Combined.
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segmentation using a two-phase model. Finally, we dis-

cuss where the method might fail and then recommend

a solution.

The previous segmentation works

Let z(x, y) be a given image defined on the image

domain X � R2. The task of selective segmentation is

to segment the object in image z that is closest to

an user-provided set M¼ fðxi; yiÞ 2 Xg. However

the new task that this paper tries to address is the

case where the intended object has inhomogeneous

intensities that may be broadly grouped into two

regions of pixels each having a very different mean-

intensity value. Then it is not immediately obvious

which existing models can be used e.g. either

Mumford-Shah type or edge type models cannot be

used because there exist xist ver the new task that this

paper tries to address is the case where the intende

representative models that we use to build our new

models.

A two-phase model

We denote X1 as the foreground object, and X2 ¼ X X1

the background in a two-phase model. The task here in

finding X1 is to find the boundary phase model. The

task here in finding case X1 and X2. Since X1 only

contains the interested object(s), not all possible objects

in z, many models from the literature cannot used for

the task.
We review mainly the Roberts et al.10 model, which

is based on the framework of Chan and Vese2 and

forms the basis of our proposed method. This model

takes the following form

min
C;c1;c2

flengthðCÞ þ h
Z
X1

DdXþ k1

Z
X1

ðzðx; yÞ � c1Þ2dX

þ k2

Z
X2

ðzðx; yÞ � c2Þ2dXg

(1)

where c1 and c2 are the average intensities inside X1 and

X2 respectively, and D based onM and gradients of z is

the geodesic distance constraint which will be

discussed later.
In order to solve this model, as done in Chan and

Vese,2 one uses the level set idea from Osher and

Sethian11 to represent our l set idea fro/, i.e.

/ðx; yÞ ¼
> 0; ðx; yÞ 2 X1;

¼ 0; ðx; yÞ 2 C;

< 0; ðx; yÞ 2 X2:

8><
>:

The model is reformulated to the form:

min
/;c1;c2

Z
X
gjrH�ð/ÞjdXþ h

Z
X
DH�ð/ÞdX

þ k
Z
X
½ðz� c1Þ2H�ð/Þ þ ðz� c2Þ2ð1�H�ð/ÞÞ�dX

(2)

where we have set k1 ¼ k2 ¼ k; H�ð/Þ ¼
1
2 1þ 2

p arctan
/
�

� �� �
is the regularised Heaviside function,

and g ¼ gðjrzjÞ is the edge detector to the regulariser

with gðsÞ ¼ 1
1þbs2. The inclusion of the Heaviside function

results in our current functional being non-convex. This

means a minimiser found could be a local minimum, and

not a global minimum. The convex relaxation idea from

Chan et al.12 provides a solution to this problem. It has

been shown that the Euler-Lagrange equations for the

minimisation of / have the same solutions to the follow-

ing minimisation problem:

min
u;c1;c2

Z
X
gjrujdXþ k

Z
X
fudXþ h

Z
X
DudX

þ a
Z
X
�ðuÞdX;

(3)

where f ¼ ðz� c1Þ2 � ðz� c2Þ2 and �ðuÞ ¼
max 0; 2ju� 1

2 j � 1
� �

is a penalty term introduced in

Chan et al.12 to ensure u 2 ½0; 1�. The global minimizer

is ensured if c1, c2 are accurate which are often assured

by the marker set and its associated initial contour.
We define the geodesic distance D taking the marker

setM from the user, by solving the Eikonal equation

jrDðx; yÞj ¼ �þ bjrzðx; yÞj2 þ hDEðx; yÞ; (4)

whereDE is the Euclidean distance away fromM. We use

a fast time sweepingmethodZhao13 to solve this equation,

which requires settingDðx; yÞ ¼ 0 for ðx; yÞ 2 M, and the

calculation evolving from that region.
In order to perform the minimisation, we alternate

between minimising c1 and c2 with u fixed, then with c1
and c2 fixed, we solve for u. Minimising with respect to

c1 and c2 gives us

c1 ¼

Z
X
zðx; yÞuðx; yÞdXZ

X
uðx; yÞdX

;

c2 ¼

Z
X
zðx; yÞð1� uðx; yÞÞdXZ

X
ð1� uðx; yÞÞdX

:

(5)
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To minimise with respect to u with c1 and c2 fixed as

above, we use the dual formulation by Chambolle,14

which was first applied to a segmentation problem in

Bresson et al.,15 by introducing a second variable, v,

and alternating between the minimisation of u and v.

