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Abstract—The power method in conjunction with deflation
provides an economical approach to compute an eigenvalue
decomposition (EVD) of a low-rank Hermitian matrix, which
typically appears as a covariance matrix in narrowband sensor
array processing. In this paper, we extend this idea to the
broadband case, where a polynomial para-Hermitian matrix
needs to be diagonalised. For the low-rank case, we combine
a polynomial equivalent of the power method with a deflation
approach to subsequently extract eigenpairs. We present per-
turbation analysis and simulation results based on an ensemble
of low-rank randomized para-Hermitian matrices. The proposed
approach demonstrates higher accuracy, faster execution time,
and lower implementation cost than state-of-the-art algorithms.

I. INTRODUCTION

In broadband sensor arrays processing, problems can be

formulated using polynomial matrices, and polynomial matrix

decomposition techniques have proven useful in obtaining op-

timal solutions [1–5]. One of the most popular decompositions

is the eigenvalue decomposition (EVD). Due to its complexity

even with efficient implementations [6–8], a partial or reduced

EVD can be considered useful for low rank applications,

such as in speech enhancement where a large number of

microphones may record only a very limited number of

speakers [9–11]. In the narrowband case, the power method

in conjunction with Hotelling’s deflation approach [12] is

well suited for factorising rank-deficient matrices, where the

number of eigenvalues and eigenvectors to be determined is

smaller than the dimension of the matrix; hence this paper

aims to extend this utility to the broadband case.

Due to the existence of the analytic EVD for para-Hermitian

polynomial matrices [13–15], and the fact that analytic func-

tions can be arbitarily closely approximated by polynomials

of sufficiently high order, the deflation concept appears viable

for polynomial matrices. Therefore, the recently proposed

polynomial equivalent of the power method for para-Hermitian

polynomial matrices [16], and its extension to general poly-

nomial matrices [17], motivate the extension of Hotelling’s

deflation to polynomial matrices. With this extension, the

polynomial power method can be utilized for a partial or

full PEVD of a para-Hermitian polynomial matrix.
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The paper is outlined as follows: Sec. II briefly describes

deflation and the power method. Sec. III reviews the analytic

PEVD , whereas Sec. IV summarizes the polynomial exten-

sion of the power method. Sec. V combines the polynomial

power method with deflation, with numerical examples in

Sec. VI and the application to a low-rank PEVD in Sec. VII.

Conclusions are drawn in Sec. VIII.

II. EVD VIA POWER METHOD AND DEFLATION

A Hermitian matrix R ∈ C
M×M with p ≤ M non-zero

eigenvalues λm ∈ R, m = 1, . . . p can be represented as a

sum of rank one terms

R =

p
∑

m=1

qmqH
mλm =

p
∑

m=1

Rm (1)

where qm is mth eigenvector and Rm is a rank one Hermitian

matrix, whose columns are spanned by qm. We assume that

R is positive semi-definite, and its p non-zero eigenvalues

are distinct and majorised as λm > λm+1,m = 1, . . . , (p −
1). The power method [18] can be used to determine the

dominant eigenpair, i.e. {q1, λ1}. In the power method, an

initial random unit-norm vector x
(0)
1 ∈ C

M is assumed

to be some linear combination of the eigenvectors, x(0) =
diag{c1, . . . , cM} [q1, . . . ,qM ], whereby we assume c1 6= 0.

Then the iteration

x(k) = Rx(k−1) = Rkx(0) (2)

can be shown to converge to limk→∞ x(k) = Aq1, with

some constant A that can be determined through normalisation

since q1 must have unit norm. The corresponding principal

eigenvalue can then be obtained as λ1 = qH
1 Rq1.

The matrix R can be deflated by removing the contribution

of the dominant eigenpair as

R(2) = R−R1 = R− q1λ1q
H
1 . (3)

If the estimated eigenpair is sufficiently accurate, then the

deflated matrix R(2) has the decremented rank (p − 1), and

its dominant eigenpair is now {q2, λ2}. This second eigenpair

can be extracted by a repeat of the power method on the matrix

R(2). In turn, R(2) can now be deflated, and through a total

of p iteration, all eigenpairs of R can be determined. As a

recursive formulation with the initialisation R(1) = R, the

scheme operates via

R(m+1) = R(m) − λmqmqH
m , (4)
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with m = 1, . . . , p. Ideally, by exactly extracting the dominant

eigenpair {qm, λm} at the mth iteration, we finally end up

with R(p+1) = 0.

