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Abstract—This paper presents a novel algorithm for determin-
ing a compact order QR decomposition of a polynomial matrix,
where both the Q and R factors themselves are approximated
by polynomial matrices. The QR factorisation is subject to an
allpass ambiguity; existing time domain methods can lead to fac-
torisations of high order. The proposed algorithm performs the
conventional QR decomposition the discrete Fourier transform
domain. Subsequently, it establishes phase coherence between
adjacent bins through a phase smoothing procedure, aimed
at obtaining compact-order factors. The method is validated
through experiments over an ensemble of randomized polynomial
matrices and shown to outperform state-of-the-art algorithms.

I. INTRODUCTION

The QR decomposition (QRD) [1] is a well-established

linear algebraic operation, which in the context of signal pro-

cessing has found a wide range of applications ranging from

array processing [2–4] to communications [5]. Particularly

in the communication arena, for transmitting over multiple-

input multiple-output (MIMO) channels, successive interfer-

ence cancellation (SIC) schemes such as the vertical Bell-labs

layered space-time algorithm [5, 6] have benefitted from the

QRD [7]. When transitioning to broadband communication

systems, the MIMO channel matrix transforms into a matrix of

transfer functions, essentially becoming a polynomial matrix

that depends on the complex-valued parameter z[8, 9]. To

effectively operate in a broadband MIMO environment, it

becomes necessary to introduce tap-delay lines and employ

block processing techniques[10]. Alternatively, one can switch

to polynomial matrix algebra [11] and, specifically, employ a

polynomial matrix QRD (PQRD) [12–14]. PQRD has found

applications in MIMO equalization, SIC [15, 16], and general

PSVD algorithms [12, 17] and their deployment [18–20].

All current PQRD algorithms strive to triangularise a given

polynomial matrix A(z) in an iterative manner such that in

each iteration, a finite number of lower off-diagonal elements

are eliminated via paraunitary operations [12, 13, 16]. In

this iterative process, the polynomial orders of both the

paraunitary matrix Q(z) and the approximately upper-right

triangular matrix R(z) increasein each iteration. To achieve a

complete QR decomposition, an infinite number of iterations

may be required. Thus practically, only an approximate QR

decomposition can be obtained as otherwise, the polynomial

orders of both Q(z) and R(z) could become excessively

large. This issue not only affects the accuracy of applications

but also increases the computational cost of any hardware

implementation. In addition, the PQRD is also reported to be
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utilized in the computation of the polynomial singular value

decomposition (PSVD) in [13] where the issues of approxi-

mation error and large polynomial order are compounded by

repeated PQRDs.

In principle, an at least approximate PQRD with limited

support appears viable. If the matrix to be decomposed has

limited support in the time domain, then its Fourier transform

must be sufficiently smooth. This has previously motivated

interpolation-based approaches [21, 22] for orthogonal fre-

quency division multiplexing systems, where a QRD in a

limited number of frequency bins suffice to determine the

remaining QRDs at other frequencies by simple interpolation

rather than by explicit QRD computations. This view is sup-

ported by perturbation analysis of the QRD, such as in [25],

which shows that a small change in the matrix leads to only

a limited perturbation of its QR factors.

Thus in this paper, we propose a compact order — or

“smooth” — PQRD. This approach works in the DFT do-

main, performs independent QRDs in each frequency bin akin

to [23, 24], and restores the spectral coherence by a phase

smoothing operation, adopting a strategy for the extraction

of analytic polynomial eigenvectors [26, 27]. However, un-

like [27], the proposed method first determines the compact

support of both Q[n] ◦ • Q(z) and R[n] ◦ • R(z), where

Q[n] ◦ • Q(z) =
∑

n Q[n]z−n denotes a transform pair,

via a phase-independent support estimation method [28]. It

thereafter exploits the established support length to determine

the DFT size. A phase smoothing operation then completes

the overall PQRD.

The paper is organized as follows: Sec. II briefly explains

the existence and uniqueness of the PQRD whereas Sec. III

describes the available iterative PQRD techniques. Sec. IV

presents the proposed algorithm, which is then compared with

simulation results over an ensemble in Sec.V.

