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Abstract
Model-Based Systems Engineering (MBSE) is a powerful approach for designing complex engineering systems, which
also generates valuable data after each conducted study. However, currently there are few to no approaches for reusing
this information in a systematic way. In this paper, we propose using state-of-the-art Natural Language Processing
(NLP) methods and a graph database to analyze data from past missions and facilitate the design process of new
missions. In particular, we firstly develop techniques for analysing a database of past-mission requirements. This
include the ability to identify semantic similar requirements from past missions for a given new requirement. We also
fine-tune a language model in order to analyse the logical traceability between two requirements. These methods are
meant to enable engineers to more efficiently define the requirement space for a new spacecraft.Secondly, we also
develop methods to analyse the physical and functional architectures of past missions. Based on an input for a new
design, a graph database of past-mission design can be queried for similar design choices and functionalities by again
leveraging the abilities of semantic similarity and a specialised breadth-first-search algorithm. Finally, we show how
both the requirement and design analyses could in order to automatically verify if the provisions of a requirements
are reflected in the physical architecture. For this analysis, a language model is used to extract core concepts from a
requirement. Then, in a second step, the concepts from the requirement are mapped to nodes in the graph database.
For the actual verification, a relevant extract of the graph together with the requirement are then used as input for
a large language model, which is prompted to reason if the requirement is fulfilled or not. By leveraging NLP and
graph search techniques, we believe that these approaches can lead to more efficient and effective design processes
for complex engineering systems by reusing information from past designs. The proposed techniques have been
developed and tested on real past-mission requirements and design architectures in collaboration with Thales Alenia
Space, RHEA group, and the European Space Agency.

1. Introduction
1.1 Background

Model-Based Systems Engineering (MBSE) is defined
as ’The formalized application of modeling to support
system requirements, design, analysis, verification and
validation activities beginning in the conceptual design
phase and continuing throughout development and later
life cycle phases’ [7]. MBSE is commonly presented as
one of the main contributors to the future of systems engi-
neering to overcome the challenges and needs of the dis-
cipline [8]. Its application has shown a positive Return
on Investment with respect to the traditional document-
based approach, when applied to complex systems [12].
MBSE can underpin the accomplishment of collabora-
tive work [8]. Moreover, improved consistency, increas-

ing system understanding, productivity, analysis capabil-
ity, efficiency, and automation support are mentioned as
the benefits of MBSE [5]. Compared to traditional sys-
tems engineering projects, MBSE projects require greater
investment during the conceptual and preliminary design
stages and substantially lower investment in the latter
stages. This investment in MBSE is associated with some
costs for ‘evaluating methodologies, infrastructure imple-
mentation/extension, personnel training, model develop-
ment and verification, model curation, and configuration
management’ [9].

Interoperability between MBSE solutions is often
mentioned as one of the main issues for MBSE adoption.
This is caused by differences in the ontology, modeling
language and tools used by each solution [1, 10, 14]. The
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MBSE Hub is one of the solutions proposed by the Eu-
ropean Space Agency (ESA) to overcome the interoper-
ability issue. It consists in a centralised hub to be used
by different levels and disciplines of engineering, as well
as throughout different phases of a space project, and it
shall allow the stakeholders to exchange information us-
ing a common vocabulary described in the Space System
Ontology (SSO) [6, 15].

1.2 Purpose
This paper presents different analysis modes for a dig-

ital assistant to support systems engineers in projects per-
formed with MBSE. Leveraging Natural Language Pro-
cessing (NLP) techniques, we aim to identify common
concepts across multiple past missions, like requirements
or components, and propose suggestions to the systems
engineers. This will not only speed up the mission and
spacecraft definition phases, but also reduce the cost
by avoiding the repetition of previous mistakes. ESA’s
MBSE Hub is meant to act as the common database,
where information from multiple past missions can be
stored and the analysis modes can be applied to.

