
Exploring Spiking Neural Networks (SNN) for Low Size, Weight, and Power

(SWaP) Benefits

Trevor J. Bihl
Air Force Research

Laboratory

Ohio, USA

Trevor.Bihl.2@us.af.mil

Patrick Farr
Applied Research Solutions

Ohio, USA

pfarr@appliedres.com

Gaetano Di Caterina,

Paul Kirkland,
Alex Vicente Sola,

Davide Manna
University of Strathclyde (UK)

{gaetano.di-caterina,

paul.kirkland,alex.vicente-

sola,davide.manna}

@strath.ac.uk

Jundong Liu
 Ohio University

Ohio, USA

liuj1@ohio.edu

Kara Combs
Air Force Research

Laboratory

Ohio, USA

Kara.Combs.1@us.af.mil

Abstract

Size, Weight, and Power (SWaP) concerns are

growing as artificial intelligence (AI) use spreads in

edge applications. AI algorithms, such as artificial

neural networks (ANNs), have revolutionized many

fields, e.g. computer vision (CV), but at a large

computational/power burden. Biological intelligence

is notably more computationally efficient.

Neuromorphic edge processors and spiking neural

networks (SNNs) aim to follow biology closer with

spike-based operations resulting in sparsity and

lower-SWaP operations than traditional ANNs with

SNNs only “firing/spiking” when needed.

Understanding the trade space of SWaP when

embracing neuromorphic computing has not been

studied heavily. To addresses this, we present a

repeatable and scalable apples-to-apples comparison

of traditional ANNs and SNNs for edge processing

with demonstration on both classical and

neuromorphic edge hardware. Results show that SNNs

combined with neuromorphic hardware can provide

comparable accuracy for CV to ANNs at 1/10th the

power.

1. Introduction

Artificial Intelligence (AI) and Machine Learning

(ML), colloquially “AI/ML”, are finding increasing

uses in daily life, including generative AI methods for

text/image/video creation from prompts, electronic

government (e-Gov), computer vision (CV), business

analysis, personal applications on smartphones, and

security. Many such applications are edge in nature

with processing at the devices, e.g. mobile computing

Internet of Things (IoT) applications. Notably and

fundamentally, AI/ML are complex algorithms with

abilities that grow with computational complexity and

problem complexity (Kühl, et al., 2019). However,

increasing abilities in AI typically come at a

computational price (Li, et al., 2016). Notably such

computational prices are not free, as these are

associated with electrical power costs (Strubell, et al.,

2019). Logically, such power demands will increase as

AI/ML expands in application/use.
While such power demands are performed on

relatively cheap electricity for large scale applications,

even then it is not free (Denisova, et al., 2019). In

edge-based AI/ML applications, power, hardware and

software constraints are even more critical; for

example, a complex and accurate computer vision

system might require gigabytes on disk and consume

significant power, possibly precluding smartphone or

unmanned aerial vehicle (UAV) use. Similarly, further

expansion of the IoT logically expands the use of edge

computing, as cloud resources become more

prohibitive to use for some applications (Shi &

Dustdar, 2016). Thus, considering the Size, Weight,

and Power (SWaP) demands of AI/ML solutions are

necessary to their wider expansion and IoT use.

Additionally, lower algorithm energy consumption

can facilitate speed advantages since Power equals

Energy over Time.

As AI/ML increasingly becomes democratized,

more and more applications can be found with real-

time demands and on-board processing requirements,

as is the case with autonomous vehicles, single CPU

computers, and smartphones, where power budgets

may be more limited (Bihl & Talbert, 2020). Some

solutions to SWaP issues involve selecting the

appropriate method, e.g. (Thórisson & Helgasson,

2012), incorporating “AI Accelerators”, advanced

electronics to get around a Moore’s Law bottleneck on

computation abilities available on CPUs, and

developing simple algorithms at an acceptable level of

performance (Boubin, et al., 2019). Of particular

interest herein is further understanding this trade-

space with particular concern to the combination of

AI/ML methods and edge-based AI accelerators.

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7561
URI: https://hdl.handle.net/10125/107294
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

mailto:Trevor.Bihl.2@us.af.mil
mailto:pfarr@appliedres.com
mailto:liuj1@ohio.edu
mailto:Kara.Combs.1@us.af.mil

Biologically inspired Artificial Neural Networks

(ANNs) have received wide interests and applications,

particularly due to the deep learning advances in the

2010s (Hao, 2019). However, while ANNs and deep

learning ANNs have provided revolutionary new

abilities, their computational demands grow

significantly as ANNs grow in size (Li, et al., 2016)

(Strubell, et al., 2019). Increasing computational

demands from ANNs impact the SWaP performance

of algorithms with the possibility that high

performing, but high-SWaP, algorithms might not be

deployable on edge processors, among other concerns

(Strubell, et al., 2019).

