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Abstract 
 

Size, Weight, and Power (SWaP) concerns are 

growing as artificial intelligence (AI) use spreads in 

edge applications. AI algorithms, such as artificial 

neural networks (ANNs), have revolutionized many 

fields, e.g. computer vision (CV), but at a large 

computational/power burden. Biological intelligence 

is notably more computationally efficient. 

Neuromorphic edge processors and spiking neural 

networks (SNNs) aim to follow biology closer with 

spike-based operations resulting in sparsity and 

lower-SWaP operations than traditional ANNs with 

SNNs only “firing/spiking” when needed. 

Understanding the trade space of SWaP when 

embracing neuromorphic computing has not been 

studied heavily. To addresses this, we present a 

repeatable and scalable apples-to-apples comparison 

of traditional ANNs and SNNs for edge processing 

with demonstration on both classical and 

neuromorphic edge hardware. Results show that SNNs 

combined with neuromorphic hardware can provide 

comparable accuracy for CV to ANNs at 1/10th the 

power. 

 

1. Introduction  

 
Artificial Intelligence (AI) and Machine Learning 

(ML), colloquially “AI/ML”, are finding increasing 

uses in daily life, including generative AI methods for 

text/image/video creation from prompts, electronic 

government (e-Gov), computer vision (CV), business 

analysis, personal applications on smartphones, and 

security.  Many such applications are edge in nature 

with processing at the devices, e.g. mobile computing 

Internet of Things (IoT) applications. Notably and 

fundamentally, AI/ML are complex algorithms with 

abilities that grow with computational complexity and 

problem complexity (Kühl, et al., 2019). However, 

increasing abilities in AI typically come at a 

computational price (Li, et al., 2016). Notably such 

computational prices are not free, as these are 

associated with electrical power costs (Strubell, et al., 

2019). Logically, such power demands will increase as 

AI/ML expands in application/use.  
While such power demands are performed on 

relatively cheap electricity for large scale applications, 

even then it is not free (Denisova, et al., 2019). In 

edge-based AI/ML applications, power, hardware and 

software constraints are even more critical; for 

example, a complex and accurate computer vision 

system might require gigabytes on disk and consume 

significant power, possibly precluding smartphone or 

unmanned aerial vehicle (UAV) use. Similarly, further 

expansion of the IoT logically expands the use of edge 

computing, as cloud resources become more 

prohibitive to use for some applications (Shi & 

Dustdar, 2016). Thus, considering the Size, Weight, 

and Power (SWaP) demands of AI/ML solutions are 

necessary to their wider expansion and IoT use. 

Additionally, lower algorithm energy consumption 

can facilitate speed advantages since Power equals 

Energy over Time. 

As AI/ML increasingly becomes democratized, 

more and more applications can be found with real-

time demands and on-board processing requirements, 

as is the case with autonomous vehicles, single CPU 

computers, and smartphones, where power budgets 

may be more limited (Bihl & Talbert, 2020). Some 

solutions to SWaP issues involve selecting the 

appropriate method, e.g. (Thórisson & Helgasson, 

2012), incorporating “AI Accelerators”, advanced 

electronics to get around a Moore’s Law bottleneck on 

computation abilities available on CPUs, and 

developing simple algorithms at an acceptable level of 

performance (Boubin, et al., 2019). Of particular 

interest herein is further understanding this trade-

space with particular concern to the combination of 

AI/ML methods and edge-based AI accelerators.   
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Biologically inspired Artificial Neural Networks 

(ANNs) have received wide interests and applications, 

particularly due to the deep learning advances in the 

2010s (Hao, 2019).  However, while ANNs and deep 

learning ANNs have provided revolutionary new 

abilities, their computational demands grow 

significantly as ANNs grow in size (Li, et al., 2016) 

(Strubell, et al., 2019). Increasing computational 

demands from ANNs impact the SWaP performance 

of algorithms with the possibility that high 

performing, but high-SWaP, algorithms might not be 

deployable on edge processors, among other concerns 

(Strubell, et al., 2019).  

