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Abstract

Recently, Chumchob-Chen(2010) proposed a discontinuity-preserving image registration model which
was more flexible than those common techniques such as the diffusion and total variation based regu-
larization techniques. However, each component of displacement field is regularized separately in this
model and then the nonlinear diffusion processes resulting from the first variation of the discontinuity-
preserving regularization do not enforce coupling between the primary components of the displacement
field. Thus the discontinuity-preserving model may prevent to obtain a good registration in some situ-
ations, for example non-smooth registration problems with non-axis-aligned discontinuities. To utilize
interdependence between the primary components of the deformation field for smooth and non-smooth
registration problems, we propose an improved discontinuity-preserving image registration model in this
paper, second we propose an idea of relaxed fixed point combining with Gauss-Newton scheme with
Armijo’s line search for solving the new model and further to combine with a multilevel method to
achieve fast convergence. Numerical experiments not only confirm that our proposed method is efficient
and stable, but also it can give more satisfying registration results according to image quality.
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1 Introduction

Image registration which is also called image matching or image warping is one of the most useful and

fundamental tasks in imaging processing domain. Its main idea is to find a reasonable spatial geometric

transformation between given two images of the same object taken at different times or from different devices

or perspectives, such that a transformed version of the first image is similar to the second one as much as

possible. It is often encountered in many fields such as astronomy, art, biology, chemistry, medical imaging

and remote sensing and so on. For a good overview about these applications, see e.g. [9, 30, 11, 29, 3, 18, 4].

Usually, a variational image registration model can be described by following form: given two images,

one kept unchanged is called reference R and another kept transformed is called template image T . They

can be viewed as compactly supported function, R, T : Ω → V ⊂ R+
0 , where Ω ⊂ Rd be a bounded convex

domain and d denotes spatial dimension of the given images. The purpose of registration is to look for a

transformation φ defined by

φ : Rd → Rd,
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such that transformed template image Tφ(x) := T (φ(x)) is similar to R as much as possible. To be more

intuitive to understand how a point in the transformed template T (φ(x)) is moved away from its original

position in T , we can split the transformation φ into two parts: the trivial identity part and displacement

u, u : Rd → Rd, u : x→ u(x) = (u1(x), u2(x), · · · , ud(x))
⊤, that is to say

φ(x) = x+ u(x),

thus it is equivalent to find the transformation φ and the displacement u. The transformed template image

T (φ(x)) = T (x+u(x)) can be denoted T (u). In summary, the desired displacement u is a minimizer of the

following joint energy functional

min
u
{Jα[u] = D(u) + αR(u)}, (1)

where

D(u) = 1

2

∫
Ω

(T (x+ u(x))−R(x))
2
dx (2)

represents similarity measure which quantifies distance or similarity of transformed template image T (u)

and reference R, R(u) is regularizer which rules out unreasonable solutions during registration process, and

α > 0 is a regularization parameter which balance similarity and regularity of displacement.

And non-surprisingly, different regularizer techniques can produce different registration model, and the

choice of regularizer techniques is very crucial for the solution and its properties, more details see [30].

At present, the common regularizer techniques such as diffusion-, elastic-, or linear curvature-based image

registration can generate globally smooth displacement, more details see [13, 16, 17, 27, 26, 25, 30, 36] and

reference therein. However, these techniques become poor when displacement u is discontinuous. Total

variation-based image registration is better for preserving discontinuities of the displacement, see [19, 20,

33]. Nevertheless, the TV model may not give satisfactory registration results for smooth displacement.

Recently, Chumchob-Chen [14] proposed a discontinuity-preserving image registration model which can

be interpreted as a half way model between diffusion and total variation registration. The discontinuity-

preserving regularization technique which based on a modified total variation (MTV) regularization as given

by the following form

RMTV(u) =

2∑
l=1

∫
Ω

ϕ(|∇ul|)dx (3)

Here ϕ(s) = log(1 + s2), and its diffusion coefficient D(s) = ϕ′(s)/s = 2/(1 + s2). It is worth noticing that

the diffusion coefficient (or the stopping function) D(s) has the following basic properties: (1) D(s)→ 0, as

s→∞. (2) D(s)→M (0 < M < +∞) as s→ 0. These mean that on one hand it preserves discontinuities

of u by reducing or stopping the diffusion (smoothing) process in inhomogeneous regions, on the other

hand it smooths u isotropically inside homogeneous regions. In other words, TV-like regularization is used

in inhomogeneous regions and diffusion- or quadratic-like regularization is used in homogeneous regions.

Moreover, it is more flexible than those common techniques such as the diffusion and total variation based

regularization techniques. However, each displacement variable u1 and u2 is regularized separately in (3) and

then the nonlinear diffusion processes resulting from the first variation of RMTV(u) do not enforce coupling

between the primary components of the deformation field u1 and u2. Thus the RMTV(u) model may prevent

to obtain a good registration result in some situations, for example non-smooth registration problems with

non-axis-aligned discontinuities. Motivated by several regularization techniques that have been prove to be

An improved discontinuity-preserving image registration model and its fast algorithm



3

very useful in vector-valued image denoising [5, 6, 8] and in optical flow computation [1, 2], we propose an

improved discontinuity-preserving model for image registration in this paper. Moreover, other motivations

can also be produced as follows: 1) these vectorial regularization techniques can preserve discontinuities of the

displacement field for non-smooth registration problems, 2) they can enforce coupling between the primary

components of the displacement field to improve the registration quality for both smooth and non-smooth

registration problems.