Spiking Neural Networks (SNNs) are third

generation ANNs whose neurons imitate the temporal,

and sparse, spiking nature of biological neurons which

are typically in an off state unless spiked high for a

short period of time (Ghosh-Dastidar & Adeli, 2009),

which results in natural SWaP reduction. Initial work

in comparing SNNs and CNNs for power consumption

showed the advantages in reduced power per inference

but at lower accuracy than traditional ANNs (Cao, et

al., 2014)(Blouw, et al., 2019). However, neither Cao

et al. (2014) and Blouw et al. (2019) explored the

tradeoff between complexity and power and accuracy,

which is critical to understand to facilitate further low-

SWaP use of SNNs as alternatives to traditional

ANNs.

While there are theoretical differences between

SNNs and more traditional ANNs, due to their

novelty, the practical trade-space of when to use SNNs

is largely unknown and unexplored. Generally, we are

interested in providing answer or further

understanding to the following research question:

RQ1: What are the practical benefits to using SNNs?

Based on prior work, the underlying hypothesis is

that SNNs will be lower in SWaP than traditional

ANNs but at the expense of accuracy (Blouw, et al.,

2019)(Li, et al., 2021). But RQ1 is hard to answer,

given differences between the maturity of ANN/CNN

focused edge processors and the relative immaturity of

SNN edge processors. Based on this and coding

nuances, one could easily construct problems that are

best solvable by any given algorithm. Therefore, we

must further explore the following research questions

as well to look at the SNN opportunity space:

RQ2: What are appropriate methods to compare SNNs

with ANNs?

In order to test RQ1 and RQ2, we develop an apples-

to-apples test and evaluation (T&E) framework using

software and edge hardware optimized, respectively,

for both ANNs and SNNs. With this T&E framework

we explore the tradeoffs between architecture size and

power consumption by considering the following:

RQ3: How do SNNs and ANNs compare on accuracy

at the same task?

RQ4: How do SNNs and ANNs compare on SWaP

when employed for the same task?

To answering RQ1-RQ4, the authors provide

justification for the claims of the neuro-benefits that

are realized in hardware when combining SNNs with

edge-neuromorphics versus ANNs with traditional

edge-processors. This is considered for CV from two

different perspectives: 1) a simple ANN architecture

which is expanded/reduced from a reference point, to

characterize the relationships between architecture and

performance; and 2) state-of-the-art SNN algorithms

and their implementation nuances. In summary, the

contributions of this work are: 1) We tackle a crucial

void in existing research by concentrating on the trade

space of SWaP in the context of neuromorphic

computing; 2) We propose a scalable apples-to-apples

comparison approach between traditional ANNs and

SNNs for edge processing; and 3) Our results

demonstrate that SNNs, when integrated on

neuromorphic hardware, compare well with ANNs,

but at one-tenth the power.

2. Background

Throughout the space of AI/ML, users must decide

which algorithms to use and this involves a complex

trade-space due to the wide proliferation of ML

methods (Domingos, 2015). Within ML, one can

coarsely group methods into five “tribes” (symbolists,

connectionists, Bayesians, evolutionaries, and

analogizers), depending on what family of algorithms

one uses (Domingos, 2015). Of these tribes,

connectionists, which focuses on biologically inspired

ANNs, have received wide interests and applications,

particularly due to the deep learning advances in the

2010s (Hao, 2019).

2.1. Artificial Neural Networks

ANNs are interconnected networks, whereby

nodes and the weights connecting each node are

trained to learn patterns in the data (Jain, Duin, & Mao,

2000). A wide variety of ANN variants exist and these

range in complexity, architecture, philosophy, and

training approaches (Bihl, et al., 2022). Inherently,

ANNs are statistical in nature and epistemologically

similar to Bayesian and likelihood methods (Bihl, et

Page 7562

al., 2022). ANNs are neurologically inspired

constructs, which represent complex non-linear input

and output relationships through interconnected

nodes, “neurons,” along with weights between inputs,

nodes, and outputs (Jain, et al., 2000).

Computational ANNs are biologically inspired and

base their structure around analogous relationships

found in biological neurons, as seen in Figure 1, where

inputs to ANNs are in data form and are analogous to

biological axons from other neurons feeding into a

neuron’s dendrites (Bihl, et al., 2022). The cell then

processes the inputs, which is represented as a transfer

and activation function in an ANN, i.e. perceptrons

when expressed in node form (Bihl, et al., 2022). The

outputs are then analogous as axons in biology and

probabilities in ANNs (Bihl, et al., 2022). The end

result is a mapping between independent inputs (X1,

X2, X3, and Xp), connection weights (W1, W2, W3, and

Wp) and bias (B), and a dependent variable (Y) (Bihl,

et al., 2022). Weights representing the strength of the

association between independent and dependent

variables (positive, negative, or zero) are then

determined through statistical methods (Bihl, et al.,

2022).

Figure 1. General Conceptualization of

Biological and Biologically Inspired Artificial
Neurons

The inspiration of biology in ANNs has yielded

multiple generations of meta-architectural approaches,

as conceptualized in Figure 2. The first generation of

ANNs began with McCulloch and Pitts (McCulloch &

Pitts, 1943) developing the earliest known ANN

model, which included a non-differentiable step

function for the neuron. However, the use of this

function precluded efficient training methods. Second

generation ANN neuron models included

differentiable activation functions, such as a logistic

sigmoid, which enable gradient descent methods, e.g.

backpropagation, to be used for training. Notably, the

current state of the practice in ANN implementation

resides within second generation ANNs and it includes

recent advances in convolution neural networks and

deep learning, see (Bihl, et al., 2022), and many other

methods.