In addition, it is shown in Bresson et al.15 that the

penalty term �ðuÞ is not necessary in this framework,

provided that the initialisations uð0Þ; vð0Þ 2 ½0; 1�. Our

model then becomes

min
u;v;c1;c2

Z
X
gjru x; yð ÞjdXþ 1

2q

Z
X
ðuðx; yÞ � v x; yð ÞÞ2dX

þ R
Xfðx; y; c1; c2Þvðx; yÞdX;

(6)

where we re-define f by

fðx; y; c1; c2Þ ¼ kððzðx; yÞ � c1Þ2 � ðzðx; yÞ � c2Þ2Þ þ hDðx; yÞ;

and the new parameter q > 0 is small. We first fix all

variables except u and solve the u variational problem:

min
u

Z
X
gjru x; yð ÞjdXþ 1

2q

Z
X
ðuðx; yÞ � v x; yð ÞÞ2dX;

which is given via the dual variable p ¼ ðp1; p2Þ

u ¼ v� qdivp (7)

which is solved iteratively with p0 ¼ 0 and

pnþ1 ¼
pn þ dtr div pnð Þ � v

q

� �

1þ dt
gðxÞ jr div pnð Þ � v

q j;
�

After updating and fixing u, we solve the v varia-

tional problem

min
v

1

2q

Z
X
ðuðx; yÞ � v x; yð ÞÞ2dX

þ
Z
X
f x; y; c1; c2ð Þv x; yð ÞdX; (8)

by finding its analytical solution:

vðx; yÞ ¼ minfmaxfuðx; yÞ � qfðx; y; c1; c2Þ; 0g; 1g:
(9)

A multiphase model

The traditional approach that can lead to an output

approximating our desired result is to formulate the

segmentation task as a multiphase problem. Then our

solution will hopefully be an object that is comprised of

two phases (though practically this may not be possible

due to the non-convex nature of a multiphase model).
We briefly review the work of Vese and Chan,16

which explains how to extend the traditional Chan

and Vese2 framework to multiple level sets, providing

a method of segmenting an image into multiple phases.

Their four-phase model using two level set functions,

/1 and /2, to segment an image is the following:

FMP

�
c;/1;/2Þ ¼

X4
i¼1

Z
X
ðzðx; yÞ � ciÞ2vidX

þ
X2
i¼1

l
Z
X
jrHð/iÞjdX;

(10)

where c ¼ ðc11; c10; c01; c00Þ is a constant vector and

v1 ¼ Hð/1ÞHð/2Þ; v2 ¼ Hð/1Þð1�Hð/2ÞÞ; v3
¼ ð1�Hð/1ÞÞHð/2Þ;

and v4 ¼ ð1�Hð/1ÞÞð1�Hð/2ÞÞ:
We note however that this model achieves global

segmentation, and therefore using this model wons.

Their four-phase model using two lev Figure 1(o). To

restrict the two level sets from segmenting objects out-

side the objects of interest, we merge ideas from Gout

et al.6 and Badshah and Chen,7 by adding two distance

constraints d1, d2, and edge detector g into the regular-

isors of the above model:

FMP

�
c;/1;/2Þ ¼

X4
i¼1

Z
X
ðzðx; yÞ � ciÞ2vidX

þ
X2
i¼1

l
Z
X
diðx; yÞgðjrzjÞjrHð/iÞjdX;

(11)

where we require two marker setsMi, i¼ 1, 2, for the

computation of the two new distance constraints di,

which is given by:

diðx; yÞ ¼ 1� e
ðxj�xÞ2
2r2 e

ðyj�yÞ2
2r2

� �
; for ðxi; yiÞ 2 Mi:

Figure 2. Input and output of the multiphase model. (a) Input.
Red:M1, Blue:M2. (b) Multiphase out.
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In Figure 2, we perform the above multiphase model

to the image in Figure 1, with the aim of achieving the

result in Figure 1(o). We first show the input required

in Figure 2(a), and the result in (b). First, we note that

the required input for the multiphase model is detailed

(whereas the proposed method which we detail in the

next section requires just a single click), as the multi-

phase method is non-convex, and therefore we need the

initialisation to be close to the final solution. A single

click by the user is unlikely to be enough information

for a non-convex model such as this to reliably work.