If an eigenpair, such as the first one in (4), is inaccurate,

i.e. we obtain an estimate {q̂m, λ̂m} via a limited number

of iterations k instead of the exact {qm, λm}, then R(m+1)

will be perturbed by the error Rm − R̂m, with R̂m =
R̂(m) − q̂mq̂H

mλ̂m. This perturbation term will (i) lead to an

insufficient rank reduction, and (ii) cause error propagation

as subsequent eigenpairs are estimated with increasing inac-

curacy. To investigate such perturbation effects, and hence

potential bounds on the estimation error of subsequently

extracted eigenpairs, a perturbation analysis [19], in part for

reduced-rank perturbations [20, 21], can be employed.

III. ANALYTIC EVD OF PARA-HERMITIAN MATRICES

A matrix R(z) : C → C
M×M , that satisfies the para-

Hermitian property R(z) = RP(z) = {R(1/z∗)}H, is

analytic in z ∈ C, and is not connected to any multiplexing

operation, admits an analytic EVD [13, 22]

R(z) = Q(z)Λ(z)QP(z) . (5)

In (5), it is possible to select right hand side factors that

are analytic in z. The columns of the paraunitary matrix

Q(z), such that Q(z)QP(z) = I, represent analytic eigen-

vectors and the diagonal, para-Hermitian matrix Λ(z) =
diag{λ1(z), . . . , λM (z)} contains the analytic eigenvalues.

While the eigenvalues are unique up to a permutation, the

eigenvectors are subject to an allpass ambiguity: if qm(z) is

the mth column of Q(z) and therefore the mth eigenvector,

then φm(z)qm(z) is also a valid mth eigenvector, where

φm(z) is an arbitrary allpass filter.

If R(z) is estimated from finite data, the resulting eigen-

values will be strictly spectrally majorised [23], such that on

the unit circle for z = ejΩ, we have

λ1(e
jΩ) > λ2(e

jΩ) > · · · > λp(e
jΩ) , ∀ Ω . (6)

This assumes that R(z) possesses rank p ≤ M , in which

case λp+1(e
jΩ) = . . . = λM (ejΩ) = 0 ∀Ω, i.e. that there are

(M − p) eigenvalues that are identical to zero. In the case of

p < M for R(z), we refer to R(z) as a low-rank polynomial

matrix.

In the remainder of this paper, we want to address the

analytic EVD in (5) via iterative applications of a polynomial

power method [24] and deflation of a rank-deficient (p < M )

or even low rank (p ≪ M ) matrix R(z) in order to avoid the

computational cost incurred by methods that evaluate a full

analytic EVD [25–29].

IV. POLYNOMIAL EQUIVALENT OF THE POWER METHOD

In order to extract the dominant eigenpair {q1(z), λ1(z)}
from R(z), an extension of the power method [18] to polyno-

mial matrices can be utilised [24], which we briefly summarise

below. In the method of [24], an arbitrary polynomial vector

x(0)(z) is repeatedly multiplied with a para-Hermitian matrix

R(z) to generate a sequence of polynomial vectors such that

after k iterations, it produces

x(k)(z) = R(z)x(k−1)(z) = Rk(z)x(0)(z) . (7)

Analogous to the power method, a normalisation of

the vector x(k)(z) to x
(k)
norm(z) is required such that

x
(k),P
norm(z)x

(k)
norm(z) = 1. Due to analyticity of Q(z) in (5),

the normalization can be carried out in the discrete Fourier

transform (DFT) domain since with a sufficient DFT size

K, the approximation can be arbitrarily accurate. With each

iteration k, the order of the vector x(k)(z) grows, which may

need to be limited through truncation. This truncation can

either be in the form of limiting the order to the estimated

support of the eigenvector, which can be obtained from [30]

by shifted-truncation [31], or by removing any trailing coef-

ficients that fall below some small threshold [32, 33]. The

iterative procedure is terminated either the Hermitian angle

between the consecutive iterations normalized vector falls

below some threshold ǫ or a maximum number of iterations

kmax is expended. For further details, please refer to [24].