II. PRELIMINARIES AND MOTIVATION

A. QR Decomposition and Its Ambiguity

The QR decomposition of a matrix A ∈ C
M×N is not

unique. Consider

A = QR = QΦΦHR = Q′R′ , (1)

where Q ∈ C
M×M and R ∈ C

M×N are unitary and

upper triangular matrices, respectively. The spurious insertion

of a diagonal unitary matrix Φ = diag
{

ejφ1 , . . . , ejφM
}

,

s.t. ΦΦH = I with {·}H the Hermitian transposition, creates

new factors Q′ and R′ that are also unitary and upper

triangular. Thus, the mth column of the unitary matrix Q and

the mth row of the upper triangular matrix R are ambiguous

w.r.t. a common arbitrary phase shift φm, m = 1, . . . ,M .
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B. Existence and Uniqueness of the PQRD

For a polynomial matrix A(z) : C → C
M×N , with

A(z) • ◦ A[n], the QRD in (1) can only achieve a suitable

factorisation for one value of z, or one value of n. Therefore,

the aim of the PQRD is to achieve a decomposition

A(z) = Q(z)R(z) , (2)

where Q(z) : C → C
M×M is paraunitary, such that

Q(z)QP(z) = I with the parahermitian transposition QP(z) =
{Q(1/z∗)}H [8] and complex conjugation {·}∗, and an upper

triangular R(z) : C → C
M×N . To use the z-domain notation,

A(z), Q(z), and R(z) in (2) must be analytic in z ∈ I,

whereby the region of convergence I must include at least

the unit circle.

Even though proofs exist for the related polynomial eigen-

value [29–31] and polynomial singular value decomposi-

tions [31, 32], there currently is no proof that for an analytic

A(z), the factors Q(z) and R(z) in (2) can also be analytic.

Despite this lack, the factorisation (2) has been assumed

in [12, 13, 15]. Analyticity implies infinite differentiability,

i.e. smoothness, of A(z)|z=ejΩ and hence motivates the con-

siderations in [21, 22] that Q(z), and R(z) can be Laurent

series. If so, then the best polynomial approximation to (2)

can be achieved by shifts and trunctations [27].

Assuming that (2) is valid, interesting parallels can be

drawn to (1). Note that we can equivalently expand (2) as

A(z) = Q(z)Φ(z)ΦP(z)R(z) = Q′(z)R′(z) , (3)

with a paraunitary matrix Φ(z) = diag{φ1(z), . . . , φM (z)}
that is diagonal and containing allpass filters φm(z), m =
1, . . . ,M . Hence Q′(z) = Q(z)Φ(z) and R′(z) =
ΦP(z)R(z) remain paraunitary and upper right triangular

matrices, and hence valid PQRD factors. Unlike for ordinary

matrices, the allpass factor Φ(z) determines the support of the

PQRD. For example, if Q(z) and R(z) have finite order, then

Q′(z) and R′(z) would have infinite order unless Φ(z) takes

the form of simple delays. Therefore, the impact of finding

a suitable Φ(z) is crucial for the order and hence for the

smoothness and implementation complexity of the QR factors

in (2).

III. EXISTING ITERATIVE PQRD TECHNIQUES

To date iterative PQRD algorithms are either based on

the concept of the sequential second-order best rotation

(SBR2) [33] or sequential matrix diagonalization (SMD) [34]

algorithms, which are reviewed below.

A. SBR2-based PQRD

The SBR2 algorithm [33] is an iterative polynomial matrix

EVD method that in each operation eliminates the largest off-

diagonal component via an elementary paraunitary operation

comprising a delay and a Givens rotation. This concept has

been extended to operate as a PQRD approach by iteratively

applying elementary paraunitary operations until all elements

in the lower left-triangular part of the matrix are either

sufficiently suppressed, or until the maximum element within

that part for the matrix falls below a preset threshold.

There are two reported variants: (i) PQRD by steps (PQRD-

BS) [35], and (ii) PQRD by column (PQRD-BC) [13]. The

former suppresses one polynomial lower left triangular entry

at a time such that all coefficients are driven below the

threshold before proceeding to the next polynomial elements.