Despite the increased input, we can see that while the

multiphase has successfully segmented the first region

correctly, the second level set has failed to make its way

around the lower left side of the second region.
In the following section we detail our proposed

method, which makes use of the convex segmentation

model (3) and an in-painting method to segment an

object or feature of two distinct intensities.

The new model

We now present our model for the segmentation prob-

lem where an interested object or feature in the given

image z has two distinct intensities. We first give a gen-

eral formulation and then consider a simplified version

and its special cases.

A general formulation

Consider the aorta and stent problem in top row of

Figure 3 to define the notation. Given image z (as in

the left plot), our task is to segment the complete organ

defined by X1 (for the aorta in the right plot). Here a

marker setM is placed in the domain X� and laced in

the domain gdomain X1. Also we have X� � X1 � X
while X1[C[X2 ¼ X.

The biggest challenge is that the intensities in X�

are dominant and would prevent us from locating

C of X1, our idea is to inpaint the intensities in X�

using neighboring information to obtain an in-
painted image z�, and segment the main feature in X1

at the same time. Hence our segmentation takes
the form

min
z�;u;v;c1;c2

a1
2

Z
X X�
ðz� � zÞ2dXþ a2

Z
X
jrz� x; yð Þju x; yð ÞdX

þ R
Xgjru x; yð ÞjdXþ 1

2q

Z
X
ðuðx; yÞ � v x; yð ÞÞ2dX

þ R
Xfðx; y; c1; c2Þvðx; yÞdX;

(12)

where fðx; y; c1; c2Þ ¼ kððz�ðx; yÞ � c1Þ2 �
ðz�ðx; yÞ � c2Þ2Þ þ hDðx; yÞ similar to but different
from (6). Here regularisation in the second term in
the domain X1 may be replaced by the whole domain
X. Since X� � X1 � X for our type of problems, in fact,
it is not difficult to see that z� ¼ z in X2 ¼ X X1.

A remark is due for the second term in (12): the use
of total variation for inpainting is generally a poor
choice Chan and Shen17; Sch€onlieb18 while the elastica
based model Brito and Chen19 is better. Here the
assumption X� � X1 � X implies that there are no
extra edges in X� to reconnect and hence our inpainting
problem is much easier than the general case where X�

cuts cross major features. In fact, the bottom row of
Figure 3 show the results from applying the TV and the
elastica models; clearly the results are good (though it
takes relatively a long time to obtain such results) but
not excellent due to the inpainted values of z� differing
from neighbours.

The domain X� itself is usually not given but since
the associated intensities are dominant, we can assume
that it can be obtained.

Below we discuss how to simply (12) so that other
models to inpaint X� can be developed.

Figure 3. Illustration of the task of segmentation of the outer organ X1 (aorta) distracted by the inner feature X� of a stent, with
C ¼ @X1 and also inpainted images by TV and Elastica models. (a) Given image. (b) Segmentation of domain X1. (c) Inpainted image by
TV. (d) Inpainted image by Elastica.
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A simplified model

Although image z has many features, our selective seg-

mentation aims to segment one feature i.e. to find the

domain X1 by working with the new image z� after

inpainting X�. As mentioned, the key to simplify the

model (12) lies in two related facts: i) X� � X1 � X; ii)
there are no extra edges in X� to reconnect. This leads

to our 2-stage model.
Stage 1 tage 1onnect. of z�. From (12), solution z� is

approximated by

min
z�

Z
X
jrz�ðx; yÞjuðx; yÞdX ¼

Z
X1

jrz�ðx; yÞjdX; (13)

since u¼ 1 in X1. In the next subsection, we propose

various ways of approximating z�.
Stage 2. Once z� is computed, (12) is reduced to a

standard model for selective segmentation of the

inpainted image z�, i.e.

min
u;v;c1;c2

Z
X
gjru x; yð ÞjdXþ 1

2q

Z
X
ðuðx; yÞ � v x; yð ÞÞ2dX

þ R
Xfðx; y; c1; c2Þvðx; yÞdX;

(14)

Methods for computing z�

Let us assume we have obtained our first segmentation

result, u� to represent X�, using the method discussed in

section 2. In this modified Chan-Vese framework, the

indicator function u� is associated with c1 (the average

value of the intensity inside X� and c2 (the average

value of the intensity outside X�).