Spiking Neural Networks (SNNs) are third 

generation ANNs whose neurons imitate the temporal, 

and sparse, spiking nature of biological neurons which 

are typically in an off state unless spiked high for a 

short period of time (Ghosh-Dastidar & Adeli, 2009), 

which results in natural SWaP reduction.  Initial work 

in comparing SNNs and CNNs for power consumption 

showed the advantages in reduced power per inference 

but at lower accuracy than traditional ANNs (Cao, et 

al., 2014)(Blouw, et al., 2019). However, neither Cao 

et al. (2014) and Blouw et al. (2019) explored the 

tradeoff between complexity and power and accuracy, 

which is critical to understand to facilitate further low-

SWaP use of SNNs as alternatives to traditional 

ANNs.   

While there are theoretical differences between 

SNNs and more traditional ANNs, due to their 

novelty, the practical trade-space of when to use SNNs 

is largely unknown and unexplored. Generally, we are 

interested in providing answer or further 

understanding to the following research question: 

 

RQ1: What are the practical benefits to using SNNs? 

 

Based on prior work, the underlying hypothesis is 

that SNNs will be lower in SWaP than traditional 

ANNs but at the expense of accuracy (Blouw, et al., 

2019)(Li, et al., 2021). But RQ1 is hard to answer, 

given differences between the maturity of ANN/CNN 

focused edge processors and the relative immaturity of 

SNN edge processors. Based on this and coding 

nuances, one could easily construct problems that are 

best solvable by any given algorithm. Therefore, we 

must further explore the following research questions 

as well to look at the SNN opportunity space: 

 

RQ2: What are appropriate methods to compare SNNs 

with ANNs? 

 

In order to test RQ1 and RQ2, we develop an apples-

to-apples test and evaluation (T&E) framework using 

software and edge hardware optimized, respectively, 

for both ANNs and SNNs.  With this T&E framework 

we explore the tradeoffs between architecture size and 

power consumption by considering the following: 

 

RQ3: How do SNNs and ANNs compare on accuracy 

at the same task? 

RQ4: How do SNNs and ANNs compare on SWaP 

when employed for the same task? 

 

To answering RQ1-RQ4, the authors provide 

justification for the claims of the neuro-benefits that 

are realized in hardware when combining SNNs with 

edge-neuromorphics versus ANNs with traditional 

edge-processors. This is considered for CV from two 

different perspectives: 1) a simple ANN architecture 

which is expanded/reduced from a reference point, to 

characterize the relationships between architecture and 

performance; and 2) state-of-the-art SNN algorithms 

and their implementation nuances. In summary, the 

contributions of this work are: 1) We tackle a crucial 

void in existing research by concentrating on the trade 

space of SWaP in the context of neuromorphic 

computing; 2) We propose a scalable apples-to-apples 

comparison approach between traditional ANNs and 

SNNs for edge processing; and 3) Our results 

demonstrate that SNNs, when integrated on 

neuromorphic hardware, compare well with ANNs, 

but at one-tenth the power.  

 

2. Background  

 
Throughout the space of AI/ML, users must decide 

which algorithms to use and this involves a complex 

trade-space due to the wide proliferation of ML 

methods (Domingos, 2015).  Within ML, one can 

coarsely group methods into five “tribes” (symbolists, 

connectionists, Bayesians, evolutionaries, and 

analogizers), depending on what family of algorithms 

one uses (Domingos, 2015). Of these tribes,  

connectionists, which focuses on biologically inspired 

ANNs, have received wide interests and applications, 

particularly due to the deep learning advances in the 

2010s (Hao, 2019).   

 

2.1. Artificial Neural Networks 
 

ANNs are interconnected networks, whereby 

nodes and the weights connecting each node are 

trained to learn patterns in the data (Jain, Duin, & Mao, 

2000). A wide variety of ANN variants exist and these 

range in complexity, architecture, philosophy, and 

training approaches (Bihl, et al., 2022). Inherently, 

ANNs are statistical in nature and epistemologically 

similar to Bayesian and likelihood methods (Bihl, et 
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al., 2022). ANNs are neurologically inspired 

constructs, which represent complex non-linear input 

and output relationships through interconnected 

nodes, “neurons,” along with weights between inputs, 

nodes, and outputs (Jain, et al., 2000).  