While, individually, a single neuron ANN with a

logistic activation function is essentially a logistic

regression model (Timmerman, et al., 1999), the real

power of ANNs comes into play with multiple hidden

layer nodes, as these permit an ANN to learn a

mapping in complex data. The interconnectivity is one

inspiration taken from biological neuron models,

whereby multiple interconnected nodes learn patterns

between inputs and outputs through organizational,

statistical, and iterative principles (Jain, et al., 2000).

The result is a nonlinear model; even an ANN

developed using linear activation functions will result

in a nonlinear mapping, due to the interconnections

and weights learned in training (Bihl, et al., 2022).

2.2. Spiking Neural Networks

As conceptualized in Figure 2, both first and

second generation neuron models considered data in a

continuous sense as either binary (first gen.) or real

numbers (second gen.). Notably, biological neurons

consider information in a more complex manner,

whereby signals are sent from an axon after a neuron

collects and processes a complex grouping of

biochemical, molecular, electrical, cellular,

behavioral, and systems information (Bhalla, 2014).

Thus, biological neurons do not operate in a

continuous manner, but rather a highly complex and

interactive manner (Bihl, et al., 2022). A significant

benefit of neurobiology is highly efficient operations

and comparatively low-SWaP, when compared to

ANNs for the same task (Strubell, et al., 2019). Third

generation ANN models aim to model more of the

operating characteristics of biological neurons, in an

effort to both be more biologically plausible while

providing engineering advantages (Maass, 1997)

(Vicente-Sola, et al., 2023).

 It is known that the human brain has considerably

lower power requirements than a typical computer

processor (10W in the neocortex vs 100W/cm2 in a

processor) (Cantley, et al., 2011). SNNs leverage

concepts that result in the similar efficiencies as those

built in efficiencies of biology and through being

tethered to biologically models of neurons, have

Page 7563

potential efficiency advantages over traditional ANNs

and are thus of interest due to SWaP concerns alone.

SNNs aim to be closer to biology by exhibiting a

spiking behavior (Maass, 1997). Thus, while

traditional ANNs will output for all data, an SNN will

only generate a spike when trained to do so (Maass,

1997). The result is a sparser operation than a

traditional ANN. It is known that this sparsity can lead

to improvements in power consumption, on

specialized hardware (Blouw, et al., 2019). From an

engineering point of view, these spikes are typically

interpreted either in a rate-based manner, where the

frequency of spiking is decoded as the value of

interest, or in a latency-based manner, using precise

spike timing as the information-carrying value.

However, limitations and a complex trade-space

exist in developing SNNs. For instance, multiple

models exist for capturing the spiking behavior, as

reviewed in (Manna, et al., 2022). Notably, the most

popular (and used herein) neuron model is the leaky-

integrate and fire (LIF) which considers the potential

to spike as: 𝜏𝑚
𝑑𝑉(𝑡)

𝑑𝑡
= −𝑉(𝑡) + 𝑅𝐼(𝑡), where the

membrane voltage is 𝑣(𝑡), the input (data, but

considered as current) is 𝐼(𝑡), R is membrane

resistance, and 𝜏𝑅𝐶 represents the membrane time

constant (Manna, et al., 2022). The neuron fires a spike

when the voltage 𝑉𝑡ℎ = 1. The voltage is then set and

remains at zero until a refractory period has passed.

For data processing and equivalency to 2nd generation

ANNs, 𝐼(𝑡) = ∑ 𝑤𝑖𝑥𝑖,𝑡
𝑛
𝑖=1 , where xi,t is the input from

the i-th synapse at time t and wi is the weight of the i-

th synapse (Manna, et al., 2022). For comparison, a

2nd generation ANN neuron model would be 𝑦(𝑡) =

𝑅𝑒𝐿𝑈(𝐼(𝑡) + 𝑏), for a general rectified linear unit

activation function with a bias b (Manna, et al., 2022).

Beyond these considerations, as SNNs are an

emerging area of ANN research, the current hardware

and software solutions are less mature than those

developed and optimized for second generation

ANNs. For instance, when developing conventional

ANNs, researchers have access to commercial off-the-

shelf advanced hardware and established software

frameworks. However, in neuromorphics and SNNs,

while frameworks for developing SNNs exist, there is

not the ability yet to seamlessly implement any type of

algorithmic solution and not all neuromorphic

software libraries support the same types of neurons or

networks (Manna, et al., 2023). Similarly, different

neuromorphic hardware have different levels of

quantization, precision, scale (number of

neurons/synapses), and types of neurons that they can

provide or support. Thus, there are limited abilities to

implement end-to-end neuromorphic solutions.