Then for Stage 1, we discuss several ways of com-

puting z� in X� since z� ¼ z in X X�.
Method M1. It may be intuitive to threshold our

region down to the value of c2. However, typically c2
is the average of intensities in X X�, not exactly repre-

sentative of the surrounding intensities in X1. We

denote the method of thresholding to c2 as M1. See

Figure 4.
Method M2. As demonstrated in Figure 4, c2 is per-

haps not the most ideal to use for complicated images.

To go beyond a constant intensity, we propose to use

the variance of a region (by Jeon et al.20):

Var Iið Þ ¼ 1

Ni

XNi

j¼1
ðIiðxj; yjÞ �miÞ2;

assuming mi is the mean intensity of one of region Ii
(with Ni pixels) in partition of a given image I. For

our case, we obtain 2 regions I1, I2 after segmenting

X�, and compute the VarðI2Þ. Then we inpaint X�

by a normal distribution with mean c2 and variance

VarðI2Þ. Let us denote this method as M2, however

this is not much of an improvement from M1 as

shown in Figure 5.
Method M3. Since c2 is not informative due to X X�

being a large and nonhomogeneous region, we consider

a local region surrounding X� instead. We can obtain a

more accurate threshold value by making use of the

segmentation result u� and the associated region X�.
We extend X� out by ‘ pixels as shown in Figure 6(b)

(we typically fix ‘ ¼ 5) and obtain a fix region orX�,
denoted as Xring, given by Xring ¼ X‘ X�, as shown in

Figure 6(c).

Figure 4. M1 –1g.ticay Elastica Elc2. The original image is displayed on the top row, and the in-painted image is shown on the bottom.
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We simply calculate the average intensity cring of
pixels contained in Xring, and inpaint our region X�

down to this intensity. This gives us an image in
which our first region is now representative of our
second target region, allowing us to perform another
segmentation, as shown in Figure 7. We will denote this
method as M3.

Method M4. The above three methods can lead to
successful Stage 2 segmentation on the new inpainted
image in our tests. However, the inpainted region by
thresholding to a constant intensity is visually visible in
the inpainted image. To improve the visual quality, we
consider the idea of M2 by the Normal distribution.
We threshold each pixel in X� individually to a
number drawn from the normal distribution, with
mean cring and variance in Xring calculated as defined
earlier. Denote this by M4.

Method M5. M4 may give good aesthetic results in
some cases, for example in Figure 9 where we see it
replicates the texture of the blood vessel very well, how-
ever for a homogeneous X1, the normal distribution is
unlikely to perform well and the image would look out
of place. In order to replicate the texture of the sur-
rounding pixels, a simple method would be to just copy

and paste values of pixels in the ring to X� inwards,
repeating the sequence until all of X� has been filled in.

Here, we can either fill the pixels in row by row (Figure
8(a)), by spiralling inwards towards the center of X�

(Figure 8(b)), or completely randomly (Figure 8(c)).
We recommend to fill in randomly, so that we don

we dony, so that we donxels in row b occurring in
the texture of the in-painted region.

In principle, the choice between M3-5 should not
have too much of an effect on the second segmentation
result as the average value of the region X� after apply-
ing a particular method should be very similar to the

average value of applying another. Figure 9 shows a
comparison between using each method. A second seg-
mentation is easily achievable using either. Visually we
recommend a variant of M5.