It is usually difficult to solve analytically the optimization problem (1), thus numerical schemes and

appropriate discretizations are nececcary. Developing an efficient numerical solution of the registration

problem is an important task. Over the past decades, there two main types of numerical schemes to compute

a numerical solution of minimization problem (1) for a given α. The first is optimize-discretize scheme,

and its main idea is to let the first order variation of (1) vanish and obtain corresponding Euler-Lagrange

equations in the continuous domain and then solve its discrete forms on the corresponding discrete domain

by appropriate methods, see [15, 30, 13, 16, 36, 17, 27, 33]. The second is the discretize-optimize approach

which aims to discretize the joint functional Jα in (1) and then solve the discrete minimization problem by

standard optimization methods; see, e.g. [26, 25, 24, 23, 22]. In this paper, we prefer the second method.

Although our work is related to previous work [26], they are totally different on their regularizer techniques

and equations. If we use directly the scheme proposed in [26], it is very difficult to solve efficiently for (9).

However, motivated by the idea of [26], we can linearize the first order variation of regularizer (9) in order

to take advantage of efficient optimization schemes by using a previous and known iterate value, then solve

the discrete energy functional using optimization methods.

The rest of the paper is organized as follows. In Section 2, we first present a new discontinuity-preserving

regularizer suitable for both smooth and non-smooth deformation problems, and then discusses an efficient

numerical method to solve (9) in Section 3. Section 4 illustrates the experimental results from syntectic and

real images. Finally, conclusions and future work are summarized in Section 5.

2 A new discontinuity-preserving regularizer based image regis-
tration model

Our ideal regulariser is expected to design a model suitable for both smooth problems and non-smooth

problems. In this paper, we extend the modified total variation (TV) regularization RMTV(u) proposed by

Chumchob-Chen [14] to the vectorial case using vectorization method for color image denoising proposed in

[5, 6, 8]. At present, there are mainly three kinds of vectorization ideas in color image processing. Next, we

briefly review the vectorial regularization techniques.

• Vectorial TV Model of Blomgren and Chan(TV1-BLC). The Blomgren and Chan model [5] is based

on the Euclidean norm of the vector of component-wise scalar TV. Define TV(ul) =
∫
Ω
|∇ul|dx for

channel l. Then the multidimensional TV norm was denoted by

RVTV1(u) = TVm(u) =

√√√√ m∑
l=1

[TV(ul)]
2

which leads to the corresponding Euler-Lagrange equations

−α TV(ul)

TVm(u)
∇· ∇ul

|∇ul|
+ ul − u0

l = 0 (4)

An improved discontinuity-preserving image registration model and its fast algorithm
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subject to ⟨∇ul,
→
v l ⟩ = 0 on ∂Ω, where

→
v l is the normal unit vector on the boundary of the lth channel.

• Total Variation Model of Bresson and Chan. In [6], Bresson and Chan denote the vectorial regularizer

by the finite positive measure

RVTV(u) =

∫
Ω

|Du| = sup
p∈P
{
∫
Ω

⟨u,∇·p⟩dx} (5)

where p := (p1, · · · ,pm) : Ω→Rm×n, pi:=(pi
x1 , · · · , pixn) : Ω→Rn, ∀i∈[1,m], ∇· is the diver-

gence operator such that ∇·q := (∇·q1, · · · ,∇·qm) : Ω→Rm, ∀q : Ω→Rm×n, ∇·qi :=
n∑

j=1

∂xjq
xj

i :

Ω→R, ∀i∈[1,m], the product ⟨· , ·⟩ is the Euclidean scalar product defined as ⟨v,w⟩ :=
m∑
i=1

⟨vi, wi⟩,

∀(v,w)∈(Rm)2, which implies that ⟨u,∇·p⟩ =
m∑
i=1

⟨ui,∇·pi⟩ and the L2 Euclidean norm | · | is naturally

defined by |v| :=
√
⟨v,v⟩ =

√
l∑

i=1

v2i , ∀v∈Rl. Depending on the set P of functions of the dual variable

p, the VTV norm (5) can be defined of different ways, Bresson and Chan [6] considered two cases:

P1:={p ∈ C1
c (Ω ;Rm×n) : |p|∞ = max

i=1,··· ,m
|pi|≤1} ;

P2 := {p ∈ C1
c (Ω ;Rm×n) : |p| =

√√√√ m∑
i=1

⟨pi,pi⟩ =

√√√√ m∑
i=1

n∑
j=1

(pixj )2 ≤ 1} .

In [6] , it is shown that for smooth function u if p ∈ P1, then∫
Ω

|Du| =
m∑
i=1

∫
Ω

|∇ui|dx =

m∑
i=1

TV(ui) , RVTV2(u) . (6)

Likewise selecting p ∈ P2 [6] yields

∫
Ω

|Du| =
∫

Ω

√√√√ m∑
i=1

|∇ui|2dx =

∫
Ω

|∇u|dx , RVTV3(u) . (7)

• Combining the above mentioned idea, Brito-Chen [8] proposed three vetorial high-order denoising

models using channel coupling and high-order regularization. In addition, the vectorial regularization

techniques are also widely used in the optical flow context proposed by [1, 2].