The PQRD-BC variant instead aims to approximately zero a

column at a time. This is performed via an iterative search

and elimination of the successively largest elements in the

selected column. While its convergence is faster than PQRD-

BS, the search operation in PQRD-BC is comparatively more

expensive [13].

B. SMD-based PQRD

The idea of the SMD-based PQRD algorithm [14] is to

temporally shift as much energy as possible to a particular lag

component, where then a full QR decomposition triangularizes

that . The SM-PQRD performs this iteratively, until a stopping

criterion similar to the SBR2-based PQRD algorithms in

Sec. III-A is satisfied. As a result, SM-PQRD provides faster

convergence but each iteration is more expensive than an

iteration of e.g. PQRD-BC.

IV. SMOOTH QR DECOMPOSITION ALGORITHM

The PQRD algorithms in Sec. III operate in the time

domain; they are proven to converge [13, 35], even though

it is unclear what the ultimate allpass ambiguity according to

(3) will be. Therefore, this section proposes a DFT-domain

approach, where a QRD is calculated in each frequency bin.

Thereafter a phase-smoothing operation has two purposes:

(i) it must re-establish the phase-coherence that is lost by

operating in independent frequency bins; and (ii) amongst all

the possible analytic solutions for the allpass term Ψ(z), we

want to find that solution that minimises the support and hence

provides the smoothest possible solution on the unit circle.

A. QRD in Sample Points

Based on A(z) • ◦ A[n], we perform a QRD indepen-

dently on the sample points obtained from a K-point DFT,

i.e. on Ak = A(z)|z=ejΩk yielding

Ak = QkRk, k = 1, . . . ,K , (4)

where Ωk = 2πk
K . Note that Qk and Rk do not necessarily

match up with the sample points of analytic functions in (2). In

fact, we have to relate the sample points of analytic functions

in (3) to its bin-wise counterpart in (4) as

Q(ejΩk) = QkΘk (5)

R(ejΩk) = ΘH
k Rk , (6)

where Θk = diag
{

ejθ1,k , . . . , ejθM,k
}

with unknown angles

θm,k,m = 1, . . . ,M and k = 0, . . . , (K − 1).

B. Loss of Phase Coherence across DFT bins

Since QRD is performed independently in each bin, there

is lack of phase coherence between the results of bin-wise

QRD in (4). This lack of phase coherence is illustrated by the

following example.
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Fig. 1. Phase comparison between the ground truth PQRD and the
bin-wise QRD for one element of (a) the upper right triangular matrix,
i.e.. r1,1,k, r1,1(e

jΩk ), and (b) the paraunitary matrix, i.e. q1,1,k, q1,1(e
jΩk )

with K = 32.

Example 1: Consider the simple case where

R(z) =

[

1 + 2z−1 2 + 3z−1

0 1 + 3z−1

]

, (7)

and Q(z) is defined by an elementary paraunitary opera-

tion [36]

Q(z) = [q1(z), q2(z)] = I− eeH + eeHz−1 , (8)

where e = [2 + 5j, 2 + j]T/
√
34. The resulting polynomial

matrix A(z) = Q(z)R(z) is of order 2. To visualize the lack

of phase coherence, a 32−point DFT of A[n] is performed

and a QRD is independently calculated in each bin according

to (4). Similarly, the available ground-truth Q(z) from (8) and

R(z) from (7) is evaluated on the unit circle at 32 equidistant

sample points i.e. for z = ejΩk ,Ωk = 2πk
32 . We now compare

the real and imaginary parts of q1,1(e
jΩ) and r1,1(e

jΩ) with

their bin-wise counterparts q1,1,k and r1,1,k in Fig 1. It can

be seen that both real and imaginary parts of ground-truth

samples evolve smoothly across the frequency points but that

the QRD factors obtained independently in each bin do not.