Variational comparisons

In this section we make a comparison to two tradition-
al variational in-painting methods detailed in

Sch€onlieb,18 firstly the Mumford-Shah method given
by minimising the following energy:

FMS z�; vð Þ ¼ 1

s
jjz� � zjjsLsðX X�Þ þ

a
2

Z
X
vjrz�j2dX

þ b
R
X �jrvj2 þ ð1� vÞ2

4�

� �
dX;

(15)

where v is an approximation of the edges in the image
introduced in Ambrosio and Tortorelli.3

In addition, wee:///\\\\chenas03.cadmus.com\\smar-

tedit\\Normalization\

min
z�2H1ðXÞ

Z
X�
jrz�j2dX ; such that z� ¼ z 2 X X�: (16)

We consider three examples in total, showing the
output for the first two examples in Figure 10, and
the corresponding results using our methods are
found in Figures 9 and 15 respectively. Example 3 is

a large pathological colour image of dimension

Figure 6. The ring region Xring by extending X�. (a) X�. (b) X‘. (c) Xring.

Figure 5. M2 —2Thresholding using c�Nðc2; varðI2ÞÞ. Original
image desiplayed on the top row, and the in-painted image is
shown on the bottom.
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9863� 11,454 which we have tested for the sake of
measuring the computation speed. Computation
speed is given in Table 1. We see that, although the
variational methods give similar results to our M3
and would therefore be suitable to use as an input for
our second segmentation stage, the computation time is
much larger. The in-painting step in our method is an
intermediate step which allows us to obtain a second
segmentation result, therefore speed is the only thing
we should be concerned with.

Distance weighted in-painting

The above recommended method M5 (and also others

for this matter) would fail to yield an acceptable

inpainted image if X� and X1 share part of a boundary,

because the threshold value out of the region surround-

ing X� will be influenced by the intensity of both the

second object desired and a neighbouring objects. We

now address the mathematical challenge below by

modifying the ‘ band in M3-5. This scenario can

occur in practical images e.g. when diseases are present

near the boundary of an organ.

Figure 7. M1-3 1-3Both segmentof inpainting X� by a constant intensity (visually not pleasing in column 1 but leading to Stage 2he
bottomottom.development of computer assisted automated disease diagnostic . (a) Thresholded image. (b) Segmentation u2. (c) Both
segmentations. (d) Thresholded image. (e) Segmentation u2. (f) Both segmentations.

Figure 8. M5 5g.Randomlingntationsty (visualinpainting. (a) Row by row. (b) Spiralling. (c) Random.
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It is possible to accommodate this particular case if a

specific application occurs in the same position all the

time, for example if object one is always on the left

boundary of object two, we could simply just consider

the average intensity of pixels in the right hand ring.

However, for a general application we need an alterna-

tive solution.
The second column of Figure 11 demonstrates the

problem at the boundary using synthetic images. The

more domain X� touches the boundary/unwanted

region, the smaller(darker) the threshold value within

‘ band becomes and the less suitable the region

becomes for a second segmentation result.
An easy solution would be to retrieve another

marker from the user, indicating the second region,

however this defeats the whole purpose of

our method of segmenting two objects with one

click. An alternative solution would be to ask

the user to input their marker inside the first object

close to the boundary between the two objects

desired. Using this information, we can change our

methods slightly.
M3 revisited: Instead of taking the average intensity

of values near X�, we could apply a weight to the inten-

sities according to a weight function. The weight is

designed to have a higher value for pixels close to the

marker (i.e. the intensities of object two in X1 X�). We

use the Euclidean distance to weight the pixels. We

consider Dðx; yÞ 2 ½0; 1� to be the normalised

Figure 9. Comparison between M3 (constant), M4 (normal distribution) and M5 (inward extension). (a) M3. (b) M4. (c) M5.
(d) M3. (e) M4. (f) M5.

Figure 10. z� using variational inpainting models. (a) Ex1:
Mumford-Shah output. (b) Ex1: Harmonic output. (c) Ex2:
Mumford-Shah output. (d) Ex2: Harmonic output.

Table 1. Speed (seconds) of each in-painting method.