Note that among the above mentioned three vectorial regularization techniques, the vectorial RVTV2

based on P1 is defined as the sum of the TV of each channel. This means that channels are considered as

independent in the denoising process, which is not true on real-world images. In [5], although the proposed

vectorial regularizer RVTV1 enforces coupling, the proposed vectorial scheme doesn’t regularize the VTV to

minimize it, details see [6]. The vectorial RVTV3 based on P2 introduces a coupling between channels. Each

channel uses information coming from other channels to improve the denoising model. In fact, the vector

valued TV norm RVTV3 defined by the set P2 is the most standard definition of the VTV norm as introduced

in the book of Ambrosio, Fusco and Pallara [7]. In addition, the minimization algorithm based on RVTV3

using coupling information is fast, easy to code and well-posed.

Thus motivated by several regularization techniques that have been proved to be very useful in vector-

valued image denoising [5, 6, 8] and in optical flow computation [1, 2], to make full use of the coupling
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information, we propose an improved discontinuity-preserving model given by

RNew(u) =

∫
Ω

log(1 + |∇u|2)dx (8)

then equation (1) takes the following form

min
u

{
Jα(u) =

1

2

∫
Ω

(
T (x+ u(x))−R(x)

)2
dx+ α

∫
Ω

log(1 + |∇u|2)dx
}
. (9)

This leads to the Euler-Lagrange system of two coupled second-order nonlinear PDEs :{
f1(u)− α∇ · ( 2∇u1

1+|∇u|2 ) = 0

f2(u)− α∇ · ( 2∇u2

1+|∇u|2 ) = 0
, (10)

subject to ⟨∇ul,n⟩ = 0 on ∂Ω , l = 1, 2. Here

fl(u) = (T (u)−R) (∂ul
T (u)), l = 1, 2 .

Our particular choice of regularizer in (8) has several advantages. Firstly, the new regularization RNew

is rotational invariant. Secondly, observing the system of PDEs (10), the coupling between two primary

components u1 and u2 of the deformation field u is through the diffusion coefficient D(u) = ∥∇u∥−1. Since

D(u) takes different values for all image pixels, the level of coupling varies from one region to another

locally adjusting the level of regularization. Thirdly, it shares some attractive properties with the modified

total variation RMTV regularization; Fourthly a visually pleasing registration result can be obtained by using

RNew for non-smooth registration problems with non-axis-aligned discontinuities. Fifthly, it incorporates the

coupling information between two primary components of the deformation field to improve the registration

quality over the RMTV for both smooth and non-smooth registration problems. Finally, a fast numerical

algorithm is straightforward to implement .

We remark that the Euler Lagrange equations (10) is nonlinear. To solve the resulting EL equation (10),

one convenient way is time marching method (also known as gradient descent method). The main idea is to

introduce an artificial time variable t and compute the steady-state solution of the following time-dependent

PDEs : {
∂tu1(x; t) +N1(u(x; t)) = 0
∂tu2(x; t) +N2(u(x; t)) = 0

where

Nl(u(x; t)) = fl(u(x; t))− α∇·( 2∇ul(x; t)

1 + (|∇u(x, t)|)2
) , l = 1, 2.

To overcome the nonlinearity of Nl, an explicit scheme is used and corresponding iteration is give by{
∂tu1(x, tk+1) = −N1(u(x, tk))
∂tu2(x, tk+1) = −N2(u(x, tk))

k = 0, 1, · · ·

where u(x, t0) is some deformation fields, especially u(x, t0) = 0.

A time-step τ>0 is introduced for the time discretization, and u is updated by the following form:{
u1(x, tk+1) = u1(x, tk)− τN1(u(x, tk))
u2(x, tk+1) = u2(x, tk)− τN2(u(x, tk))

We find numerically it is easy to implement for the time marching method, however, it is very slow to

converge since the time-step τ is required to be very small for stability reasons. Below we take a different

solution approach for model (9).

An improved discontinuity-preserving image registration model and its fast algorithm
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3 Numerical solution of image registration model (9)

In this section, we shall first briefly discuss the discretization we use, then describe the details of numerical

algorithms.

3.1 Finite difference discretization

Let given discrete images have n1 × n2 pixels. For the sake of simplicity, we also assume further that image

domain Ω = [0, 1] × [0, 1] ⊂ R2, then each side of these n1×n2 cell-centered has width hi = 1/ni, i = 1, 2.

Let the discrete domain be denoted by

Ωh = {x ∈ Ω|x = (x1i , x2j )
⊤ = ((i− 0.5)h1, (j − 0.5)h2)

⊤, i = 1, 2, · · · , n1; j = 1, 2, · · · , n2}.

3.1.1 Discretizing displacement field u and new regularizer RNew(u)

Let the discrete form of the continuous displacement field u = (u1, u2)
⊤ be denoted by uh = (uh

1 , u
h
2 )

⊤,

where uh
1 and uh

2 are denoted grid function and are discretized on the discrete domain Ωh. For simplicity,

let (uh
l )i,j = uh

l (x1i , x2j ), i = 1, 2, · · · , n1; j = 1, 2, · · · , n2 and l = 1, 2. Since the first order variation of

the new regularizer RNew(u) is represented by the operators gradient ∇ and divergence ∇·, we first define

discrete gradient operator ∇h at each pixel (i, j) by

(∇huh)i,j = ((∇huh
1 )i,j , (∇huh

2 )i,j)
⊤

with

(∇huh
l )i,j = ((∂h

1 u
h
l )i,j , (∂

h
2 u

h
l )i,j)

⊤

(∂h
1 u

h
l )ij =

{
1
h1
((uh

l )i+1,j − (uh
l )i,j), if i < n1

0 , if i = n1

(∂h
2 u

h
l )ij =

{
1
h2
((uh

l )i,j+1 − (uh
l )i,j), if j < n2

0 , if j = n2.