1.3 Scope
In particular, we showcase three exemplary analyses

modes that can be applied to past missions as defined un-
der the SSO. This includes an analysis of mission require-
ments by comparing semantic similarity between require-
ments as well a fine-tuned language model to predict log-
ical dependencies between requirements. Secondly, we
present a filtered-breadth-first search search algorithm to
efficiently search through past-mission design spaces as
defined by the SSO. Thirdly, we propose a possible com-
bination of both analyses modes, where based on a re-
quirement we extract a relevant part of the design space
from the graph database and subsequently use a Large
Language Model (LLM) as a reasoning engine to verify
the model. [18, 19]

The second section provides a brief introduction into
the theory and applied methods. It starts by introducing
key concepts of NLP and the applied graph algorithm.
The next section showcases the results of the three anal-
yses modes. In the discussion, the results are evaluated
and future directions are being suggested. The conclusion
section summarizes the key findings of the paper.

2. Related Work
Singh [13] describes an approach to identify the sim-

ilarity between requirements using NLP, semantic anal-
ysis, and graph theory to develop inter-related require-
ments. This is done to evaluate the similarity between
requirements coming from different stakeholders and for-
mulated using a different vocabulary. In doing so, the
presented approach is also able to aid the engineers by
highlighting fault-prone regions in the considered require-
ments. Their approach can also be used to find redundant
or extraneous requirements. Another use of semantic sim-
ilarity is presented in [2], where the authors compared dif-

ferent multilingual embedding models in English and Ger-
man. They propose an approach to leverage the similar-
ity between multilingual embeddings, evaluated using the
cosine similarity, to find redundant requirements. They
apply it only to previous projects and do not use it to sug-
gest requirements for future ones. To conclude, Zhao et
al. [20] present a survey about the use of NLP for re-
quirements engineering. Their study showed great use of
NLP technologies for requirements engineering, of which
a minimal part was used in an industrial setting. More-
over, their study highlighted a great discrepancy between
the current stat-of-the-art and the state of practice of NLP
technologies for requirements engineering. The study we
propose aims to partially address this gap by being per-
formed in direct collaboration with the industrial project
partner, Thales Alenia Space.

Model verification is a challenging field in MBSE. One
proposed methodology is enriching the commonly used
MBSE language SysML by a model checker like NuSMV.
[4]. Wang et al. explored how this could be used to verify
the design and state transitions of the Flap control system
of an avionic assembly. The drawback is that the sys-
tem and the requirements/rules to check against need to
be modeled in the language of the tool in order to be able
to analyse it. [17] Salado et al. found that implementation
of text based requirements in MBSE can be very restric-
tive on the proposed design solutions. They show that by
e.g. defining a requirement as a state machine diagram,
another design solution might not be accepted in the ver-
ification check, although it also upheld the provisions in
the requirement. Therefore, they argue that the semantics
of most modeling languages need to be extended in or-
der to have more flexibility when defining requirements in
MBSE. [16] We take a different approach, by leveraging
the capabilities of NLP and reason directly over require-
ments in text form.

3. Methodology and Theory
3.1 Natural Language Processing
3.1.1 Supervised Learning

Given an input text sequence X = {x1, x2, . . . , xN},
an encoder language model produces a sequence of out-
put embeddings H ∈ RN×D, where each hi ∈ RD.[3].
For fine-tuning, a task-specific classification linear layer
is added, which in the case of a binary classification has
the following representation:

y = σ(W · hCLS + b) [1]

Where y is the predicted probability, W is the weight
matrix, hCLS is the embedding of the special token
prepended to the sequence, b is the bias, and σ is the sig-
moid function.

In the case of a binary classification, the model param-
eters θ consist of the hidden layers of the language model
(LM) and the hidden layer from the classification head
(LL). These parameters are defined as

θ = θLM ∪ θLL
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and are fine-tuned following the standard procedure in
deep learning by calculating the cross-entropy loss for the
predicted and true labels and then computing the gradients
with respect to θ. The model parameters are updated as:

θnew = θold − α
∂L

∂θold

The binary cross-entropy loss for the predicted and true
labels is given by:

L(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) [2]

Where y is the true label and ŷ is the predicted probability.