Computational ANNs are biologically inspired and 

base their structure around analogous relationships 

found in biological neurons, as seen in Figure 1, where 

inputs to ANNs are in data form and are analogous to 

biological axons from other neurons feeding into a 

neuron’s dendrites (Bihl, et al., 2022). The cell then 

processes the inputs, which is represented as a transfer 

and activation function in an ANN, i.e. perceptrons 

when expressed in node form (Bihl, et al., 2022). The 

outputs are then analogous as axons in biology and 

probabilities in ANNs (Bihl, et al., 2022).  The end 

result is a mapping between independent inputs (X1, 

X2, X3, and Xp), connection weights (W1, W2, W3, and 

Wp) and bias (B), and a dependent variable (Y) (Bihl, 

et al., 2022). Weights representing the strength of the 

association between independent and dependent 

variables (positive, negative, or zero) are then 

determined through statistical methods (Bihl, et al., 

2022). 

 
Figure 1. General Conceptualization of 

Biological and Biologically Inspired Artificial 
Neurons 

 

The inspiration of biology in ANNs has yielded 

multiple generations of meta-architectural approaches, 

as conceptualized in Figure 2. The first generation of 

ANNs began with McCulloch and Pitts (McCulloch & 

Pitts, 1943) developing the earliest known ANN 

model, which included a non-differentiable step 

function for the neuron.  However, the use of this 

function precluded efficient training methods. Second 

generation ANN neuron models included 

differentiable activation functions, such as a logistic 

sigmoid, which enable gradient descent methods, e.g. 

backpropagation, to be used for training.  Notably, the 

current state of the practice in ANN implementation 

resides within second generation ANNs and it includes 

recent advances in convolution neural networks and 

deep learning, see (Bihl, et al., 2022), and many other 

methods.   

While, individually, a single neuron ANN with a 

logistic activation function is essentially a logistic 

regression model (Timmerman, et al., 1999), the real 

power of ANNs comes into play with multiple hidden 

layer nodes, as these permit an ANN to learn a 

mapping in complex data. The interconnectivity is one 

inspiration taken from biological neuron models, 

whereby multiple interconnected nodes learn patterns 

between inputs and outputs through organizational, 

statistical, and iterative principles (Jain, et al., 2000).  

The result is a nonlinear model; even an ANN 

developed using linear activation functions will result 

in a nonlinear mapping, due to the interconnections 

and weights learned in training (Bihl, et al., 2022). 

 

2.2. Spiking Neural Networks 
 

As conceptualized in Figure 2, both first and 

second generation neuron models considered data in a 

continuous sense as either binary (first gen.) or real 

numbers (second gen.). Notably, biological neurons 

consider information in a more complex manner, 

whereby signals are sent from an axon after a neuron 

collects and processes a complex grouping of 

biochemical, molecular, electrical, cellular, 

behavioral, and systems information (Bhalla, 2014).  

Thus, biological neurons do not operate in a 

continuous manner, but rather a highly complex and 

interactive manner (Bihl, et al., 2022).  A significant 

benefit of neurobiology is highly efficient operations 

and comparatively low-SWaP, when compared to 

ANNs for the same task (Strubell, et al., 2019). Third 

generation ANN models aim to model more of the 

operating characteristics of biological neurons, in an 

effort to both be more biologically plausible while 

providing engineering advantages (Maass, 1997)  

(Vicente-Sola, et al., 2023).  

 It is known that the human brain has considerably 

lower power requirements than a typical computer 

processor (10W in the neocortex vs 100W/cm2 in a 

processor) (Cantley, et al., 2011). SNNs leverage 

concepts that result in the similar efficiencies as those 

built in efficiencies of biology and through being 

tethered to biologically models of neurons, have 
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potential efficiency advantages over traditional ANNs 

and are thus of interest due to SWaP concerns alone.    

SNNs aim to be closer to biology by exhibiting a 

spiking behavior (Maass, 1997). Thus, while 

traditional ANNs will output for all data, an SNN will 

only generate a spike when trained to do so (Maass, 

1997). The result is a sparser operation than a 

traditional ANN. It is known that this sparsity can lead 

to improvements in power consumption, on 

specialized hardware (Blouw, et al., 2019).  From an 

engineering point of view, these spikes are typically 

interpreted either in a rate-based manner, where the 

frequency of spiking is decoded as the value of 

interest, or in a latency-based manner, using precise 

spike timing as the information-carrying value. 