Here homogeneous Neumann boundary conditions on u are assumed:

∂ul

∂ν
= 0, l = 1, 2 on ∂Ω.

We know that the discrete divergence operator is the negative adjoint of the gradient operator by the analysis

of the continuous setting, that is to say ∇· = −∇∗. Thus, we can define the divergence operator ∇· by the

following form:

(∇ · vl)i,j =



1

h1
((v1l )i,j − (v1l )i−1,j)

1

h1
((v1l )i,j)

− 1

h1
((v1l )i−1,j)

+



1

h2
((v2l )i,j − (v2l )i,j−1) if 1 < i < n1 , 1 < j < n2

1

h2
((v2l )i,j) if i = j = 1

− 1

h2
((v2l )i,j−1) if i = n1 , j = n2.

For convenience, we change the grid functions uh
1 and uh

2 into the columns vectors uh
1 and uh

2 according to

lexicographical ordering, respectively

uh
1 = (u11,1 , u12,1 , · · · , u1n1,1 , u11,2 , u12,2 , · · · , u1n1,2 , · · · , u11,n2

, u12,n2
, · · · , u1n1,n2

)⊤,

An improved discontinuity-preserving image registration model and its fast algorithm
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uh
2 = (u21,1 , u22,1 , · · · , u2n1,1 , u21,2 , u12,2 , · · · , u2n1,2 , · · · , u21,n2

, u22,n2
, · · · , u2n1,n2

)⊤,

then uh
1 ∈ RN , uh

2 ∈ RN and Uh = (uh
1 ;u

h
2 ) ∈ R2N , where N = n1n2. The discrete gradient (∇huh

l )i,j can

also be represented by the product of the matrix A⊤
k ∈ R2×N (k = 1, 2, · · · , N) and the vector uh

l (l = 1, 2):

A⊤
k u

h
l =



(
1

h1
((uh

l )k+1 − (uh
l )k);

1

h2
((uh

l )k+n2 − (uh
l )k)), if k mod n1 ̸= 0 and k + n2 ≤ N

(0;
1

h2
((uh

l )k+n2 − (uh
l )k)), if k mod n1 = 0 and k + n2 ≤ N

(
1

h1
((uh

l )k+1 − (uh
l )k); 0), if k mod n1 ̸= 0 and k + n2 > N

(0; 0), if k mod n1 = 0 and k + n2 > N .

Let

A = (A1, A2, · · · , AN ) = (A1,1, A1,2, · · · , AN,1, AN,2) ∈ RN×2N ;

Ax = (A1,1, A2,1, · · · , AN,1) ∈ RN×N ,

and

Ay = (A1,2, A2,2, · · · , AN,2) ∈ RN×N .

In this notation, we can get

∇huh
1 =

[
Ax

⊤

Ay
⊤

]
uh
1 , Buh

1 , ∇huh
2 =

[
Ax

⊤

Ay
⊤

]
uh
2 , Buh

2 .

Thus, for discrete gradient operator ∇h, we have

∇hUh =

[
∇h 0
0 ∇h

] [
uh
1

uh
2

]
=

[
B 0
0 B

] [
uh
1

uh
2

]
, AUh.

Let

B[u] = log(1 + |∇u|2) (11)

Hence, we can get the discretization of (11) as following

Bh[Uh] = log(1 + |∇hUh|2) = log(1 + (Uh)
⊤
A⊤AUh)

According to (11), we have

RNew(u) =

∫
Ω

B[u]dx.

Using above those discrete analogues, and approximating the integral by a midpoint quadrature rule, the

new regularizer (11) we proposed is descretized as

RhNew(Uh) = hd · log(1 + (Uh)
⊤
A⊤AUh), (12)

where hd = h1h2.

An improved discontinuity-preserving image registration model and its fast algorithm
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3.1.2 Discretizing template image T and reference image R

For given discrete image, an image interpolation is needed to assign image intensity values for any spatial

positions which are not necessarily grid points. Although linear interpolation is a reasonable tool in image

registration due to its low computational costs, it isn’t differentiable at grid points. In order to make

full use of fast and efficient optimization method, a smooth interpolation is required. Thus a cubic B-

spline approximation is used in our implementation. Further influence of higher or lower order B-spline

interpolation to the quality of registration, see [37]. The continuous smooth approximations for template T

and reference R are denoted by T and R, respectively.

Next we derive discrete analogues for the particular building blocks . Let

xc,1 = [x11,1 , x12,1 , · · · , x1n1,1
, x11,2 , x12,2 , · · · , x1n1,2

, · · · , x11,n2
, x12,n2

, · · · , x1n1 ,n2
]⊤,

xc,2 = [x21,1 , x22,1 , · · · , x2n1,1 , x21,2 , x22,2 , · · · , x2n1,2 , · · · , x21,n2
, x22,n2

, · · · , x2n1,n2
]⊤,

and Xh
c = [xc,1;xc,2].