3.1.2 Semantic similarity
To analyse the semantic similarity between two text

sequences we follow the standard methodology of using
cosine similarity as expressed in Equation 3. [11] a and
b represent the vectors containing the embeddings of the
two considered requirements. The cosine similarity eval-
uates the angle θ between the two vectors and the closer
the angle is to 0 (cosine similarity score close to 1), the
more similar are the two requirements.

cos(θ) =
a · b
||a|| ||b||

[3]

3.2 Graph Theory
A graph database can be defined as

G = {E,R,C,A},

where E,R,C,A represent respectively the mutually dis-
joint sets of entities, relations, concepts and attributes in
G.

We define a function f mapping each entity to a con-
cept.

f : E → C

To search a graph efficiently for specific entities and
concepts we apply a filtered breadth-first search (filtered
BFS) algorithm.

Given a starting entity es ∈ E and a set of target con-
cepts Ctarget , the goal of the filtered BFS is to find:

V ⊆ E

such that for every e ∈ V , we have f(e) ∈ Ctarget, and
there exists a path from es to e in G that does not pass
through any other entity w with f(w) ≡ f(e).

For an entity e, let Visited(e) be a function that returns
true if e has been visited, and false otherwise. We then
initialise the algorithm with the starting entity and the dis-
tance ”0”. For each entity, the distance from the starting
entity is mapped by the amount of entities that is passed
in the search.

The Filtered BFS-algorithm can then be described by
the iterative process:

Algorithm 1 Filtered BFS Algorithm

1: procedure FILTEREDBFS(G, s, Ctarget)
2: results← ∅
3: Q← an empty queue
4: Cfound ← ∅
5: Visited← ∅
6: CutOffDistance ← map from C to integers, ini-

tialized with∞ for all concepts.
7: Add (vs, 0) to Q
8: while Q is not empty do
9: Pop a vertex-distance pair (v, d) from Q

10: for each neighbor u of v that’s not in Visited
do

11: Add u to Visited
12: if Cfound ̸= Ctarget then
13: Push (u, d+ 1) onto Q

14: if f(v) ∈ Ctarget and f(v) /∈ Cfound then
15: Add C(v) to Cfound
16: CutOffDistance[C(v)]← d+ 1

17: if f(v) ∈ Ctarget and d =
CutOffDistance[f(v)] then

18: Add v to results
return results

The set V is therefore found by the following expres-
sion:

V =
⋃

t∈Tfound

{v ∈ E : f(v) = t ∧ d(v) = CutOffDistance[t]}

4. Results
4.1 Requirement analyses

The requirement analyses included two separate anal-
yses modes. The first one focused on detecting similar
requirements from past missions with semantic similar-
ity. The second one fine-tuned a language model to iden-
tify logical dependency (”traceability”) between require-
ments.

4.1.1 Past-mission requirement similarity analysis
The workflow for comparing a new requirement to re-

quirements from previous projects is the following. First,
acronyms of typical concepts in spacecraft engineering
are expended in the requirement’s texts. Then, embed-
dings for each past-mission requirement text as well as the
input requirement are computed by using the allmpnet-
base-v2 SentenceBERT-model ∗ [11]. Subsequently, the
input requirement is compared to all past-mission require-
ments using the cosine similarity metric, as described in
3.1.

Some qualitative results from this comparison can be
seen in Table 1. Overall, the general-domain language
model is able to estimate at an acceptable level, the sim-
ilarity between two requirements. This could be further
improved by domain-adaption, so the embeddings can

∗https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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capture better the most important features for the domain
when comparing requirements or by applying a re-ranking
classifier afterward.

4.1.2 Requirement traceability analysis
For analysis if two requirements can be traced to each

other a language model encoder had to be fine-tuned as
described in Sectioon 3.1. An example of a logical depen-
dency is the following:

1. Req 1: The Data-Processing Unit (DPU) shall allow
on-board lossy compression of cloud contaminated
data.

2. Req 2: It shall be possible to implement on-board
real-time data reduction (e.g., cloud-contaminated
data) in conjunction with compression.