However, limitations and a complex trade-space 

exist in developing SNNs. For instance, multiple 

models exist for capturing the spiking behavior, as 

reviewed in (Manna, et al., 2022). Notably, the most 

popular (and used herein) neuron model is the leaky-

integrate and fire (LIF) which considers the potential 

to spike as: 𝜏𝑚
𝑑𝑉(𝑡)

𝑑𝑡
= −𝑉(𝑡) + 𝑅𝐼(𝑡), where the 

membrane voltage is 𝑣(𝑡), the input (data, but 

considered as current) is 𝐼(𝑡), R is membrane 

resistance, and 𝜏𝑅𝐶  represents the membrane time 

constant (Manna, et al., 2022). The neuron fires a spike 

when the voltage 𝑉𝑡ℎ =  1. The voltage is then set and 

remains at zero until a refractory period has passed. 

For data processing and equivalency to 2nd generation 

ANNs,  𝐼(𝑡) = ∑ 𝑤𝑖𝑥𝑖,𝑡
𝑛
𝑖=1 , where xi,t is the input from 

the i-th synapse at time t and wi is the weight of the i-

th synapse (Manna, et al., 2022).   For comparison, a 

2nd generation ANN neuron model would be 𝑦(𝑡) =

𝑅𝑒𝐿𝑈(𝐼(𝑡) + 𝑏), for a general rectified linear unit 

activation function with a bias b (Manna, et al., 2022).  

Beyond these considerations, as SNNs are an 

emerging area of ANN research, the current hardware 

and software solutions are less mature than those 

developed and optimized for second generation 

ANNs. For instance, when developing conventional 

ANNs, researchers have access to commercial off-the-

shelf advanced hardware and established software 

frameworks. However, in neuromorphics and SNNs, 

while frameworks for developing SNNs exist, there is 

not the ability yet to seamlessly implement any type of 

algorithmic solution and not all neuromorphic 

software libraries support the same types of neurons or 

networks (Manna, et al., 2023). Similarly, different 

neuromorphic hardware have different levels of 

quantization, precision, scale (number of 

neurons/synapses), and types of neurons that they can 

provide or support. Thus, there are limited abilities to 

implement end-to-end neuromorphic solutions. 

 

2.2.1 SNN Training. A primary bottleneck in 

implementing SNNs is that traditional ANN training 

methods, such as gradient descent, cannot be applied 

to SNNs, since the underlying approach of SNNs is 

non-differentiable. Thus, training and developing 

SNNs models traditionally involved an entirely 

different process than CNNs or ANNs in general. A 

general model for spiking neural learning includes the 

concept of Spike Timing Dependent Plasticity (STDP) 

(Kempter, et al., 1999). STDP works under the 

following principle: If a spike inputs to a given neuron, 

and that neuron outputs a spike shortly after, then the 

connection (i.e. weight) between spiking source and 

 

 
Figure 2.   Conceptualization ANN generations with analogs to biology, adapted and extended from 

(Bihl, et al., 2022) 
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the neuron tends to become stronger and vice versa.  

Alternatively, systems requiring to train deeper 

networks, resorted to training methods which allow  to 

bypass the non-differentiability of SNNs and apply 

backpropagation, such as surrogate gradients (Neftci, 

2019) or  SLAYER (Shrestha & Orchard, 2018). 

  

2.2.2 ANN to SNN Conversion. Due to the issues in 

training SNNs, an alternative family of training 

approaches was also developed whereby a traditional 

ANN is first trained and then it is mapped over to be 

an SNN, which is then implemented asynchronously.  

A variety of methods exist for ANN to SNN 

conversion like sigma-delta quantization 

(Yousefzadeh, et al., 2019) or directly mapping 

learned weights from a CNN to an SNN (Cao, et al., 

2014), (Hunsberger & Eliasmith, 2016).  

 

2.3. AI Accelerators for Edge Computing 
 

Edge computing involves placing the 

computations, decision making, and inferences as 

close to the devices and sensor as possible.  This 

improves efficiencies, reduces communications, and 

reduces latency in data-to-decisions.  Of interest 

herein is edge computing where the computing is done 

at the device itself, e.g. classifier training is performed 

on a CPU/GPU and then deployed to the edge-based 

processor for operations. 