V. ANALYTIC EVD VIA POLYNOMIAL POWER METHOD

A. Rank One Representation and Deflation

Similar to a Hermitian matrix R, a para-Hermitian matrix

can be represented as the sum of rank one para-Hermitian

matrices Rm(z),

R(z) =

p
∑

m=1

qm(z)qP
m(z)λm(z) =

p
∑

m=1

Rm(z) , (8)

where p ≤ M is the number of non-zero analytic eigenvalues.

This shows that if an eigenpair is available, deflation can

be performed to reduce the rank of R(z). For instance, if

{q1(z), λ1(z)} is extracted via the polynomial power method

of Sec. IV, its contribution can be removed from the original

para-Hermitian matrix as

R(2)(z) = R(z)− q1(z)q
P
1(z)λ1(z) = R(z)−R1(z) , (9)

The allpass ambiguity of the extracted eigenvector mentioned

in Sec. III does not cause any issue since with φ1(z)φ
P
1(z) = 1

this ambiguity drops out.

The polynomial power method can be repeated on R(2)(z),
if the dominant eigenpair is accurate. Thus over p − 1
deflations and p application of the polynomial power method,

an analytic EVD can be computed using a recursive procedure

akin to (4), such that with R(1)(z) = R(z)

R(m+1)(z) = R(m) − qm(z)qP(z)λm(z)
︸ ︷︷ ︸

Rm(z)

. (10)

The approach in (10) requires the accurate determination of

eigenpairs {qm(z), λm(z)} via the polynomial power method

of Sec. IV at every stage. Estimation errors due to a limited

number of iterations k will result not only in estimated

eigenpairs {q̂m(z), λ̂m(z)} that may differ from the desired

quantities, but will also lead to potentially inaccurate estimates

R̂m(z) of the rank one matrices and R̂
(m+1)

(z) of the
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deflated matrices w.r.t. the quantities defined in (10). We

therefore want to next investigate how incorrect eigenpairs

and rank-one estimates perturb the subsequent extraction of

any remaining eigenpairs.

B. Perturbation Analysis and Error Propagation

We define a perturbation and error propagation analysis

per frequency bin, i.e. for any specific frequency Ω on the

unit circle. We assess the difference E(m+1)(ejΩ) between the

correctedly deflated matrix R(m+1)(ejΩ) after the mth rank

deflation, and its estimate, R̂
(m+1)

(ejΩ):

E(m+1)(ejΩ) = R(m+1)(ejΩ)− R̂
(m+1)

(ejΩ) , (11)

for m = 1, . . . , (p− 1). Since due to the rank one deflations

R(m+1)(ejΩ) = R(ejΩ)−R1(e
jΩ)− . . .−Rm(ejΩ) , (12)

R̂
(m+1)

(ejΩ) = R(ejΩ)− R̂1(e
jΩ)− . . .− R̂m(ejΩ) , (13)

we have

E(m+1)(ejΩ) =

m∑

µ=1

q̂µ(e
jΩ)q̂H

µ (e
jΩ)λ̂µ(e

jΩ)

− qµ(e
jΩ)qH

µ (e
jΩ)λµ(e

jΩ) . (14)

This can also be written recursively as

E(m+1)(ejΩ) = E(m)(ejΩ) +
(

q̂m(ejΩ)q̂H
m(ejΩ)λ̂m(ejΩ)

− qm(ejΩ)qH
m(ejΩ)λm(ejΩ)

)
. (15)

Since the eigenvectors of a para-Hermitian matrix can be

selected to be orthonormal, the different terms in the sum of

(14) are approximately orthogonal, and for sufficiently small

perturbations we can show that

‖E(m+1)(ejΩ)‖2F ≈ ‖E(m)(ejΩ)‖2F+

+
∥
∥
∥q̂m(ejΩ)q̂H

m(ejΩ)λ̂m(ejΩ)

− qm(ejΩ)qH
m(ejΩ)λm(ejΩ)

∥
∥
2

F

≥ ‖E(m)(ejΩ)‖2F . (16)

Hence, the error norm does not improve over subsequent

deflation operations, and generally tends to grow.