In this example, the first requirement gives more details
about how the provisions of the second one are fulfilled.
For fine-tuning the data set described in Appendix B was
used. The original data set only had positive examples,
which meant that negative examples needed to be created.
The requirement traceability data set included 332 posi-
tive traces between requirements, see Appendix B. For
creating negative examples and balancing out the original
data set the following simple algorithm was applied:

• For each positive pair of requirements in the data set,
e.g. (req1, req2), retrieve the specification level of
req1 and req2

• For req1 randomly select a requirement, say reqr1,
with the same specification level.

• For req2, randomly select a requirement, say reqr2,
with the same specification level.

• Add the pairs (req1, reqr1) and (reqr2, req2) as neg-
ative examples to the data set.

This algorithm is based on the heuristic that only require-
ments from different specification levels can be traced
with each other. Therefore, for creating negative exam-
ples, only requirements from the same specification as the
positive example ones were picked. This balanced data set
ensures the model genuinely compares both requirements
before deciding if they’re linked, rather than relying on
shortcuts. In an unbalanced data set, the model might pre-
dict a trace as positive based on frequency, rather than the
requirements semantic meanings.

For pre-processing, the data set was first shuffled and
then split into training and validation with a ratio of 0.8.
Then a BERT-like domain-specific LM was trained until
the validation loss did not reduce any further. The results
of the validation set can be seen in Table 2.

The scores are in general strong for both labels. With
a perfect precision score (1) for the traced examples, this
means that every example predicted as traced was indeed
a traced example from the data set. On the other hand, the
recall of the traced examples is still relatively high at 0.8,

Fig. 1: Design analyses process. Two-step process of
identifying and extracting relevant information based
on past-mission designs

which means that of all traced examples in the data set
0.8 were correctly predicted. Overall, this configuration
of trading off some recall for precision is to be preferred
as it ensures that every predicted trace is a trace and does
not introduce noise by incorrectly predicting traces. How-
ever, the prediction could be further improved for example
by using more training samples or generating more am-
biguous negative samples by using another heuristic that
samples negative requirements based on a high semantic
similarity between the samples.

4.2 Design analysis
This analysis focuses on expanding the architectural

design of a new mission by incorporating components,
functions, and physical parts derived from past missions.
Our approach primarily relies on the integration of seman-
tic similarity and the Filtered-BFS graph traversal algo-
rithm described in Section 3.2.

The process is visualised in Figure 1. It starts by en-
coding the given textual input, which could either be the
name of a component or a description of a functional-
ity, using again the sentence embedding model all-mpnet-
base-v2. Then, we compare this and identify the most
entity in our database with the most semantically similar
name in graph database of past missions. With this en-
tity identified, we deploy the Filtered-BFS algorithm to
traverse the graph, initiating from this entity. The traver-
sal continues until we find a node representing each con-
cept of interest, such as ”PhysicalComponent” or ”Phys-
icalArchitecture” for one specific or multiple missions in
the database. Additionally, all nodes traversed during the
search are also captured and returned.

Through this process, we can efficiently extract rele-
vant information from the graph database based on the in-
put. By providing what elements are related to a function-
ality / components from past-missions, or vice-versa, the
engineer is assisted in defining or even enhancing of the
architectural design for a new mission, thus saving time
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Table 1: Similarities of examples input requirements paired with Past-Mission (PM) requirements

Input requirement PM requirement Similarity
When there is no ground station visibility, the RF
transmission shall be disabled

It shall be possible to disable the RF radiation
from the communication transmitters when not in
view of the respective ground station in order to
comply with the ITU regulations.

0.81

No single failure shall lead to the lost of the mis-
sion.

No single failure shall lead to catastrophic or crit-
ical consequences.

0.65

The absolute pointing accuracy shall be better
than 0.01 deg

The pointing accuracy shall include all point-
ing error contributors (tolerances, backlash. . . )
and statistically independent contributions may be
added in a quadratic way (root mean square).