Mumford Harmonic M3 M5

Example 1 13.70 8.51 0.06 0.08

Example 2 19.68 4.94 0.04 0.05

Example 3 4644 2019 16.39 48.20
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Euclidean distance from the marker(s) ðxM; yMÞ to
pixels contained in Xring

Dðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xMÞ2 þ ðy� yMÞ2

q

jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xMÞ2 þ ðy� yMÞ2

q
jjL1

; ðx; yÞ 2 Xring;

0; otherwise;

8>>><
>>>:

(17)

we can define cring to threshold the region by

cDring ¼
Xn

i¼1 zðxi; yiÞDðxi; yiÞXn

i¼1 Dðxi; yiÞ
: (18)

This makes the thresholding value to be more rep-
resentative of the second object, and so the Chan-Vese
fitting term is more likely to work.

For difficult images, it might be more accurate to
change our weighting function to only consider the
closest, say 20%, pixels in Xring, rather the entire
region. Depending on the application this amount
could change. We recommend only considering the
nearest 20% of all pixels regardless, as this will provide
a more realistic value; there is no reason to consider the
furthest pixels away contained Xring.

We see in Figure 11 in column 4, that with this new
method, the inpainted image is much more

representative of the second object, and isnag influ-

enced by the black background. In Figure 12 we see

the model work on the boundary even with an awk-

ward shape.
M5 revisited: The discussion so far shows an exten-

sion of M3 to manage in the case where X� is near the
boundary of X1. In the synthetic images, performance

is great, however using a single constant value to

threshold X� leads to a visible awkward looking

region as is discussed in the previous section. Instead

of extending M3, we can extend M5 in a similar way to

attempt to maintain some of the texture of X1. To do

this, instead of copying and pasting the values of all the

pixels in Xring, we can set a cut off point, say, only copy

20% of the closest pixels to the marker point contained

in Xring.

Algorithmic summaries

Finally we summarise the main algorithms. All three

algorithms must be used to find the two segmentations

that we desire.

Algorithm 1 Segmentation algorithm

1. Input image z and parameters k; h and q.
2. Calculate g and DG.
3. Initialise uð0Þ such that se s orithmAll throfM.

Figure 11. Column 1: Original image with user input. Column 2: Inpainted by M3. Column 3: Associated segmentation result from
column two result. Column 4: Inpainted by our distance weighted method we present in section 4. Column 5: Associated segmen-
tation result from column three result.
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4. for k ¼ 1 : maxit do
5. Update c

ðkÞ
1 ðuðk�1ÞÞ; cðkÞ2 ðuðk�1ÞÞ as in (5).

6. Update uk and vk as in (7) and (9) respectively
7. end for
8. u uðkÞ and set X1 ¼ fðx; yÞ j uðx; yÞ � 1=2g

(2) To inpaint domain X�, based on M5 (other meth-

ods similar, see previous sections for details), we do the

following:

Algorithm 2 Inpainting step M5

1. Input image z and domain to be inpainted X�.
2. Initialise inpainted image z� :¼ z.
3. Obtain X‘ by extending X� out by ‘ pixels. Use X‘ to

find Xring ¼ X‘nX�.
4. Collect intensity values of the nearest 20% of pixels

in Xring toM in a vector v.
5. for ðx; yÞ 2 X� do
6. Update z�ðx; yÞ ¼ vðiÞ.
7. i ¼ iþ 1. If i > sizeðvÞ, set i¼ 1.
8. End for
9. Output inpainted image z�.

(3) Finally we make use the same inputM and seg-

ment the inpainted image z�.
Algorithm 3 Proposed two stage segmentation algo-

rithm to segment and object or feature of two distinct

intensities.

1. Input initial image z1 and parameters k1; h1 and q1 to
perform segmentation by algorithm 1, obtaining ini-

tial segmentation region X� as output.
2. Input z1 and X� into algorithm 2 to inpaint the

image, yielding z2.
3. Input z2 and parameters k2; h2; q2 to perform algo-

rithm 1 again, this time using X� as our initialisation.
4. Output X� and X1, two segmented regions.

(4) If we have a case in which our desired X1 has

more than two distinct intensities contained inside it

and running algorithm 3 outputs segmented regions

capturing only two of the distinct regions, then we

can instead in-paint the image and segment iteratively

until the desired result is achieved. See Figure 15 for an

example. In some cases, we could in principle use our

method to hierarchically segment an entire image by

iteratively segmenting and in-painting.