We can now assess the effect of the above er-

ror on the eigenpair {qm+1(e
jΩ), λm+1(e

jΩ)} that is to

be extracted from R(m+1)(ejΩ). Likewise, the estimate

{q̂m+1(e
jΩ), λ̂m+1(e

jΩ)} is extracted from R̂
(m+1)

(ejΩ). Us-

ing (11) and the Bauer-Fike theorem [34], we find that the

accuracy of the extracted (m + 1)st eigenvalue is upper-

bounded as

|λm+1(e
jΩ)− λ̂m+1(e

jΩ)| ≤ ‖E(m+1)(ejΩ)‖2F ., (17)

Therefore, the worst case accuracy of the (m+1)st eigenvalue

is determined by the cummulative error E(m+1)(ejΩ). For the

eigenvectors, we can define the subspace distance [18] via the

spectral norm ‖ · ‖2 of the difference of projections

Um+1(e
jΩ) =

∥
∥qm+1(e

jΩ)qH
m+1(e

jΩ)

− q̂m+1(e
jΩ)q̂H

m+1(e
jΩ)

∥
∥
∥
2
. (18)

Then perturbation theory [18] provides an upper bound

Um+1(e
jΩ) ≤

4

d
‖em+1(e

jΩ)‖2 , (19)

where d = λm+1(e
jΩ) − λm+2(e

jΩ) is the distance to the

next-nearest eigenvalue, and em+1(e
jΩ) ∈ C

M−1 comes from

a partition of E(m+1)(ejΩ),

E(m+1)(ejΩ) =

[
em+1(e

jΩ) eHm+1(e
jΩ)

em+1(e
jΩ) E2,m+1(e

jΩ)

]

. (20)

Thus, the upper bound on the accuracy of the m + 1st

eigenvector extracted by deflation also depends on the ac-

cummulated errors in E(m+1)(ejΩ). Hence, any inaccuracies

in a rank one estimate will impact on and further degrade the

precision bounds with which any remaining eigenpairs can be

determined.

VI. NUMERICAL EXAMPLE

To demonstrate the deflation concept combined with the

polynomial power method, we consider a spectrally majorised

para-Hermitian matrix R(z) where the analytic eigenvalues in

Λ(z) = diag{λ1(z), λ2(z), λ3(z)} are

λ1(z) = z(6 + j)/100 + 1.01 + z−1(6− j)/100

λ2(z) = −z(1− 2j)/100 + 0.86− z−1(1 + 2j)/100

λ3(z) = z(5− 2j)/100 + 0.71 + z−1(5 + 2j)/100 ,

and the matrix of eigenvectors Q(z) is defined by a sequence

of elementary paraunitary operations [35],

Q(z) =

4∏

i=1

(I+
1

2
(z−1 − 1)eie

H
i ) , (21)

with ei={1,3} = [1, 0, ∓ 1]
T

, ei={2,4} = [±1, 1, 0]
T

.

The exact eigenvalues of R(z) are shown in Fig. 1. These

are compared to eigenvalues extracted by the deflation ap-

proach based on the polynomial power method executed

with kmax = 5e3, ǫ = 10−4 and x(0)(z) =
∑4

i=0 z
−i.

The difference between the estimated and the ground-truth

eigenvalues can be seen in Fig. 1, and be measured for the

mth eigenvalue λm[τ ] ◦ • λm(z) via

ξλm
=

∑

τ

|λm[τ ]− λ̂m[τ ]|2 . (22)

For λ̂1(z), which is extracted by the polynomial power method

from R(1)(z) = R(z), we obtain ξλ1
= 6.8 × 10−5.

By subsequent deflation, from R̂
(2)

we obtain the second

eigenpair with ξλ2
= 1.55 × 10−4. This shows that the

extracted second eigenvalue is not as accurate as the first

one. The third eigenvalues is then obtained from R̂
(3)

(z) with

ξλ3
= 3.6×10−4. It can be seen that due to error propagation,
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Fig. 1. Example for the ground truth (shaded grey) and estimated eigenvalues

using the proposed deflation approach (in colour) λ̂m(ejΩ),m = 1, 2, 3 for
the example matrix R(z) when injecting perturbation through insufficient
convergence of the polynomial power method.

indeed ξλ3
> ξλ2

> ξλ3
, and the error is increasing with each

extraction. The impact of perturbations and error propagation

can also be seen in the estimated eigenvalues shown in

Fig. 1, where the third eigenvalue appears to have the largest

estimation error.