 A wide variety of AI accelerators exist for this 

purpose, see (Spiller, et al., 2022), but of interest 

herein are representative AI accelerators from the 

traditional, i.e. von Neumann, and neuromorphic 

approaches.  Traditional hardware and neuromorphic 

hardware can be regarded as distinct generations. They 

differ in terms of operation (sequential processing as 

opposed to massively parallel processing), structure 

(discrete computation versus integrated processing 

and memory), coding (binary instruction as opposed to 

spiking neural networks), and timing (synchronous 

versus asynchronous) (Schuman, et al., 2022). 

For this study, two edge-based devices were 

selected that represent both approaches: the Intel 

Loihi, a neuromorphic device, and the Intel Neural 

Compute Stick, colloquially “Movidius,” which 

implements a computer vision optimized traditional 

von Neumann architecture (Davies, et al., 2018). The 

Loihi neuromorphic processor natively implements 

spiking neurons with hardware sections dedicated to 

synaptic, spiking, and dendrite activity (Davies, et al., 

2018). In operating either USB edge-based processors, 

a trained ANN is saved to the device for processing 

data (Xu, et al., 2017).  A brief comparison of the two 

devices used herein is presented in Table 1. 

 

 

3. Developing an Apples-to-Apples 

Evaluation Framework 

 
 Of particular interest in answering RQ1-RQ4 and 

understanding the differences in performance between 

ANNs and SNNs is to deploy the algorithms on 

appropriate hardware and software.  Thus, selecting 

hardware and software optimized for the respective 

ANN approach are needed.  

 

 3.1. Coding and Hardware Consideration  
 

Multiple issues exist in comparing the performance 

of AI/ML algorithms, no matter the measure of 

interest.  Accuracy/performance metrics are subject to 

differences in datasets and experimental conditions; 

time and power metrics are subject to differences and 

quality in coding; which is compounded if special 

libraries are used in one trial and not another. To 

provide an apples-to-apples evaluation, the authors 

developed a framework to isolate such issues.   

 

3.2. Metrics and Data Collection  
 

The first question for evaluation is that of 

appropriate metrics to answer RQ2-RQ4.  To this aim, 

the authors considered metrics for accuracy, time, and 

power.  For edge-based applications with a priori 

classifier training, use cases for Loihi and Movidius, 

two metrics are of interest:  

• Testing set classification accuracy 

• Power consumption for test set validation. 

Training accuracy was not considered since this was 

performed a priori to edge device deployment.  For 

power, the authors focused on running the test set 

through fully trained algorithms on each edge device.  

In trial runs, it was seen that the communication time 

for Loihi was higher than Movidius, this could be due 

to Loihi being a prototype in nature, whereas the 

Movidius is a commercial product; thus, computation 

time was not considered to avoid inadvertent biases.   

Accuracy was considered using the test data 

allocations in tensorflow.datasets. Power consumption 

Table 1.  Comparison of Loihi and Movidius, 

details from: (FRENKEL, ET AL., 2018) (DAVIES, 

ET AL., 2018) (INTEL, 2017) 
DEVICE LOIHI MOVIDIUS 

MODEL Kapoho Bay Myriad 

VERSION 1 2 

TECHNOLOGY 14nm FinFET 28nm 

PROCESSOR 

TYPE 
Loihi SHAVE 

# PROCESSORS 2 12 

THROUGHPUT 3.44 Gspikes/s 1.5 Gb/s 
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was computed using a UM25C power meter.  To 

provide a stable baseline, a MacBook Pro was used for 

all assessments with the edge device and UM25C 

connected in series to a USB-port on the computer 

with the same port used for all tests.  Due to the 

stochastic nature of ANNs, 3 replications were 

performed for each model and 95% mean (Student’s t) 

confidence intervals were computed for all results. For 

all algorithms, Python 3.7.6, tensorflow 2.1, and 

nengo/nengoDL 3.0 were used.  A MacBook Pro with  

an Intel i9 processor was used for all USB 

communication. The Loihi tests used Python 3.5.2, 

tensorflow 2.3, nengo 3.1, nengo-dl 3.1, and nengo-

loihi 1.0. The Movidius tests used Python 3.7.11 and  

tensorflow 2.4.  Herein, Nengo was used for SNNs 

since it provides neuromorphic hardware applications 

compatible with the Intel Loihi edge device. 