2.2.1 SNN Training. A primary bottleneck in

implementing SNNs is that traditional ANN training

methods, such as gradient descent, cannot be applied

to SNNs, since the underlying approach of SNNs is

non-differentiable. Thus, training and developing

SNNs models traditionally involved an entirely

different process than CNNs or ANNs in general. A

general model for spiking neural learning includes the

concept of Spike Timing Dependent Plasticity (STDP)

(Kempter, et al., 1999). STDP works under the

following principle: If a spike inputs to a given neuron,

and that neuron outputs a spike shortly after, then the

connection (i.e. weight) between spiking source and

Figure 2. Conceptualization ANN generations with analogs to biology, adapted and extended from

(Bihl, et al., 2022)

Page 7564

the neuron tends to become stronger and vice versa.

Alternatively, systems requiring to train deeper

networks, resorted to training methods which allow to

bypass the non-differentiability of SNNs and apply

backpropagation, such as surrogate gradients (Neftci,

2019) or SLAYER (Shrestha & Orchard, 2018).

2.2.2 ANN to SNN Conversion. Due to the issues in

training SNNs, an alternative family of training

approaches was also developed whereby a traditional

ANN is first trained and then it is mapped over to be

an SNN, which is then implemented asynchronously.

A variety of methods exist for ANN to SNN

conversion like sigma-delta quantization

(Yousefzadeh, et al., 2019) or directly mapping

learned weights from a CNN to an SNN (Cao, et al.,

2014), (Hunsberger & Eliasmith, 2016).

2.3. AI Accelerators for Edge Computing

Edge computing involves placing the

computations, decision making, and inferences as

close to the devices and sensor as possible. This

improves efficiencies, reduces communications, and

reduces latency in data-to-decisions. Of interest

herein is edge computing where the computing is done

at the device itself, e.g. classifier training is performed

on a CPU/GPU and then deployed to the edge-based

processor for operations.

 A wide variety of AI accelerators exist for this

purpose, see (Spiller, et al., 2022), but of interest

herein are representative AI accelerators from the

traditional, i.e. von Neumann, and neuromorphic

approaches. Traditional hardware and neuromorphic

hardware can be regarded as distinct generations. They

differ in terms of operation (sequential processing as

opposed to massively parallel processing), structure

(discrete computation versus integrated processing

and memory), coding (binary instruction as opposed to

spiking neural networks), and timing (synchronous

versus asynchronous) (Schuman, et al., 2022).

For this study, two edge-based devices were

selected that represent both approaches: the Intel

Loihi, a neuromorphic device, and the Intel Neural

Compute Stick, colloquially “Movidius,” which

implements a computer vision optimized traditional

von Neumann architecture (Davies, et al., 2018). The

Loihi neuromorphic processor natively implements

spiking neurons with hardware sections dedicated to

synaptic, spiking, and dendrite activity (Davies, et al.,

2018). In operating either USB edge-based processors,

a trained ANN is saved to the device for processing

data (Xu, et al., 2017). A brief comparison of the two

devices used herein is presented in Table 1.

3. Developing an Apples-to-Apples

Evaluation Framework

 Of particular interest in answering RQ1-RQ4 and

understanding the differences in performance between

ANNs and SNNs is to deploy the algorithms on

appropriate hardware and software. Thus, selecting

hardware and software optimized for the respective

ANN approach are needed.

 3.1. Coding and Hardware Consideration

Multiple issues exist in comparing the performance

of AI/ML algorithms, no matter the measure of

interest. Accuracy/performance metrics are subject to

differences in datasets and experimental conditions;

time and power metrics are subject to differences and

quality in coding; which is compounded if special

libraries are used in one trial and not another. To

provide an apples-to-apples evaluation, the authors

developed a framework to isolate such issues.

3.2. Metrics and Data Collection

The first question for evaluation is that of

appropriate metrics to answer RQ2-RQ4. To this aim,

the authors considered metrics for accuracy, time, and

power. For edge-based applications with a priori

classifier training, use cases for Loihi and Movidius,

two metrics are of interest:

• Testing set classification accuracy

• Power consumption for test set validation.

Training accuracy was not considered since this was

performed a priori to edge device deployment. For

power, the authors focused on running the test set

through fully trained algorithms on each edge device.

In trial runs, it was seen that the communication time

for Loihi was higher than Movidius, this could be due

to Loihi being a prototype in nature, whereas the

Movidius is a commercial product; thus, computation

time was not considered to avoid inadvertent biases.

Accuracy was considered using the test data

allocations in tensorflow.datasets. Power consumption

Table 1. Comparison of Loihi and Movidius,

details from: (FRENKEL, ET AL., 2018) (DAVIES,

ET AL., 2018) (INTEL, 2017)
DEVICE LOIHI MOVIDIUS

MODEL Kapoho Bay Myriad

VERSION 1 2

TECHNOLOGY 14nm FinFET 28nm

PROCESSOR

TYPE
Loihi SHAVE

PROCESSORS 2 12

THROUGHPUT 3.44 Gspikes/s 1.5 Gb/s

Page 7565

was computed using a UM25C power meter. To

provide a stable baseline, a MacBook Pro was used for

all assessments with the edge device and UM25C

connected in series to a USB-port on the computer

with the same port used for all tests. Due to the

stochastic nature of ANNs, 3 replications were

performed for each model and 95% mean (Student’s t)

confidence intervals were computed for all results. For

all algorithms, Python 3.7.6, tensorflow 2.1, and

nengo/nengoDL 3.0 were used. A MacBook Pro with

an Intel i9 processor was used for all USB

communication. The Loihi tests used Python 3.5.2,

tensorflow 2.3, nengo 3.1, nengo-dl 3.1, and nengo-

loihi 1.0. The Movidius tests used Python 3.7.11 and

tensorflow 2.4. Herein, Nengo was used for SNNs

since it provides neuromorphic hardware applications

compatible with the Intel Loihi edge device.