We can get discrete reference image

R⃗ = R(Xh
c ) (13)

and discrete transformed template image

T⃗ (Uh) = T (Xh
c +Uh) (14)

here T⃗ (Uh) is the discrete analogue of the transformed template image T (x + u(x)) as a function of dis-

placement u. The Jacobian of T⃗ can be denoted by

T⃗Uh =
∂T⃗

∂Uh
(Uh) =

∂T
∂Uh

c

(Uh
c )

where Uh
c = Xh

c +Uh, and the Jacobian of T⃗ is a block matrix with diagonal blocks.

3.1.3 Discretizing distance measure D

In the discrete analogue, the integral is approximated by a midpoint quadrature. According to (13) and (14)

our discretization of distance measure D (2) is straightforward:

Dh(Uh) =
1

2
h1h2(T⃗ (U

h)− R⃗)⊤ · (T⃗ (Uh)− R⃗)

and the derivative of the discretized functional Dh(Uh) with respect to Uh can still be computed

dDh(Uh) = h1h2(T⃗ (U
h)− R⃗)⊤ · T⃗Uh

In addition, the second derivative d2Dh(Uh) of the distance measure Dh can also be calculated straightfor-

wardly,

d2Dh(Uh) = h1h2(T⃗Uh)⊤ · T⃗Uh + h1h2

n1n2∑
i=1

di(U
h)∇2di(U

h) ,

where d(Uh) = T⃗ (Uh) − R⃗ ∈ Rn1n2 . On one hand, it is consuming and numerically unstable to compute

higher order derivatives in registering two images for practical applications; On the other hand, the difference

between T⃗ (Uh) and R⃗ will become smaller if template image is well registered. To have an efficient and

stable numerical scheme as proposed by several works [30, 28], we approximate d2Dh(Uh) by the following

form

d2Dh(Uh) = h1h2(T⃗Uh)⊤ · T⃗Uh . (15)

An improved discontinuity-preserving image registration model and its fast algorithm
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3.2 Solving the discrete optimization problem

The discretized joint energy functional (9) reads as follows:

min
Uh
{Jα(Uh) = Dh(Uh) + α · RhNew(Uh)}.

Thus we obtain the following form

min
Uh
{Jα(Uh) = Dh(Uh) + α · hd · log(1 + (Uh)⊤A⊤AUh)}. (16)

Obviously, the above functional in an algebraic form is nonlinear. In subsequent solutions, we need to

differentiate it twice. To reduce nonlinearity, we shall introduce a lagging into the denominator of the

first-order variation of the new regularizer RhNew(Uh). The lagged quantity in (17) uses a previous and

known iterate Uh(k). We note that the lagging method by ’frozen coefficients’ is well known for variational

approaches related to total variation (TV ) operator (see e.g. [38, 34, 12, 10]).

To solve above problem (16) numerically, standard optimization technique Gauss-Newton scheme is used.

The main idea is to linearize Jα which is replaced by a quadratic Ĵα near the previous iterative value Uh(k)

by the Taylor expansion given by

Jα(Uh(k) + δUh) ≈ Ĵα(Uh(k) + δhU ) = Jα(Uh(k)) + dJα(Uh(k)) · δUh +
1

2
δ⊤UhHδUh ,

where dJα(Uh(k)),H are the Jacobian and the approximation of the Hessian of Jα atUh(k). For d2Dh(Uh(k)

)

and A⊤A

1+|AUh(k)|2
are both positive semi-define, we know that H is also positive semi-definite. Hence, Ĵα is

convex , see [32] for an extended description. Next we describe the specific steps.

Given initial value Uh(k), we compute Jacobian dJα(Uh(k)) and Hessian H at each outer iteration step

by the following form, respectively

dJα(Uh(k)) = dDh(Uh(k)) + 2α · hd ·
A⊤AUh(k)

1 + |AUh(k)|2
(17)

and

H = d2Dh(Uh(k)) + 2α · hd ·
A⊤A

1 + |AUh(k)|2
. (18)

Then perturbation δUh can be obtained by solving linear equation

HδUh = −dJα(Uh(k)). (19)

Usually, H is positive definite, thus the quasi-Newton’s equation (19) can be solved using a preconditioned

conjugate gradient method, and corresponding stopping rule is norm(HδUh+dJα(Uh(k)))/norm(−dJα(Uh(k)))

≤ 10−6. In this paper, a standard Armijo line search scheme is used to guarantee the reduction of the ob-

jective function Jα(Uh), details see [32]. The procedure will be terminated when stopping rules are met. In

this section we will use following common stopping rules for above Gauss-Newton scheme; see also [31, 21].

1. Stop(1) = abs(Jold − Jc) ≤ 10−3 ∗ (1 + abs(Jstop));

2. Stop(2) = norm(uc − uold) ≤ 10−2 ∗ (1 + u0);

3. Stop(3) = norm(dJc) ≤ 10−2 ∗ (1 + abc(Jstop));
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10

4. Stop(4) = norm(dJc) ≤ eps;

5. Stop(5) = (iter ≥ maxIter);

If the first three of the above stopping criteria are met or the latter two are met at the same time, the iteration

is terminated. Where Jold and Jc are previous iterative objective function value and current iterative one,

respectively. Jstop is the value of original objective function at u = 0. uc is current iterative value and

uold is previous iterative one. u0 is initial iterative value. dJc is the Jacobian of current objective function

value. eps denotes the machine precision and maxIter is an a priori chosen number. The numerical scheme

is summarized in Algorithm 1.