 

3.3. Example Datasets 
 

The authors considered common benchmarking 

datasets: MNIST (LeCun, et al., 1995), Fashion-

MNIST (Xiao, et al. 2017), and CIFAR-10 

(Krizhevsky & Hinton, 2009).  Both MNIST and 

Fashion-MNIST are conceptually similar, nC = 10 

classes of 28x28 grayscale images of digits (MNIST) 

and fashion products (Fashion-MNIST).  CIFAR-10 

(Krizhevsky & Hinton, 2009) is a set color images 

(32x32x3), equally distributed into 10 categories 

(airplane, automobile, bird, cat, deer, dog, frog, horse, 

ship, and truck).  All three datasets have 60,000 images 

which are separated into a predefined 50,000 image 

training set and a 10,000 image testing set. As of 

writing, test set benchmark accuracy for these are, 

approximately: 99.87% (MNIST), 96.91% (Fashion-

MNIST), and 99.5% (CIFAR-10) (Image 

Classification, 2023). Notably, the algorithms that 

yielded these current benchmark performance levels 

are complex, have many layers, and include 

components which are not currently replicable in 

SNNs.   

 

4. Experiment 1: Trade-space Study to 

Understand SNNs vs ANNs  
 

To understand and characterize performance 

differences in ANNs and SNNs, first, a simplistic 

architecture approach was used to focus on 

understanding the research questions to benchmark 

ANN and SNN algorithms. To focus on RQ2, of 

particular interest is the effect of scaling. 

 

4.1. Experiment Conceptualization  
 

In order to compare intrinsic difference between 

ANNs and SNNs, the authors first focused on a 

consistent comparison, with simple architectural 

design having one input layer, one hidden layer, and 

one output layer.  While such architectures are not as 

highly tuned as many deep learning methods, and high 

accuracy is not expected, they provide a simplicity 

which engenders comparisons.   

To address RQ2, the authors’ approach with this 

basis is presented in Figure 3, which presents the 

reference architecture (4 hidden nodes) in the center, 

along with a scaling in both directions by 2, for larger 

size (8 hidden nodes) and smaller size (2 hidden 

nodes).  Thus, this experiment only changes the hidden 

layer, with the input and output layer kept consistent.  

 

4.2. Experimental Settings and Setup 
 

 
Figure 3.  Conceptualization of the general experimental approach on a 3 layer neural network for the 
architecture changing from the baseline to 1/2 the baseline quantity of hidden nodes to 2x the quantity. 
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For the comparison of ANNs and SNNs in as 

apples-to-apples sense, three types of ANNs were 

created:   

• ANNs – baseline 2nd generation ANNs 

• SNNs – 3rd generation SNNs  

• CSNNs – ANNs converted to SNNs  

All SNNs were created in nengo/nengoDL 3.0, and all 

ANNs were created in tensorflow 2.1. The CSNNs 

were created by taking the respective ANN, created in 

tensorflow 2.1, and then converted each to SNNs using 

nengo/nengoDL 3.0 via the rate based method of 

(Hunsberger & Eliasmith, 2016). This method softens 

the neural response function and bypasses the non-

differentiability problems by using an approximation 

of the spiking function during training and then 

replacing these neurons with actual spiking neurons 

during inference. For each SNN implementation, dt, 

the duration between consecutive computations of 

spikes, was implemented for dt = [0.05, 0.10].   

Following the framework of Section 4.1, the 

authors developed ANNs which had NHidden = [6, 12, 

24, 49, 98, 196] hidden nodes. The sweeping of the 

architecture of the study framework was increased by a 

factor of 2, to create ANNs and SNNs in the form, 

following the notation of (Bihl, et al., 2020), of:  

 

 28x28-NHiddenReLu-CL    (1) 

 

where ReLu are rectified linear units (output linear for 

inputs greater than 0; 0 otherwise) for ANNs, or 

spiking rectified linear units (spiking rate is linear for 

inputs greater than 0; 0 otherwise) for all SNNs.   