3.3. Example Datasets

The authors considered common benchmarking

datasets: MNIST (LeCun, et al., 1995), Fashion-

MNIST (Xiao, et al. 2017), and CIFAR-10

(Krizhevsky & Hinton, 2009). Both MNIST and

Fashion-MNIST are conceptually similar, nC = 10

classes of 28x28 grayscale images of digits (MNIST)

and fashion products (Fashion-MNIST). CIFAR-10

(Krizhevsky & Hinton, 2009) is a set color images

(32x32x3), equally distributed into 10 categories

(airplane, automobile, bird, cat, deer, dog, frog, horse,

ship, and truck). All three datasets have 60,000 images

which are separated into a predefined 50,000 image

training set and a 10,000 image testing set. As of

writing, test set benchmark accuracy for these are,

approximately: 99.87% (MNIST), 96.91% (Fashion-

MNIST), and 99.5% (CIFAR-10) (Image

Classification, 2023). Notably, the algorithms that

yielded these current benchmark performance levels

are complex, have many layers, and include

components which are not currently replicable in

SNNs.

4. Experiment 1: Trade-space Study to

Understand SNNs vs ANNs

To understand and characterize performance

differences in ANNs and SNNs, first, a simplistic

architecture approach was used to focus on

understanding the research questions to benchmark

ANN and SNN algorithms. To focus on RQ2, of

particular interest is the effect of scaling.

4.1. Experiment Conceptualization

In order to compare intrinsic difference between

ANNs and SNNs, the authors first focused on a

consistent comparison, with simple architectural

design having one input layer, one hidden layer, and

one output layer. While such architectures are not as

highly tuned as many deep learning methods, and high

accuracy is not expected, they provide a simplicity

which engenders comparisons.

To address RQ2, the authors’ approach with this

basis is presented in Figure 3, which presents the

reference architecture (4 hidden nodes) in the center,

along with a scaling in both directions by 2, for larger

size (8 hidden nodes) and smaller size (2 hidden

nodes). Thus, this experiment only changes the hidden

layer, with the input and output layer kept consistent.

4.2. Experimental Settings and Setup

Figure 3. Conceptualization of the general experimental approach on a 3 layer neural network for the
architecture changing from the baseline to 1/2 the baseline quantity of hidden nodes to 2x the quantity.

Page 7566

For the comparison of ANNs and SNNs in as

apples-to-apples sense, three types of ANNs were

created:

• ANNs – baseline 2nd generation ANNs

• SNNs – 3rd generation SNNs

• CSNNs – ANNs converted to SNNs

All SNNs were created in nengo/nengoDL 3.0, and all

ANNs were created in tensorflow 2.1. The CSNNs

were created by taking the respective ANN, created in

tensorflow 2.1, and then converted each to SNNs using

nengo/nengoDL 3.0 via the rate based method of

(Hunsberger & Eliasmith, 2016). This method softens

the neural response function and bypasses the non-

differentiability problems by using an approximation

of the spiking function during training and then

replacing these neurons with actual spiking neurons

during inference. For each SNN implementation, dt,

the duration between consecutive computations of

spikes, was implemented for dt = [0.05, 0.10].

Following the framework of Section 4.1, the

authors developed ANNs which had NHidden = [6, 12,

24, 49, 98, 196] hidden nodes. The sweeping of the

architecture of the study framework was increased by a

factor of 2, to create ANNs and SNNs in the form,

following the notation of (Bihl, et al., 2020), of:

 28x28-NHiddenReLu-CL (1)

where ReLu are rectified linear units (output linear for

inputs greater than 0; 0 otherwise) for ANNs, or

spiking rectified linear units (spiking rate is linear for

inputs greater than 0; 0 otherwise) for all SNNs.

4.3. Experimental Results

Results for MNIST and Fashion-MNIST are

presented in Figures 5 through 8, with the following
designations in the legends: a) ANN (blue), b) SNN
with dt = 0.1 (orange), c) SNN with dt = 0.05, d) CSNN
with dt = 0.1 (red), and e) CSNN with dt = 0.05
(purple). Figures 5 and 6 present test set accuracy for
MNIST and Fashion-MNIST, respectively. These
figures present broad comparisons of test set
classification accuracy with 95% t-test confidence
intervals, for 3 replications, versus the architecture
size, for NHidden. Notably, we see in both Figures 4 and
5 that ANN performance rises slowly and generally
outperforms SNNs and CSNNs until sufficiently large
architecture exists, at around NHidden = 24. After NHidden

= 24, accuracy is statistical equivalent for the ANNs,
SNNs, and CSNNs at each NHidden point, whereby the
confidence intervals of accuracy overlap considerable,
or entirely, at each NHidden point. Thus, RQ3 is
answered with ANNs and SNNs performing similarly
at this task when sufficient architecture is instantiated.