Algorithm 1: Gauss-Newton scheme with Armijo Line Search for image registration: u ←
GNIRArmijo(α,u)

Compute Jα(u), dJα(u) and H using (16), (17) and (18), respectively;
while true do

Update iteration count: iter←iter + 1;
Check the stopping rules;
Solve quasi-Newton’s equation: H · δu = −dJα(u) by using a preconditioned conjugate gradient
method;
Perform Armijo Line Search: ut ← Armijo(α, δu,u) ;
if line search fail;
break then

end
Update current values: u← ut;
Compute Jα(u), dJα(u) and H using (16), (17) and (18), respectively

end

In this section the Armijo Line Search can be briefly explained as follows. Starting with t = 1, the new

iterate Uh(k+1)
= Uh(k) + t · δUh is used. Standard sufficient decrease condition can be written by the

following form: Jα(Uh(k+1)
) < Jα(Uh(k)) + tol · t · ((dJα(Uh(k)))⊤ · Uh(k)), where let tol = 10−4. If the

above sufficient decrease condition couldn’t be met, we set t := 1
2 t. To be safe, Armijo Linear Search would

be terminated if an increment becomes relatively small. When this case occurs, optimization algorithm is

concluded that it fails to converge. The algorithm is summarized in Algorithm 2.

Algorithm 2: Armijo Line Search: u← Armijo(α, δu,u)

Compute Jα(u) and dJα(u) using (16) and (17), respectively;
Set k ← 0, t← 1, MaxIter← 10, and η ← 10−4;
while true do

Set ut ← u+ tδu;
Compute Jα(ut) using (16);

if Jα(ut) < Jα(u) + tη(dJα(u))⊤δu;
break then

end
if k > MaxIter;
break then

end
Set t← t

2 and k ← k + 1;

end
Set u← ut.
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In order to save computational work and to speed up convergence, we combine Gauss-Newton method

with multilevel scheme to solve (16). First, we provide an initial value by multilevel affine linear preregis-

tration on the coarsest level, then solve (16) by using Gauss-Newton method with Armijo Linear Search.

Second, we interpolate the coarse solution to next fine level as a initial value, then solve (16) on fine level by

using the same scheme. Third, repeating the process, until the loop terminates. There are two major advan-

tages in using multilevel scheme. Firstly, computing a minimizer need less iterations to solve optimization

problems on the coarser levels. Secondly, the risk of getting trapped at unwanted minimizers is reduced.

Note that every part of the discrete problem (16) is required to be continuously differentiable to make full

use of efficient optimization techniques. Thus multilevel representation of given images is necessary. The

objective of multilevel representation is to derive a family of continuous models for given images.

In addition, we know that affine transformation -based parametric image registration is applicable to

a large class of non-rigid registration problems. In the two-dimensional case, the number of unknown

parameters is 6 for an affine linear transformation image registration. The number of unknowns of deformable

registration (e.g. variational models [30]) for a discrete image is proportional to the number of pixels. Thus

we know that an affine method is always many orders of magnitude faster than a nonlinear method [[30]] due

to much less unknowns involved. Motivated by several works (see [30] and Schmitt et al. [35]), we can use

affine linear transformation-based parametric image registration as a pre-registration step for our new model

by providing the good initial positions for the image to be registered. Next we summarize the multilevel

scheme in Algorithm 3. In this Algorithm, bi-linear interpolation techniques are used for the interpolation

operator denoted by IhH .

Algorithm 3: Multilevel Image Registration: u← MLIR(MLData)

Maxlevel← ceil(log2(min(m1,m2))), % The finest level;
Minlevel← 3, % The coarsest level;
MLData, % Multilevel representation of given images R and T;
for l = Minlevel:Maxlevel do

if l == Minlevel;
Providing initial guess u0 by using affine linear preregistration then

end
if l == Minlevel;
u0← u0;
else;

u0← IhH(u) then

end
u← GNIRArmijo(α,u0) ;

end

4 Numerical experiments

In this section we present some experiments to

• compare the modeling results of our new model RNew with common variational models proposed in

above Introduction;

• demonstrate the performance of our proposed Algorithm 3 for RNew with regard to parameter changes;
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• show our proposed Algorithm 3 is more effective by comparing with Algorithm 1.

To measure the quality of the registered images, the relative reduction of the dissimilarity rel.SSD is used,

and it is defined as follows

rel · SSD =
D(u)
Dstop

× 100%

Where u is the current optimal value and Dstop is the value of D(u) at u = 0. Four representative data sets

(Two non-smooth registration problems and two smooth registration problems to be denoted respectively as

Example 1 , Example 2 , Example 3 and Example 4 )were selected for the experiments, as show respectively

in Figure 1.

4.1 Comparison RNew with common regularizer techniques

In the first experiment, our aim is to investigate capabilities of RNew and common regularizer techniques

for registration of the four test Examples 1 − 4 in resolution 256 × 256 and 512× 512. For the convenience

of description, the common regularizer techniques such as diffusion-, elastic-, linear curvature and total

variation-based image registration are denoted by Rdiff , Relas, RCurv and RβTV, respectively. Below we

mainly highlight the further gains from using RNew. To be a fair comparison, we used the same Algorithm

as explained in Section 3 for solving the discretized energy functional related to above regularizer techniques.