0.72

Table 2: Precision, Recall and F1-scores for Traceability
Classification

Labels Precision Recall F1-score

Not Traced 0.9 1.0 0.95
Traced 1.0 0.8 0.89

average 0.95 0.9 0.92

and reducing errors.

4.3 Requirements verification check

In this third analysis, we aim to automatically verify
if a model design, as presented in the previous chapter,
meets its specified requirements. We extract relevant en-
tities and relations based on the requirement from a mis-
sion design and then apply an LLM as a reasoning en-
gine to verify if the mission design upholds the implica-
tions of the requirement. To verify the following require-
ment “The DHS shall autonomously collect all science
data and store it for 4 days.”, one would need to check
if a ”Data-Handling Subsysten (DHS)” entity exists in the
graph mission design model. Then, depending on the un-
derlying ontology, the information if science data is col-
lected and stored for 4 days might be encoded in diverse
ways. For instance, “science data” could be another en-
tity with the attribute ”stored for 4 days” connected via a
relation ”collect” to the “DHS”. The information for stor-
ing science data could also be encoded just as an attribute
“stores science data” to the “DHS” A rule-based system,
relying on parsing the requirement into a machine read-
able form, might be susceptible to variations in require-
ment wording, the ontology structure, and the preference
of the engineer defining the system. An LLM could bridge
this gap by reasoning more robustly if a design either im-
plicitly or explicitly contains the information described in
a requirement. [18, 19]

To extract information from the mission design for the
language model’s analysis, first, concepts are extracted
from the requirements, that could correspond to entities
in the mission design graph, with an open-source concept

recognition model †. Subsequently, these concepts un-
dergo analysis to determine their semantic similarity with
components present in the mission design graph. Once a
component with similar attributes is identified within the
graph, a graph search algorithm is employed. This search
focuses on extracting neighboring components, as well as
the relations that link them to the root entity and, when ap-
plicable, the attributes associated with each. For efficient
representation, the N-triples format was selected, which is
a common format to encode graph information.

This information is then used as input together with an
instruction prompt to the language model. The prompt
can be seen in Appendix A. The overall process is out-
lined in Figure 2 and one qualitative result can be seen
in Table 3. In this example, the mass of the spacecraft is
investigated and according to the requirement should be
below 1000 kg. The difficulty is that the dry mass, as well
as the wet mass, were extracted from the graph database,
which means the model would need to decide which mass
value to consider for this requirement. As seen in Table
3, the ”out-of-the-box” reasoning results of GPT-4‡, the
largest model available at the moment, are quite strong.
The results from an open-source model (Vicuna-13b)§ and
GPT-3.5 (ChatGPT)¶ on the other hand, while lexical cor-
rect, show some flaws. In the example of Vicuna-13b, the
model identifies correctly that the mass of the spacecraft
should be below 1000kg, however, it considers the dry
mass and not the wet mass for its evaluation. As the type
of the mass is not specified in the requirement, the model
should pick the larger quantity of the two, which is also
the one that the spacecraft will have at launch and there-
fore the determining one to check if the requirement is
upheld or not. On the other hand, in the response of GPT-
3.5 both masses are mentioned correctly. However, the
reasoning in this case has a logical flaw in that it deter-
mines ”946 kg” to be above 1000 kg. So while the final
answer is correct the reasoning is flawed. GPT-4 correctly
understands that the dry mass of the spacecraft is below
the required 1000 kg. Additionally, it further explains that
the wet mass in contrast exceeds the given limit. It further

†https://huggingface.co/icelab/spacescibert CR
‡https://openai.com/research/gpt-4
§https://huggingface.co/lmsys/vicuna-13b-v1.5
¶https://openai.com/blog/chatgpt
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Fig. 2: Automatic Requirement Verification process.
Three step process of extracting concepts of require-
ment, mapping it to information in graph database, and
LLM reasoning example.

explains what ”wet mass” means in the context of space-
craft engineering, and articulates that usually the wet mass
is the deciding factor when specifying the constraints on
a spacecraft. This response is very close to the desired
output and correctly identifies the requirement as not ful-
filled. More example results can be seen in Appendix C.