Figure 4. Test set accuracy for MNIST

Figure 5. Test set accuracy for Fashion MNIST

Figure 6. Test set dynamic power (Watts) for
MNIST

Given that the accuracy was comparable between
ANNs, SNNs, and CSNNs, the SWaP concerns are
then of interest. Figures 6 and 6 present dynamic
power for each network on MNIST, Figure 6, and
Fashion MNIST, Figure 7. Notably, we see in both that
SNNs and CSNNs offer significant performance
advantages in dynamic power, which is flat (within
adjacent confidence intervals) across explored NHidden

Page 7567

points. In contrast, the ANNs required 5-10 times more
power which was increasing across explored NHidden
points. Thus, RQ4 is answered with whereby SNNs
provide a performance advantage over ANNs.

Figure 7. Test set dynamic power (Watts) for
Fashion MNIST

5. Experiment 2: Focused Comparison of

SNNs vs ANNs
.

The results in Section 4 illustrated the differences

of ANNs and SNNs on a relatively simplistic problem

with performance comparable in accuracy (once

sufficient SNN architecture is reached) but with SNNs

providing that performance with less SWaP demands.

However, the apparent advantages of SNNs and their

deployment on neuromorphic hardware are only

potentials. Of interest next is exploring the research

questions on a more meaningful problem, which will

be considered using competitive a SNN benchmark

algorithm and ANN equivalent.

5.1. Algorithm Development

As the complexity of the problem at hand

increases, so generally does the required complexity of

the network employed. Therefore, in this section we

evaluate a complex SNN architecture taken from the

current state-of-the-art in neuromorphic image

classification, the S-ResNet (Vicente-Sola, et al.,

2022). S-ResNet provides the current benchmark

setting accuracy for SNNs on imagery; however, it has

only been demonstrated in software. On CIFAR-10, S-

ResNet, when using the widest version and all

developed embellishment (not implementable on

Loihi), yielded test-set classification performance of

94.14%. The success of S-ResNet is based on the

usage of spiking residual connections. Adding residual

connections to the ANNs in general allows one train

deeper architectures without making the optimization

problem more complex, giving rise to deeper and more

powerful topologies (Vicente-Sola, et al., 2022). The

topology of the system in (Vicente-Sola, et al., 2022)

is based on the CNN architecture proposed by the

original ResNet (He, et al., 2016), the neuron model

used for the spiking layers is the LIF and as

normalization strategy Batch Normalization Through

Time (BNTT) (Kim & Panda, 2020) is used. BNTT

being a version of Batch Normalization that de-

correlates activation statistics through time and has

been proven to improve performance for SNN.

S-ResNet is formulated as

3x32x32 - 32C3s1 - BNTT - SN - (RB32,s1)*5

– RB32,s2 – (RB64,s1)*5 - RB64,s2 -

(RB128,s1)*5 – RB128,s2 - GAP - CL

 (2)

where BNTT indicates the process of (Vicente-Sola, et

al., 2022), s1 means stride=1, s2 means stride=2, SN

are spiking neurons, GAP indicates global average

pooling (GAP) to 1x1 resolution, and RB is a residual

block defined as

RBn,sm = nC3s1 - BNTT - SN - nC3sm -

BNTT - SN - residual input

(3)

with "s" in the convolutions to indicate the stride, n

indicating the output channels of the convolutional

layers in the block, and m indicating the stride of its

convolutions.

However, to implement S-ResNet on Loihi and in

Nengo, some changes had to be made due to hardware

and software limitations for both size allowable on

Loihi and types of connections permissible in Nengo.

In this work we thus implemented the 38-layer S-

ResNet38 with only the S2M (Spiking Output to

Membrane Potential) approach which was shown in

(Vicente-Sola, et al., 2022) to have a test set accuracy

of 89.27% on CIFAR-10. Herein, the SNNs

implemented used spiking ReLu and, since BNTT was

not previously instantiated in Nengo, this work

developed a custom object for BNTT in Nengo. S-

ResNet is natively in SNN form, thus to create an

ANN equivalent, ANN-S-ResNet, the following

changes were made: BNTT was changed to Batch

Normalization, ReLu was used in place of spiking

ReLu, and the residual connections were output to

input rather than S2M.

5.2. Experimental Results

With implementations for ANN-S-ResNet, S-

ResNet, and CS-ResNet (ANN-S-ResNet converted to

an SNN), the comparison process of Section 3 was

repeated, again with 3 replications for each algorithm,

Page 7568

but with no sweeping architectural changes of Figure

3 since the many layers would make such an approach

seemingly arbitrary.

Results are presented in Table 2 show that ANN

accuracy outperforms both the SNN and CSNN;

however, the drop in accuracy is no more than 4.3%.