The registered results by these models are shown in Figure 2 until to Figure 9. On one hand, for

the smooth registration problem (Example 3 − 4), one can observe that our new model RNew works fine in

producing acceptable registration results as well as do from RCurv,Rdiff ,Relas andRMTV which are known to

be suitable for smooth displacement; on the other hand, for the non-smooth registration problems (Example

1− 2), one can clearly see that our new model RNew produces more pleasing registration results than those

from RβTV and RMTV which are known to be suitable for discontinuous displacement, especially on Example

1 with non-axis-aligned discontinuities. Numerical experiments show that our new model RNew are suitable

for both smooth problems and non-smooth problems, especially for non-smooth registration problems with

non-axis-aligned discontinuities. The main reason is that our new model utilize interdependence between

the primary components of the deformation field for smooth and non-smooth registration problems.

4.2 Tests of our new Algorithm 3

Here by experiments, we hope to test the convergence issues of it with regard to parameters α in the model

and the mesh parameter h.

4.2.1 h-independent convergence tests

We shall resolve the same Example 2−3 as above using an increasing sequence of resolutions (or a decreasing

mesh parameter h) and show the results in Table 1. The results show that our new Algorithm 3 not only

convergence within a very short time, but it is also accurate because the dissimilarities between the reference

and registered images have been reduced more than 97%. For overall performance the experimental results

suggest that our new Algorithm 3 would be preferred for practical applications.
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Example 1 (256× 256)

Example 2 (256× 256)

Example 3 (512× 512)

Example 4 (512× 512)

Figure 1: Four representative data sets of registration problems. Left column: reference image R, right
column: template image T . Top to bottom: Example 1−2 (non-smooth registration problems) and Example
3− 4 (smooth registration problem).
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Figure 2: Registration results for two moving objects of size 256 × 256 (Example 1).Top row: Difference
between reference image and template image before registration. The second row left: registered template
image by RNew; The second row middle: Difference between reference image and deformed template image
after registration by RNew; The second row right: deformation field from model RNew. The third row
left: registered template image by RMTV; The third row middle: Difference between reference image and
deformed template image after registration by RMTV; The third row right: c RMTV. The last row left:
registered template image by c; The last row middle: Difference between reference image and deformed
template image after registration by RβTV; The last row right: deformation field from model RβTV. Here
α were well-selected for all regularizer techniques.
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Figure 3: Registration results for two moving objects of size 256× 256 (Example 1).Top row left: registered
template image by RCurv; Top row middle: Difference between reference image and deformed template
image after registration by RCurv; Top row right: deformation filed from model RCurv. The second row
left: registered template image by Relas; The second row middle: Difference between reference image and
deformed template image after registration by Relas; The second row right: deformation filed from model
Relas. The last row left: registered template image by Rdiff ; The last row middle: Difference between
reference image and deformed template image after registration by Rdiff ; The last row right: deformation
filed from model Rdiff . Here α were well-selected for all regularizer techniques.

An improved discontinuity-preserving image registration model and its fast algorithm



16

 deformation field

 deformation field

Transformed template image R
βTV rel.SSD=1.9211%

 

 

0

10

20

30

40

50

60

70

80

90

 deformation field

Figure 4: Registration results for two book images of size 256 × 256 (Example 2). Top row: Difference
between reference image and template image before registration. The second row left: registered template
image by RNew; The second row middle: Difference between reference image and deformed template image
after registration by RNew; The second row right: deformation filed from model RNew. The third row
left: registered template image by RMTV; The third row middle: Difference between reference image and
deformed template image after registration by RMTV; The third row right: deformation filed from model
RMTV. The last row left: registered template image by RβTV; The last row middle: Difference between
reference image and deformed template image after registration by RβTV; The last row right: deformation
filed from model RβTV. Here α were well-selected for all regularizer techniques.
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Transformed template image R
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Figure 5: Registration results for two book images of size 256 × 256 (Example 2). Top row left: registered
template image by RCurv; Top row middle: Difference between reference image and deformed template
image after registration by RCurv; Top row right: deformation field from model RCurv. The second row
left: registered template image by Relas; The second row middle: Difference between reference image and
deformed template image after registration by Relas; The second row right: deformation field from model
Relas. The last row left: registered template image by Rdiff ; The last row middle: Difference between
reference image and deformed template image after registration by Rdiff ; The last row right: deformation
field from model Rdiff . Here α were well-selected for all regularizer techniques.
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Figure 6: Registration results for MRI images of size 512 × 512 (Example 3). Top row: Difference between
reference image and template image before registration. The second row left: registered template image
by RNew; The second row middle: Difference between reference image and deformed template image after
registration by RNew; The second row right: deformation field from model RNew. The third row left:
registered template image byRMTV; The third row middle: Difference between reference image and deformed
template image after registration by RMTV; The third row right: deformation field from model RMTV. The
last row left: registered template image by RβTV; The last row middle: Difference between reference image
and deformed template image after registration by RβTV; The last row right: deformation field from model
RβTV. Here α were well-selected for all regularizer techniques.
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Figure 7: Registration results for MRI images of size 512 × 512 (Example 3). Top row left: registered
template image by RCurv; Top row middle: Difference between reference image and deformed template
image after registration by RCurv; Top row right: deformation field from model RCurv. The second row
left: registered template image by Relas; The second row middle: Difference between reference image and
deformed template image after registration by Relas; The second row right: deformation field from model
Relas. The last row left: registered template image by Rdiff ; The last row middle: Difference between
reference image and deformed template image after registration by Rdiff ; The last row right: deformation
field from model Rdiff . Here α were well-selected for all regularizer techniques.
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Figure 8: Registration results for X-ray images of size 512× 512 (Example 4). Top row: Difference between
reference image and template image before registration. The second row left: registered template image
by RNew; The second row middle: Difference between reference image and deformed template image after
registration by RNew; The second row right: deformation field from model RNew. The third row left:
registered template image byRMTV; The third row middle: Difference between reference image and deformed
template image after registration by RMTV; The third row right: deformation field from model RMTV. The
last row left: registered template image by RβTV; The last row middle: Difference between reference image
and deformed template image after registration by RβTV; The last row right: deformation field from model
RβTV. Here α were well-selected for all regularizer techniques.