5. Discussion
The results highlight the potential of our analysis meth-

ods for assisting in the early stage design process of space-
craft. For identifying similar requirements, the results
show that ”off-the-shelf” sentence embeddings are able to
generalise to requirements from spacecraft engineering.
Together with the traceability classifier, these two meth-
ods enable sophisticated analysis modes e.g. identifying a
similar requirement together with all its dependent lower-
level requirements, thus enabling a detailed analysis of
the requirement space for a new mission. These methods
could be further extended in the future e.g. by a larger
data set to train the traceability classifier.

The results for the second analysis showcase again the
out-of-domain capabilities of modern sentence embed-
dings, but also of a graph database to explore past-mission
design. However, these analyses could be more exten-
sively verified by conducting test studies where system

engineers are prompted to design a specific part with and
without access to this tool, compare the final designs, and
evaluate user experience in terms of time saved, and use-
fulness of the recommendations provided.

Thirdly, the automatic requirement verification analy-
sis showcases how LLMs could be employed in the fu-
ture to assist enginers in the verification process. While
the results could benefit from a larger quantitative study,
the proof of principle is presented and its effectiveness is
demonstrated.

All the analysis methods here proposed aim to make
the spacecraft design process more efficient and reduce
the likelihood of errors, by automating some of the tasks
of an engineer, such as requirement definition, past-
mission analysis and requirements verification. This ap-
proach envisions a synergistic collaboration where an au-
tomated assistant partners with an engineer. However, a
challenge could be a limited adoption of Model-Based
Systems Engineering (MBSE) in the industry, leading to
a scarcity of data, which e.g. is crucial for re-proposing
past mission design solutions and on which our solution is
heavily based on. Additionally, there’s concern about the
Technology Readiness Level (TRL) of using Large Lan-
guage Models (LLMs) for reasoning tasks. Assessing the
trustworthiness and resilience of these applications is still
an ongoing active research field.

6. Conclusion

In this study, we presented three different analysis
modes for exploring past-mission design and require-
ments by leveraging NLP techniques. It was demonstrated
qualitatively that publicly available sentence embedding
models can capture well similarity in the field of space
system engineering. Furthermore, we curated a data set
and fine-tuned a language model to identify logical trace-
ability between two requirements. The second analysis
mode focused on analysing and exploring the mission de-
sign of past missions. FOr that, the mission design infor-
mation was formalised as a graph database and a filtered
breadth-first search algorithm was deployed to query the
graph based on a starting node for multiple different en-
tity types. In the third analysis mode, a bridge between
the previous two analysis modes was created by first iden-
tifying which relevant part of the mission design graph is
relevant for the requirement, and then prompting a LLM
to reason if the requirement is fulfilled or not. The results
show that modern NLP solutions usually can generalize
well to, in this case, spacecraft engineering, with very lit-
tle in-domain training data needed. The development of
these methodologies can be seen as an ongoing effort to
create an assistant, which helps in the design process of
space missions. Future studies could build on top of the
developed analysis modes or go into developing test stud-
ies to evaluate the efficiency increase when using an as-
sistant in the spacecraft design process.

6



Table 3: Example reasoning of GPT-4, GPT-3.5 and Vicuna-13b over requirement and graph database extract.

Requirement: The spacecraft shall have a mass <1000 kg.
Graph triples:
|Spacecraft||has durationStand-by Mode|”52 h”
|Spacecraft ||has durationInstrument Operations Comms Mode |”4.5 h”
|Spacecraft ||has durationSafe Mode |”52 h” |Spacecraft ||has durationInstrument Operations Mode|”48250 h”
|Spacecraft||has durationSVM Commissioning and Decontamination Mode|”2215 h”
|Spacecraft||has durationActive Cooling Mode|”12 h”
|Spacecraft||has durationLaunch Mode|”2 h”
|Spacecraft||has durationSVM Commissioning and Decontamination Peak Power|”9 h”
|Spacecraft||has durationSun Acquisition Mode|”4 h”
|Spacecraft ||has dry mass|”946 kg”
|Spacecraft||has wet mass |”1085 kg”
GPT-4 GPT-3.5 Vicuna-13b
[...] Step 3: From the provided engi-
neering system, we have:
• Dry mass of the spacecraft: 946 kg
• Wet mass of the spacecraft: 1085 kg