VII. APPLICATION AND ENSEMBLE SIMULATION

This section provides an ensemble test to demonstrate

the enhanced performance of the proposed approach for

the PEVD of low-rank para-Hermitian matrices. The per-

formance metrics selected for comparison are the resulting

order of the estimated paraunitary matrix Q̂(z), denoted as

O(Q̂(z)), the execution time t of the approach, and the

reconstruction metric ξR. The latter is defined as ξR =
∑

τ ||R[τ ]− R̂[τ ]||2F/
∑

τ ||R[τ ]||2F which measures the ac-

curacy of the decomposition, where with the convolution

operator ∗, R̂[τ ] = Q̂[τ ] ∗ Λ̂[τ ] ∗ Q̂H[−τ ].
For an exhaustive test, we have constructed an ensemble

comprising of 100 instantiations of 6 × 6 para-Hermitian

matrices of rank two, where each instance represents a system

of two spectrally majorised broadband sources illuminating an

array of M = 6 sensors through a convolutive mixing system.

The instantiations are generated using the source model in [3],

with the source power spectral densities and the convolutive

paraunitary mixing defining the ground truth analytic EVD.

The concatenation of spectral shaping and mixing forms a

system H(z) : C → C
6×2 of order 100. The resulting cross-

spectral density matrix R(z) = H(z)HP(z) is therefore of

order 200.

The polynomial power algorithm is executed with kmax =
103 and ǫ = 10−7. The trailing coefficients of the normalized

vector are truncated once they fall below a threshold of 10−3.

The support of the initial vector x(0)(z) is set to the estimated

support of the eigenvectors, which can be evaluated via [30];

its coefficients are drawn from a complex-valued normal distri-

bution. The state-of-the-art algorithms SBR2 [2] and SMD [3]

are run for comparison, and are permitted to reach a maximum

of 500 iterations or run until the maximum off-diagonal

element magnitude falls below 10−6. The intermediate para-

Hermitian and paraunitary matrices are truncated by removing

the outer lags via a threshold µPH = µPU = 10−6 [2, 32, 33].

propo SBR2 SMD
10

-6

10
-5

10
-4

10
-3

10
-2

propo SBR2 SMD
10

2

10
3

propo SBR2 SMD
10

-2

10
-1

10
0

Fig. 2. Ensemble results illustrated as box-plots for (a) reconstruction error,

(b) Ord{Q̂(z)}, and (c) execution time. (red marks show outliers)

The ensemble results in the form of the three metrics

are illustrated as box-plots in Fig.. 2. In Fig. 2(a), we can

see that the reconstruction metric ξR is orders of magnitude

lower for the proposed approach than for SBR2 and SMD.

This suggests that the proposed combination of polynomial

power method and deflation can compute the PEVD of a

para-Hermitian matrix significantly more accurately than both

benchmark algorithms. Moreover, in Fig. 2(b) the order of the

estimated paraunitary Q̂(z) is lower for the proposed method.

This indicates that the perturbation potentially introduced by

the deflation process is negligible, as otherwise the order might

grow as successive eigenpairs are extracted. The lower order

is also significant, since this determines the complexity of

implementing the paraunitary Q(z) for subspace projection-

type applications. Lastly, the proposed approach executes

faster compared to SBR2 and SMD, as evident from Fig. 2(c).

VIII. CONCLUSION

An approach of combining the polynomial power method

with deflation for the PEVD of lowrank para-Hermitian poly-

nomial matrices has been presented. We have shown that it

is possible for almost all para-Hermitian matrices to apply

deflation similarly the approach for ordinary matrices. The

perturbation of the eigenpairs of the deflated matrix has been

studied and has been shown to relate directly to the accuracy

of the successively extracted eigenpairs. Over an ensemble of

low-rank para-Hermitian matrices, the proposed method has

outperformed state-of-the-art algorithms in terms of accuracy,

speed, and implementation complexity. The algorithm can

similarly be extended to compute the PSVD of low-rank

general polynomial matrices based on a generalized polyno-

mial power method [17] as an alternative to a full PSVD

in [36]. The proposed technique can also be directly applied

to a number of low-rank applications where the number of

channels can substantially exceed the number of sources [37–

39] or in problems that are rank one [40].
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