An improved discontinuity-preserving image registration model and its fast algorithm



21

Transformed template image R
Curv rel.SSD=0.55839%

 

 

0

10

20

30

40

50

60

70

80

90

100

 deformation field

Transformed template image R
elas rel.SSD=0.58275%

 

 

0

10

20

30

40

50

60

70

80

90

100
 deformation field

Transformed template image R
diff rel.SSD=0.85613%

 

 

0

10

20

30

40

50

60

70

80

90

100
 deformation field

Figure 9: Registration results for X-ray images of size 512 × 512 (Example 4). Top row left: registered
template image by RCurv; Top row middle: Difference between reference image and deformed template
image after registration by RCurv; Top row right: deformation field from model RCurv. The second row
left: registered template image by Relas; The second row middle: Difference between reference image and
deformed template image after registration by Relas; The second row right: deformation field from model
Relas. The last row left: registered template image by Rdiff ; The last row middle: Difference between
reference image and deformed template image after registration by Rdiff ; The last row right: deformation
field from model Rdiff . Here α were well-selected for all regularizer techniques.
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RNew model
Example h α rel.SSD CPU(second)

1/128 1.75e3 1.193% 8.9
2 1/256 1.75e3 1.1918% 22.3

1/512 1.75e3 1.1913% 76.9
Example h α rel.SSD CPU(second)

1/128 7.5e2 0.52252% 9.9
3 1/256 7.5e2 0.42792% 26.6

1/512 7.5e2 0.37249% 98.4

Table 1: Registration results of our Algorithm 3 for processing Example 2 − 3 shown respectively in Figure
1. In the table, CPU means the total run-times including Image output and pre-registration.

4.2.2 α-dependence test

Here we analyze how sensitive the performance of our Algorithm 3 when varying α. To this end, our

Algorithm 3 was tested on Example 4 (see Figure 1 last row) with the results shown in Table 2. Here the

following parameters are used: h = 1/256 for all experiments and α is varied from 10−4 to 105. For this

example, we can see that the performance of our Algorithm 3 is basically consistently behaved.

α rel.SSD
105 2.3386%
104 0.90379%
10 0.64791%
1 0.65072%

10−1 0.62244%
10−2 0.63231%
10−4 0.64264%

Table 2: Results for α-dependence tests of Algorithm 3 for Example 4 shown in Figure 1 last row .

4.2.3 Comparison Algorithm 3 with Algorithm 1

The main aim of the experiment is to show that our proposed Algorithm 3 is more effective than Algorithm

1 in achieving convergence. We took Example 4 to illustrate this point. Table 3 summarizes the registration

results from Algorithm 3 and Algorithm 1 with different numbers of grid points. To be a fair comparison

between them, we used the same regularizer parameter α = 10−1 and provide initial guess by using affine

transformation-based pre-registration. As expected from the experiments, both methods are very accurate in

registering the given images because the dissimilarities between the reference and registered images have been

reduced more than 95%. However the proposed Algorithm 3 delivered more visually-pleasing registration

results in terms of image quality in a very short time.

5 Conclusions

To make full use of interdependence between the primary components of the deformation for smooth and non-

smooth registration problems, we propose an improved discontinuity-preserving image registration model in
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Algorithm 1 Algorithm 3
rel.SSD/CPU(Seconds) rel.SSD/CPU(Seconds)

Example 4 α = 0.1000
h=1/128 2.6216%/815.8 0.7944%/9.3
h=1/256 3.2515%/2610.4 0.62244%/22.4
h=1/512 3.5241%/10766.1 0.56762%/69.8

Table 3: The registration results of the proposed numerical methods for processing Example 4 shown in
Figure 1 (the last row). rel.SSD means the relative reduction of the dissimilarity. CPU means the total
runtimes including Image output and pre-registration.

this paper. To solve the new model, we propose a method of frozen coefficients combine with Gauss-

Newton scheme with Armijos Line Search and further to combine with a multilevel method to achieve fast

convergence. Numerical experiments not only confirm that our proposed method is efficient and stable, but

also it can give more satisfying registration results according to image quality. Future work will address our

proposed Algorithm 3 for models of multimodal deformable image registration.
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