However, it is likely that architecture changes made

for edge implementation of S-ResNet38 with S2M

caused the drop in accuracy, since the discussion in

Section 4 showed statistically similar performance of

SNNs and ANNs for equivalent networks. For power,

Table 2 shows that the SNN and CSNN are seen to

require orders of magnitude less dynamic power for

their inferences.

Thus, further work is needed to mature the

software available for edge neuromorphics to close the

gap in capabilities. Additionally, Table 2 shows that

the CSNN implementation of S-ResNet slightly

outperforms S-ResNet in both accuracy and dynamic

power consumption. As this could indicate an

advantage from converting an ANN to SNN over

direct SNN development, more investigation into why

this occurred is of interest.

6. Conclusions

This contribution addresses recent concerns in

AI/ML literature involving expanding computational

and power demands for ever increasing algorithm

sizes. To this aim, the authors presented a systematic

study to understand how Spiking Neural Networks

(SNNs) might be advantageous over traditional

Artificial Neural Networks (ANNs) with

implementation on edge devices. Prior studies that

compared SNNs and ANNs had limitations which

yield not always apples-to-apples comparisons. This

study, answering RQ2, thus first developed a simple

framework to change ANN architecture size, while

evaluating performance by accuracy, time, power, and

size, key SWaP (Size, Weight, and Power) concerns.

ANNs, SNNs, and ANN-to-SNN converted networks

were all explored with an aim for equivalency

maintained throughout. The results further provided

verification for the performance claims of state-of-the-

art neuromorphic classification algorithms.

Answering RQ1, the results show that SNNs offer

distinct power advantages over traditional ANNs

(answering RQ4), while providing comparable

accuracy (answering RQ3). This is particularly seen

when “fully embracing” neuromorphics whereby a

neuromorphic edge device is combined with

neuromorphic SNN algorithms. Interesting, the ANN-

to-SNN converted models provided better accuracy

and less power than both ANNs and SNNs, a result

that needs further consideration since it could indicate

either issues in training SNNs natively or a unique

advantage from ANN-to-SNN conversion.

Further studies and analysis can aim to understand

this trade-space which logically involves extending

this study to include other dedicated AI/ML hardware.

Additionally of interest are exploring additional

network structures, and expanding the current study to

different applications, e.g. CV or speech processing.

7. Acknowledgements

The views expressed in this paper are those of the

authors and do not necessarily represent any views of

the U.S. Government, U.S. Department of Defense, or

U.S. Air Force. This work was cleared for unlimited

release under AFRL-2023-2753.

8. References

Bhalla, U. (2014). Molecular computation in neurons: a

modeling perspective. . Current opinion in

neurobiology, 25, 31-37.
Bihl, T. J., et al. (2022). Artificial Neural Networks and

Data Science. Encycl. of Data Science and

Machine Learning.

Bihl, T., & Talbert, M. (2020). Analytics for Autonomous
C4ISR within e-Government: a Research

Agenda. HICSS, 2218-2227.

Bihl, T., et al. (2020). Easy and Efficient Hyperparameter

Optimization to Address Some Artificial
Intelligence “ilities”. HICSS, 943-952.

Blouw, P., et al. (2019). Benchmarking Keyword Spotting

Efficiency on Neuromorphic Hardware. Proc. 7th

Ann. Neuro-inspired Comput. Elements.
Boubin, J., et al. (2019). Neurowav: Toward real-time

waveform design for vanets using neural

networks. Vehicular Network. Conf. (VNC), 1-4.

Cantley, K., et al. (2011). Hebbian learning in spiking
neural networks with nanocrystalline silicon

TFTs and memristive synapses. IEEE Trans on

Nanotechnology, 10(5), 1066-1073.

Cao, Y., et al. (2014). Spiking Deep Convolutional Neural
Networks for Energy-Efficient Object

Recognition. Int'l J. Computer Vision, 113(1),

54–66.

Table 2. Results of S-ResNet on Loihi and

Movidius with mean and confidence interval
ALGORITHM ANN-S-RESNET S-RESNET CS-RESNET

DEVICE MOVIDIUS LOIHI LOIHI

ACCURACY

(%)

90.6%

± 0.001%

86.3%

± 0.002%

87.2%

± 0.002%

DYNAMIC

POWER (W)

0.105

± 9.5E-6

0.0092

± 4E-6
0.0072

± 1.2E-5

Page 7569

Davies, M., et al. (2018). Loihi: A neuromorphic manycore
processor with on-chip learning. . Ieee Micro,

38(1), 82-99.

Denisova, V., et al. (2019). Blockchain infrastructure and

growth of global power consumption. Int'l J.
Energy Econ Policy, 9(4), 22-29.

Domingos, P. (2015). The master algorithm: How the quest

for the ultimate learning machine will remake

our world. . Basic Books.
Frenkel, C., et al. (2018). A 0.086-mm $^ 2 $12.7-pJ/SOP

64k-synapse 256-neuron online-learning digital

spiking neuromorphic processor in 28-nm

CMOS. IEEE Trans. biomedical circuits and
systems, 13(1), 145-158.

Ghosh-Dastidar, S., & Adeli, H. (2009). Third generation

neural networks: Spiking neural networks. Adv.