The dry mass of the spacecraft
(946 kg) is below the required limit of
1000kg. However, the wet mass (1085
kg) exceeds the given limit. In the con-
text of spacecraft, wet mass typically
includes the mass of the spacecraft
itself (dry mass) plus any consumables
(like fuel). For most mission-related
requirements, it is the wet mass that is
often more pertinent since it represents
the total mass at launch or start of the
mission. FINAL ANSWER: NO. The
provided engineering system does not
satisfy the given goal requirement.

[...] Step 3: From the given engineer-
ing system, we can see that the space-
craft’s dry mass is ”946 kg” and its wet
mass is ”1085 kg.” Both of these values
are above 1000 kg, indicating that the
spacecraft does not meet the require-
ment of having a mass below 1000 kg.
FINAL ANSWER: NO. The provided
engineering system does not satisfy the
given requirement.

Step 1: The given engineering system
describes the different modes and dura-
tions that the spacecraft can operate in,
including stand-by mode, instrument
operations mode, and various commis-
sioning and decontamination modes, as
well as the mass of the spacecraft. Step
2:The requirement states that the space-
craft shall have a mass less than 1000
kg. Step 3: From the given engineering
system, the dry mass of the spacecraft
is 946 kg, which is less than 1000 kg.
Therefore, the spacecraft satisfies the
given requirement. FINAL ANSWER:
YES
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I want you to act as an Spacecraft Engineer. I
will provide an extract of an Engineering System
in triple format as well as a requirement, and it
will be your job to analyze if the requirement is
satisfied by the engineering system or not. First
try to extract the information (entities and rela-
tions) from the System that is potentially useful in
your analysis. Next try to establish if that infor-
mation either implicitly or explicitly fulfills the re-
quirement. This could involve performing a gap
analysis between the engineering system and the
requirement. The Final step is to clearly state if
the requirement is satisfied or not by stating FI-
NAL ANSWER: YES or FINAL ANSWER: NO. My
first engineering system and requirement are:

B. Data
2.0.1 Trace classifier dataset

For the requirements analyses a dataset was curated to
train a classifier to predict, if the first requirement satisfies
the second. This dataset was curated manually at Thales
Alenia Space. For training a model, 332 unique pairs of
positive traces were therefore labelled.

2.0.2 Graph spacecraft design database
The curated model graph database consist of com-

bined data models, which are supposed to follow the new
SSO ontology. In our case the source, for data came
from ESA’s concurrent design models, which are mod-
elled to follow another data model, which is described in
the ECSS-TM-10-25A standard. This data model does
not describe the functional architecture of a space mis-
sion. Therefore additionally, Capella models were manu-
ally mapped to the corresponding ECSS-model to repre-
sent the physical components, what functions they fulfill,
and interactions between them in the spacecraft design.
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C. Additional Requirement Verification examples

Table 4: Similarities of examples input requirements paired with Past-Mission (PM) requirements