 

4.3. Experimental Results 
 
Results for MNIST and Fashion-MNIST are 

presented in Figures 5 through 8, with the following 
designations in the legends: a) ANN (blue), b) SNN 
with dt = 0.1 (orange), c) SNN with dt = 0.05, d) CSNN 
with dt = 0.1 (red), and e) CSNN with dt = 0.05 
(purple). Figures 5 and 6 present test set accuracy for 
MNIST and Fashion-MNIST, respectively.  These 
figures present broad comparisons of test set 
classification accuracy with 95% t-test confidence 
intervals, for 3 replications, versus the architecture 
size, for NHidden.  Notably, we see in both Figures 4 and 
5 that ANN performance rises slowly and generally 
outperforms SNNs and CSNNs until sufficiently large 
architecture exists, at around NHidden = 24. After NHidden 

= 24, accuracy is statistical equivalent for the ANNs, 
SNNs, and CSNNs at each NHidden point, whereby the 
confidence intervals of accuracy overlap considerable, 
or entirely, at each NHidden point. Thus, RQ3 is 
answered with ANNs and SNNs performing similarly 
at this task when sufficient architecture is instantiated. 

 

 
Figure 4. Test set accuracy for MNIST  

 

 
Figure 5. Test set accuracy for Fashion MNIST 
 

 
Figure 6. Test set dynamic power (Watts) for 
MNIST 
 

Given that the accuracy was comparable between 
ANNs, SNNs, and CSNNs, the SWaP concerns are 
then of interest.  Figures 6 and 6 present dynamic 
power for each network on MNIST, Figure 6, and 
Fashion MNIST, Figure 7. Notably, we see in both that 
SNNs and CSNNs offer significant performance 
advantages in dynamic power, which is flat (within 
adjacent confidence intervals) across explored NHidden 
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points. In contrast, the ANNs required 5-10 times more 
power which was increasing across explored NHidden 
points.  Thus, RQ4 is answered with whereby SNNs 
provide a performance advantage over ANNs. 

 

 
Figure 7. Test set dynamic power (Watts) for 
Fashion MNIST 

 

5. Experiment 2: Focused Comparison of 

SNNs vs ANNs  
. 

The results in Section 4 illustrated the differences 

of ANNs and SNNs on a relatively simplistic problem 

with performance comparable in accuracy (once 

sufficient SNN architecture is reached) but with SNNs 

providing that performance with less SWaP demands.  

However, the apparent advantages of SNNs and their 

deployment on neuromorphic hardware are only 

potentials.  Of interest next is exploring the research 

questions on a more meaningful problem, which will 

be considered using competitive a SNN benchmark 

algorithm and ANN equivalent. 

 

5.1. Algorithm Development 
 

As the complexity of the problem at hand 

increases, so generally does the required complexity of 

the network employed. Therefore, in this section we 

evaluate a complex SNN architecture taken from the 

current state-of-the-art in neuromorphic image 

classification, the S-ResNet (Vicente-Sola, et al., 

2022). S-ResNet provides the current benchmark 

setting accuracy for SNNs on imagery; however, it has 

only been demonstrated in software. On CIFAR-10, S-

ResNet, when using the widest version and all 

developed embellishment (not implementable on 

Loihi), yielded test-set classification performance of 

94.14%. The success of S-ResNet is based on the 

usage of spiking residual connections. Adding residual 

connections to the ANNs in general allows one train 

deeper architectures without making the optimization 

problem more complex, giving rise to deeper and more 

powerful topologies (Vicente-Sola, et al., 2022). The 

topology of the system in (Vicente-Sola, et al., 2022) 

is based on the CNN architecture proposed by the 

original ResNet (He, et al., 2016), the neuron model 

used for the spiking layers is the LIF and as 

normalization strategy Batch Normalization Through 

Time (BNTT) (Kim & Panda, 2020) is used. BNTT 

being a version of Batch Normalization that de-

correlates activation statistics through time and has 

been proven to improve performance for SNN. 

S-ResNet is formulated as 

 

3x32x32 - 32C3s1 - BNTT - SN - (RB32,s1)*5 

– RB32,s2 – (RB64,s1)*5 - RB64,s2 - 

(RB128,s1)*5 – RB128,s2 - GAP - CL 

 

      (2) 

where BNTT indicates the process of (Vicente-Sola, et 

al., 2022), s1 means stride=1, s2 means stride=2, SN 

are spiking neurons, GAP indicates global average 

pooling (GAP) to 1x1 resolution, and RB is a residual 

block defined as 

 

RBn,sm = nC3s1 - BNTT - SN - nC3sm - 

BNTT - SN - residual input 

 

(3) 

with "s" in the convolutions to indicate the stride, n 

indicating the output channels of the convolutional 

layers in the block, and m indicating the stride of its 

convolutions.  