Numerical experiments

In this section we will demonstrate some results illus-

trating the principle of our method. With the geodesic

distance, only a single point is required from the user

inside the initial region of interest (however if the initial

region X� is disconnected, we need one click in each

disconnected region). From that we obtain segmenta-

tion of the region, a thresholded image, and another

segmentation performed on the new image. In all tests

we set parameters from the segmentation model q¼ 1

and dt ¼ 1
8, and for calculating the geodesic distance we

fix � ¼ 10�3; b ¼ 1000 and h ¼ 0:1. This leaves us

with only the k and h values in the segmentation

model to vary.

Example 1: Disconnected stent

Figures 13 and 14 show a stent in an abdominal aortic

aneurysm, with both images being 512� 512. We

would like to know the position of the stent relevant

to the surrounding blood vessel, so this method lends

itself well. Two clicks were required for the second

image in Figure 13 as the stent is disconnected. From

this, we obtain a realistic in-painted image with which

we can perform a second segmentation and obtain very

accurate results quickly.

Example 2: Stent with noise - multiple in-paintings

Figure 14 demonstrates using the method twice to

obtain segmentation of the blood vessel. In this case

there is noise present produced by the metal coated

stents causing the interior of the aorta to be brighter

than the rest of it. This example is different to the pre-

vious one as there are three distinct intensities

Figure 12. Using 20% as weight. (a) X� and marker placementM. (b) Second segmentation. (c) Combined segmentation.
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Figure 14. In this example we demonstrate the use of in-painting twice, requiring three segmentations due to the bright noise
between the stent and the boundary of the blood vessel. (a) First segmentation, X�1. (b) First in-painted image z2. (c) Second
segmentation, X�2. (d) Second in-painted image z3. (e) Third segmentation, X1. (f) X

�
1 and X1.

Figure 13. Stent in an abdominal aortic aneurysm. (a) Original image, z1. (b) User input,M. (c) X�. (d) Inpainted image. (e) X1. (f) X
�

and X1.
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contained in our desired X1 (the boundary of the blood
vessel), due to noise. Therefore, we are required to seg-
ment and in-paint twice, before segmenting finally to
obtain X1. We use k1 ¼ k2 ¼ k3 ¼ 5 and
h1 ¼ h2 ¼ h3 ¼ 20. This example requires one more
in-painting step than what has been discussed

Example 3: Stent on boundary

We show another stent in an abdominal aortic aneu-
rysm in Figure 15, in which X� is lying on the boundary
of X1. In this case, it is important that the methods
discussed in section 4 are implemented, as otherwise
our inpainted image would be not be suitable for a
second segmentation. The placement of the marker is
placed as close to X1 as possible while still contained
in X�, as shown in Figure 15(b), and when we in-paint
we only consider the closest 20% of pixels contained
in Xring.

Example 4: Ventricular walls

Figure 16 show an MRI of the heart of a rat. The
method required clicking once in the two chambers

(the dark regions inside the red contours of Figure 16

(a)), which allowed us to obtain the inside region. We

then inpainted choosing simply use M3 for this exam-

ple, which allowed us to find X1, the outline of the

ventricular walls. The image size is small at 192 osing

simply use s (the dark regions inside the red cont sec-

onds. We use parameters k1 ¼ 1; h1 ¼ 20;

k2 ¼ 0:5; h2 ¼ 1:

Example 6: Extension to colour

We show a brief example of our model being applied to

a colour pathological image of multiple myeloma,

given by Gupta and Gupta21; Gupta et al.22,23 So far

we have only presented our method working for grey-

scale images, however it is easy to extend the frame-

work to RGB. First the segmentation model (3) differs

as we now have a vector valued image.
Let zi be the ith channel of image z, i¼ 1, 2, 3 (in this

example we have an RGB image), and let c1 ¼
ðc11; c21; c31Þ and c2 ¼ ðc12; c22; c32Þ be vectors corresponding
to the average intensity inside and outside of C in each

channel. We can therefore compose our fitting and

Figure 15. This figures shows a stent in an abdominal aortic aneurysm. In this case, X� is touching the boundary of X1. It is necessary
in this case for the methods discussed in section 4 to be implemented, in order to obtain an appropriated in-painted image for an
accurate X1 to be obtained. (a) Original image, z1. (b) User input,M. (c) First segmentation, X�. (d) In-painted image, z2. (e) Second
segmentation, X1. (f) X