Requirement: The communication subsystem shall be able to perform the following functions throughout all the mission phases after launch:
• Receive and demodulate the uplink signal from the ground segment and transmit the telecommands (TC) to the data handling system
• Receive a telemetry (TM) data stream from the data handling system and transmit this data to the ground segment”
Graph triples:
|On-Board Computer with Mass Memory ||mission data (TM)||Communication Subsystem|
|Communication Subsystem ||TC ||On-Board Computer with Mass Memory |
|Acquire TC ||isDirectlyPerformedByEntity ||Communication Subsystem |
|Decode TC ||isDirectlyPerformedByEntity ||Communication Subsystem |
|Analyse TC ||directlyBelongsToActivity ||Analyse & excecute telecommands |
|Analyse & execute telecommands ||isDirectlyPerformedByEntity ||On-Board Computer with Mass Memory|
|On-Board Computer with Mass Memory||isDirectlyPerformedByEntity||Generate telemetry|
|Communication Subsystem||isDirectlyPerformedByEntity||Transmit telemetry|
|On-Board Computer with Mass Memory||isDirectlyPerformedByEntity||estimate satellite attitude|
|On-Board Computer with Mass Memory||isDirectlyPerformedByEntity||Monitor zone temperature|
|On-Board Computer with Mass Memory ||isDirectlyPerformedByEntity ||Monitor and control energy sources |
|Transmit telemetry ||mission data (TM)||Receive and use mission data|
|Receive and use mission data |isDirectlyPerformedByEntity |Ground Segment|
GPT-4 GPT-3.5 Vicuna-13b
[...] The requirement indicates two main func-
tionalities the Communication Subsystem should
fulfill:
1.Receive and demodulate the uplink signal from
the ground segment and transmit the telecom-
mands (TC) to the data handling system.
2.Receive a telemetry (TM) data stream from the
data handling system and transmit this data to the
ground segment. Step 3: Using the provided en-
gineering system: 1.For the first function:
- The Communication Subsystem can ”Acquire
TC,” implying it can receive the telecommands.
- It can ”Decode TC,” which might be equivalent
to demodulating the uplink signal..
- The Communication Subsystem can send ”TC”
to the ”On-Board Computer with Mass Memory,”
which appears to function as a data handling sys-
tem.
2. For the second function:
- The ”On-Board Computer with Mass Memory”
can ”Generate telemetry.”
- The Communication Subsystem can ”Transmit
telemetry,” and this telemetry (TM) data is sub-
sequently received by the ”Ground Segment” as
implied by the ”Receive and use mission data”
being performed by the Ground Segment. Given
the aforementioned, the Communication Subsys-
tem seems to be performing both functions spec-
ified in the requirement.
FINAL ANSWER: YES. The provided engineer-
ing system satisfies the given requirement.

[...] From the system description, we can see
that the communication Subsystem can perform
actions related to receiving and transmitting sig-
nals, including telecommands and telemetry. The
”Transmit telemetry” activity and its relation-
ships suggest that it can transmit telemetry data to
the ground segment. However, the system lacks
an explicit statement regarding the Communica-
tion Subsystem’s capability to ”Receive and de-
modulate the uplink signal from the ground seg-
ment and transmit the telecommands (TC) to the
data handling system.” While it’s implied that the
Communication Subsystem can receive and de-
code TCs, the exact connection between the up-
link signal and the data handling system is not
detailed. Therefore, while the system provides
some functionalities related to the requirement,
there is a gap in the system’s explicit descrip-
tion of the process of receiving and demodulat-
ing the uplink signal and transmitting TCs to the
data handling system. FINAL ANSWER: NO.
The provided engineering system does not fully
satisfy the given requirement due to the lack of
explicit details about the process of receiving and
demodulating the uplink signal and transmitting
telecommands to the data handling system.

Step 1: The given engineering system describes
the components and their relationships in the
spacecraft, including the On-Board Computer
with Mass Memory (OBK-MM), Communica-
tion Subsystem, and various functions performed
by these entities throughout the mission phases
after launch. Step 2: The requirement specifies
that the Communication Subsystem shall be able
to perform the following functions throughout all
the mission phases after launch: 1. Receive and
demodulate the uplink signal from the ground
segment and transmit the telecommands (TC) to
the data handling system. 2. Receive a teleme-
try (TM) data stream from the data handling sys-
tem and transmit this data to the ground segment.
Step 3: From the given engineering system, it is
evident that the Communication Subsystem is ca-
pable of performing the following functions: 1.
Receive and demodulate the uplink signal from
the ground segment. 2. Transmit the telecom-
mands (TC) to the data handling system. 3. Re-
ceive a telemetry (TM) data stream from the data
handling system. 4. Transmit this data to the
ground segment. Therefore, the given engineer-
ing system satisfies the given requirement. FI-
NAL ANSWER: YES. The provided engineering
system satisfies the given requirement.
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