C. Phase Smoothing

Phase smoothing can be performed either on the elements

of the columns of Qk or rows of Rk. Here, we apply it to the

columns of Qk to make it easier to adopt the phase smoothing

procedure reported in [27]. The aim of this method is to find a

maximally smooth interpolation over all components of each

column of Qk, for k = 0, . . . , (K−1), by adjusting the phase

shifts in Θk in (5). For this reason, we perform a Dirichlet

interpolation [37, 38] over ui,m ∈ C
K ,

ui,m = [ui,m,1, . . . , ui,m,K ]T = diag{wm}qi,m , (9)

where qi,m = [qi,m,1, . . . , qi,m,K ]T holds the K sample points

of elements in the ith row and mth column of Qk and

wm = [ejθm,1 , . . . , ejθm,K ]T contains the yet to be determined

phase shifts. Over the phase-corrected sample points ui,m, the

resulting Dirichlet interpolation I
(K)
i,m (ejΩ) will be [27]

I
(K)
i,m

(

ejΩ
)

=
1

K

K−1
∑

n=0

e−jΩn
K−1
∑

k=0

ui,m,ke
j2πnk/K

=
1√
K

eHK
(

ejΩ
)

·WH
K · ui,m, (10)

where eHK = [1, ejΩ , . . . , e−jΩ(K−1)] and WH
K is a K−point

unitary DFT matrix.

Since the underlying aim is a smooth function, we com-

pute the power in its pth derivative to define a smoothness

metric [27, 37, 38]

χ(K),p
m =

M
∑

i=1

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∂pI
(K)
i,m

(

ejΩ
)

∂Ωp

∣

∣

∣

∣

∣

2

dΩ , (11)

where the vectorial form of the derivative part is

∂pI
(K)
i,m

(

ejΩ
)

∂Ωp
=

1√
K

eHK
(

ejΩ
)

D
p
K ·WH

K · ui,m ,

with DK = diag{0,−j,−2j, . . . ,−(K − 1)j}. This allows the

formulation of (11) as

χ(K),p
m =

1

K

M
∑

µ=1

∥

∥D
p
K ·WH

K · ui,m

∥

∥

2

2
, (12)

which can be related to the phase-shifts as

χ(K),p
m = wH

mCK,pw (13)

with

CK,p =

M
∑

i=1

diag
{

q∗
i,m

}

WKD
2p
KWH

K diag {qi,m} .

Now the objective is to minimize (13) w.r.t. θm =
[θm,1, . . . , θm,K ]T through an iterative gradient method. The

iterative update for θm can be given as

θm[j + 1] = θm[j]− µH−1 ∂χ
(K),p
m (θm[j])

∂θm
, (14)

where

∂χ
(K),p
m

∂θm
= 2 Im {diag {w∗}CK,pw} (15)

and Hessian matrix [39] is given by

H = 2Re{diag{w∗}CK,pdiag{w}
− diag{diag{w∗}CK,pw}} ,

(16)

which might not always be positive definite. The second part

i.e. diag{diag{w∗}CK,pw} is shown to be less significant

compared to the first part [39]; if ignored, the resulting

approximate Hessian is positive semi-definite [39].

Once a stationary point wm,min has been found, Theorem 5

in [27] states that a small modulation applied to the minimum

point as

w′
m = diag

{

1, ej
2π
K

ℓ, . . . , ej
2π
K

(K−1)ℓ
}

wm,min , (17)
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where ℓ ∈ Z, approximately leads to a new stationary point.

Since the statement is only true for small ℓ ≪ K, we vary it

from 1 to 5 in the current method. The optimization process is

continued with different shifts until an overall smallest point

is found.

D. Minimum DFT Size

The phase smoothing procedure must be carried out at a

DFT size greater than the support of qm[n] ◦ • qm(z). To

avoid phase smoothing at DFT size smaller than the support

of qm[n], the support of qm[n] can estimated using the

method reported in [28]. This support estimation method first

determines the autocorrelation function of the component of

each column of Q[n] through its bin-wise DFT magnitudes

because

Xi,m[k] = |qi,m(ejΩk)|2 = |qi,m,k|2 , (18)