However, to implement S-ResNet on Loihi and in 

Nengo, some changes had to be made due to hardware 

and software limitations for both size allowable on 

Loihi and types of connections permissible in Nengo. 

In this work we thus implemented the 38-layer S-

ResNet38 with only the S2M (Spiking Output to 

Membrane Potential) approach which was shown in 

(Vicente-Sola, et al., 2022) to have a test set accuracy 

of 89.27% on CIFAR-10. Herein, the SNNs 

implemented used spiking ReLu and, since BNTT was 

not previously instantiated in Nengo, this work 

developed a custom object for BNTT in Nengo.  S-

ResNet is natively in SNN form, thus to create an 

ANN equivalent, ANN-S-ResNet, the following 

changes were made: BNTT was changed to Batch 

Normalization, ReLu was used in place of spiking 

ReLu, and the residual connections were output to 

input rather than S2M.   

 

5.2. Experimental Results  
 

With implementations for ANN-S-ResNet, S-

ResNet, and CS-ResNet (ANN-S-ResNet converted to 

an SNN), the comparison process of Section 3 was 

repeated, again with 3 replications for each algorithm, 
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but with no sweeping architectural changes of Figure 

3 since the many layers would make such an approach 

seemingly arbitrary.   

Results are presented in Table 2 show that ANN 

accuracy outperforms both the SNN and CSNN; 

however, the drop in accuracy is no more than 4.3%. 

However, it is likely that architecture changes made 

for edge implementation of S-ResNet38 with S2M 

caused the drop in accuracy, since the discussion in 

Section 4 showed statistically similar performance of 

SNNs and ANNs for equivalent networks. For power, 

Table 2 shows that the SNN and CSNN are seen to 

require orders of magnitude less dynamic power for 

their inferences.   

Thus, further work is needed to mature the 

software available for edge neuromorphics to close the 

gap in capabilities. Additionally, Table 2 shows that 

the CSNN implementation of S-ResNet slightly 

outperforms S-ResNet in both accuracy and dynamic 

power consumption. As this could indicate an 

advantage from converting an ANN to SNN over 

direct SNN development, more investigation into why 

this occurred is of interest.   

 

6. Conclusions  

 
This contribution addresses recent concerns in 

AI/ML literature involving expanding computational 

and power demands for ever increasing algorithm 

sizes. To this aim, the authors presented a systematic 

study to understand how Spiking Neural Networks 

(SNNs) might be advantageous over traditional 

Artificial Neural Networks (ANNs) with 

implementation on edge devices. Prior studies that 

compared SNNs and ANNs had limitations which 

yield not always apples-to-apples comparisons. This 

study, answering RQ2, thus first developed a simple 

framework to change ANN architecture size, while 

evaluating performance by accuracy, time, power, and 

size, key SWaP (Size, Weight, and Power) concerns.  

ANNs, SNNs, and ANN-to-SNN converted networks 

were all explored with an aim for equivalency 

maintained throughout.  The results further provided 

verification for the performance claims of state-of-the-

art neuromorphic classification algorithms.      

Answering RQ1, the results show that SNNs offer 

distinct power advantages over traditional ANNs 

(answering RQ4), while providing comparable 

accuracy (answering RQ3).  This is particularly seen 

when “fully embracing” neuromorphics whereby a 

neuromorphic edge device is combined with 

neuromorphic SNN algorithms.  Interesting, the ANN-

to-SNN converted models provided better accuracy 

and less power than both ANNs and SNNs, a result 

that needs further consideration since it could indicate 

either issues in training SNNs natively or a unique 

advantage from ANN-to-SNN conversion.  

Further studies and analysis can aim to understand 

this trade-space which logically involves extending 

this study to include other dedicated AI/ML hardware.  

Additionally of interest are exploring additional 

network structures, and expanding the current study to 

different applications, e.g. CV or speech processing.  
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