Computational Intelligence, 167-178.
Hao, K. (2019, Jan. 25). We analyzed 16,625 papers to

figure out where AI is headed next. (Technology

Review) Retrieved Apr. 1, 2019, from

https://www.technologyreview.com/s/612768/we
-analyzed-16625-papers-to-figure-out-where-ai-

is-headed-next/

He, K., et al. (2016). Deep residual learning for image

recognition. IEEE conf. on computer vision and
pattern recognition, 770-778.

Hunsberger, E., & Eliasmith, C. (2016). Training spiking

deep networks for neuromorphic hardware. .

arXiv preprint arXiv:1611.05141.
Image Classification. (2023, May 10). (Papers with Code)

Retrieved May 10, 2022, from Papers with Code:

https://paperswithcode.com/task/image-

classification
Intel. (2017). Intel Movidius Myriad 2 Vision Processing

Unit (VPU). Retrieved May. 10, 2022, from

https://newsroom.intel.com/wp-

content/uploads/sites/11/2017/06/Myriad-2-VPU-
Fact-Sheet.pdf

Jain, A. K., et al. (2000, Jan.). Statistical Pattern

Recognition: A Review. IEEE Trans. Pattern

Analysis and Machine Intelligence, 22(1), 4-37.
Kempter, R., et al. (1999). Hebbian learning and spiking

neurons. . Physical Review E, 59(4), 4498.

Kim, Y., & Panda, P. (2020). Revisiting batch

normalization for training low-latency deep
spiking neural networks from scratch. Frontiers

in neuroscience.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple

layers of features from tiny images. Toronto, CA:
University of Toronto. Retrieved from

https://www.cs.toronto.edu/~kriz/cifar.html

Kühl, N., et al. (2019). Machine Learning in Artificial

Intelligence: Towards a Common Understanding.
HICSS, 5236-5245.

LeCun, Y., et al. (1995). Learning algorithms for

classification: A comparison on handwritten digit
recognition. Neural networks: the statistical

mechanics perspective.

Li, D., et al. (2016). Evaluating the energy efficiency of

deep convolutional neural networks on CPUs and

GPUs. IEEE Int'l Conf big data and cloud
computing (BDCloud), 477-484.

Li, Y., et al. (2021). A free lunch from ANN: Towards

efficient, accurate spiking neural networks

calibration. Int'l Conf. Mach. Learn., 6316-6325.
Maass, W. (1997). Networks of spiking neurons: the third

generation of neural network models. Neural

networks, 10(9), 1659-1671.
Manna, D.L., et al. (2022). Simple and complex spiking

neurons: Perspectives and analysis in a simple

STDP scenario. Neuromorphic Computing and

Engineering, 2(4), p.044009.

Manna, D. L., et al. (2023) Frameworks for SNNs: a review
of data science-oriented software and an

expansion of SpykeTorch Int'l Conf Engineering

Applications of Neural Networks, pp. 227-238.

McCulloch, W., & Pitts, W. (1943). A Logical Calculus of
the Ideas Immanent in Nervous Activity. Bulletin

of Mathematical Biophysics, 5, 115-133.

Schuman, C., et al. (2022). Opportunities for neuromorphic

computing algorithms and applications. Nature
Computational Science, 2(1), 10-10.

Shi, W., & Dustdar, S. (2016). The promise of edge

computing. Computer, 49(5), 78-81.

Shrestha, S., & Orchard, G. (2018). Slayer: Spike layer
error reassignment in time. Advances in neural

information processing systems, 31.

Spiller, D., et al. (2022). Wildfire segmentation analysis

from edge computing for on-board real-time
alerts using hyperspectral imagery. IEEE

MetroXRAINE, 725-730.

Strubell, E., et al. (2019). Energy and policy considerations

for deep learning in NLP. arXiv preprint
arXiv:1906.02243.

Thórisson, K., & Helgasson, H. (2012). Cognitive

architectures and autonomy: A comparative

review. J. Artificial General Intell., 3(2), 1-30.
Timmerman, D., et al. (1999). Artificial neural network

models for the preoperative discrimination

between malignant and benign adnexal masses.

Ultrasound Obstetrics Gynecology, 13(1), 17-25.
Vicente-Sola, A., et al. (2022). Keys to accurate feature

extraction using residual spiking neural networks.

Neuromorphic Comput. & Engineering, 044001.

Vicente-Sola, A., et al. (2023). Spiking Neural Networks
for event-based action recognition: A new task to

understand their advantage. arXiv:2209.14915.

Xiao, H., et al. (2017). Fashion-mnist: a novel image

dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.

Xu, X., et al. (2017). Classify 3D voxel based point-cloud

using convolutional neural network on a neural

compute stick. 3th Int'l Conf. Natural
Computation, Fuzzy Systems and Knowledge

Discovery (ICNC-FSKD), 37-43.

Yousefzadeh, A., et al. (2019). Conversion of synchronous
artificial neural network to asynchronous spiking

neural network using sigma-delta quantization.

IEEE Int'l Conf on Artificial Intelligence Circuits

and Systems (AICAS), 81-85.

Page 7570