where Xi,m[k] is the DFT of xi,m[v] =
∑

n qi,m[n]q∗i,m[v−n],
the auto-correlation of qi,m[n] ◦ • qi,m(z). Once the auto-

correlation is determined with minimum time-domain aliasing,

the support of qi,m[n] is considered as the half of its auto-

correlation function. This way the support of each component

of Q[n] can be determined upon which the minimum DFT

size for the phase smoothing can be decided. For instance, if

N̂Q is the support size, the minimum DFT size must be equal

to N̂Q

E. Overall Procedure

The proposed algorithm estimates the support of Q[n],
denoted N̂Q, to execute phase smoothing at the smallest

feasible DFT size K. During the phase smoothing process,

it evaluates error in time-domain aliasing and paraunitarity as
∑

n∈Z

||Q̂H[−n] ∗ Q̂[n]− δ[n]I||2F ,

where Q̂[n] is obtained via a K−point IFFT of

diag
{

ejθ1,k , . . . , ejθM,k
}

Qk. If the paraunitarity error is

lower than a predefined small threshold ǫ > 0, the selected

DFT size K is deemed sufficient, and the phase smoothing

procedure can be concluded. However, if the error does

not meet the threshold even after the maximum allowed

iterations, the DFT size is doubled. Both the execution time

and the accuracy of the decomposition obtained through the

proposed method depend on the value of ǫ. For practical

experimentation and applications, setting ǫ ≤ 10−5 is

typically considered an appropriate threshold. Note that since

both Q̂(z) and R̂(z) are phase coupled, only one phase

smoothing needs to be performed per DFT size.

V. SIMULATIONS AND RESULTS

A. Performance Metrics

In order to compare the performance of the different PQRD

approaches, we define a triangularization metric

ξt = 1−
∑

i,j≥i,n ||r̂i,j [n]||2
∑

n ||A[n]||2F
, (19)

where r̂i,j [n] is the (i, j)th element of R̂[n]. Additionally,

the execution time and the order of the resulting paraunitary

Fig. 2. Ensemble test results showing (a) triangularization ratio, (b) order of

resulting Q̂(z) and, (c) execution time for the proposed PQRD algorithm, as
well as for PQRD-BC [13] and SM-PQRD [14].

matrix Q(z) and the upper triangular matrix R(z) are assessed

as metrics when comparing PQRD methods.

B. Ensemble Test

The proposed algorithm is tested over an ensemble of

matrices A(z)C → C
4×4 with known ground-truth PQRD

factorisation consisting of a paraunitary Q(z) and an upper

right triangular R(z). The ensemble results are computed by

jointly varying the orders Q(z) and R(z), Ord{Q(z)} and

Ord{R(z)}, from 3 to 15 in steps of 3, and by generating

100 instantiations of matrices for each order. For this, the

coefficients of R(z) are drawn from a complex Gaussian

distribution, while Q(z) is generated through a sequence of

elementary paraunitary operations [36].

The resulting triangularization ratio ξt, illustrated in

Fig. 2(a), of the proposed method is orders of magnitude

lower than the state-of-the-art PQRD-BC and SM-PQRD .

Moreover, this greater degree of triangularisation is achieved

at significantly lower order paraunitary matrix Q̂(z) as shown

in Fig. 2(b). Lastly, the execution time of the proposed method

on average is lowest of all three methods. The sharp rise

in the execution time curve for the proposed method from

Ord{Q(z)} = 3 to 9 is due to step changes in the DFT size

i.e. the DFT sizes at these points are 8, 16, 32, respectively.

VI. CONCLUSION

We have proposed a novel approach for a compact order

QRD of a polynomial matrix. The proposed algorithm finds

a smooth association between the adjacent bins’ conventional

QRD through a phase smoothing algorithm for overall com-

pact time-domain support. The comparison over an ensemble

of matrices of variable length shows that the proposed al-

gorithm outperforms state-of-the-art algorithms by an order

of magnitude in order and accuracy of the decomposition.

Moreover, the proposed method also promises reduced execu-

tion time. Hence, overall the proposed PQRD approach can

be executed in shorter time, and yields polynomial factors of

lower order that are less expensive to implemented compared

to state-of-the-art algorithms.
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