� and X1.
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distance term as fi ¼ ðzi � ci1Þ2 � ðzi � ci2Þ2 and Di,
where the calculation in (4) is calculated on zi. Our
equivalent colour segmentation model is now:

min
u;c1;c2

Z
X
gjrujdXþ k

X3
i¼1
ð
Z
X
fiudXþ h

Z
X
DiudXÞ

þ a
Z
X
�ðuÞdX

(19)

The in-painting step only differs in that the values of
the pixels we fill in with are vector valued, like our
image, so we just fill in the corresponding each channel
separately with values from the vector valued pixels
from Xring.

Figure 17 shows a cell on the boundary, in which it

is necessary to have employed our distance technique,

involving placing the marker pointM as close as pos-

sible to the second object (the light blue ellipse), but

still inside the first (the purple circle).

Example 7: Extension to 3D

Our inpainting method is easy to extend to 3D data,

differing only is our image domain X � R3. Our seg-

mentation model (3) extends easily to a third dimen-

sion, however of course our segmentation results X�

and X1 are now surfaces. The geodesic distance is

solved using (4) with an extra dimension, and the

method of solving the PDE is slightly different to the

Figure 16. Segmentation of MRI of a rat’s heart. (a) First segmentation, X�. (b) Inpainted image, z2. (c) Second segmentation, X1. (d)
X� and X1.

Figure 17. Colour example. (a) Original image, z1. (b) User input,M. (c) First segmentation, X�. (d) In-painted image, z2. (e) Second
segmentation, X1. (f) X

� and X1.
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two-dimensional case, however the details are, again,

contained in Zhao.13

In principle the in-painting method is the same as in

two-dimensions. To achieve M5, we perform segmen-

tation to achieve a surface X�, extend the surface out-

wards in the normal direction to obtain X‘, and then

obtain Xring ¼ X‘ X�: Note that despite Xring not really

being a ring in three dimensions, we keep the notation

consistent to avoid confusion. We then take the inten-

sity of voxels contained in Xring, and use these intensi-

ties to fill in our region X� as before.
Figure 18 shows a selection of slices of a 3D data set

of an abdominal aortic aneurysm with a stent present.

This particular set was done on image data of size

512� 512� 60, with a single click required to obtain

an intial segmentation of the stent, X�. From that we

can obtain our in-painted 3D image and segment again,

achieving a result for the blood vessel. In this particular

example, as shown by the images, the stent begins as a

single connected object at the top of the image data

(top row), and in the middle bifurcates and disconnects

into two seperate regions. The placement of the marker

can be placed arbitrarily in any slice, regardless if on

that particular slice the stent is disconnected, as in 3D

the object is connected. To speed up the calculation of

the geodesic distance, we place a marker on the top

slice and two markers on the bottom, however in prin-

ciple this result is achievable with a single click.

Conclusion

In this paper, we have presented a method of obtaining

a second segmentation result from a segmented region

without any further user interaction. We do this using a

two stage approach, by segmenting an object, intelli-

gently inpainting our image with a similar intensity to

the object surrounding the segmented object, and per-

forming the segmentation model a second time to

Figure 18. Nine slices from a 3D dataset.
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obtain the surrounding object. We have compared and
contrasted it to alternative approaches such as multi-
phase segmentation methods, and classic variational in-
painting methods, and saw improved performance and
ease of use contrasted to the former, and drastic speed
increase contrasted to the latter.

A number of quick in-painting method have been
discussed, all based on the same principle of using
information from surrounding region Xring. We have
discussed the potential challenges of using these meth-
ods when the initial object X� is on the boundary of X1,
and have suggested a potential solution with appropri-
ate placement of the marker point M. We have then
tested on many piecewise constant images, showing the
effectiveness of our proposed method, as well as detail-
ing an extension to both colour images, and 3D data.
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